pikapython/package/STM32/pika_hal_stm32_PWM.c

1125 lines
27 KiB
C
Raw Normal View History

#include "pika_hal_stm32_common.h"
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 zylx first version
* 2021-01-23 thread-liu Fix the timer clock frequency doubling problem
* 2023-9-10 lyon port to pika_hal
*/
#ifndef PIKA_HAL
#include <board.h>
#endif
#ifdef BSP_USING_PWM
#ifdef PIKA_HAL
#include "pika_drv_config.h"
#else
#include "drv_config.h"
#endif
#if !defined(PWM1_CONFIG)
#undef BSP_USING_PWM1
#endif
#if !defined(PWM2_CONFIG)
#undef BSP_USING_PWM2
#endif
#if !defined(PWM3_CONFIG)
#undef BSP_USING_PWM3
#endif
#if !defined(PWM4_CONFIG)
#undef BSP_USING_PWM4
#endif
#if !defined(PWM5_CONFIG)
#undef BSP_USING_PWM5
#endif
#if !defined(PWM6_CONFIG)
#undef BSP_USING_PWM6
#endif
#if !defined(PWM7_CONFIG)
#undef BSP_USING_PWM7
#endif
#if !defined(PWM8_CONFIG)
#undef BSP_USING_PWM8
#endif
#if !defined(PWM9_CONFIG)
#undef BSP_USING_PWM9
#endif
#if !defined(PWM10_CONFIG)
#undef BSP_USING_PWM10
#endif
#if !defined(PWM11_CONFIG)
#undef BSP_USING_PWM11
#endif
#if !defined(PWM12_CONFIG)
#undef BSP_USING_PWM12
#endif
#if !defined(PWM13_CONFIG)
#undef BSP_USING_PWM13
#endif
#if !defined(PWM14_CONFIG)
#undef BSP_USING_PWM14
#endif
#if !defined(PWM15_CONFIG)
#undef BSP_USING_PWM15
#endif
#if !defined(PWM16_CONFIG)
#undef BSP_USING_PWM16
#endif
#if !defined(PWM17_CONFIG)
#undef BSP_USING_PWM17
#endif
#ifndef PIKA_HAL
#include "drv_tim.h"
#include <drivers/rt_drv_pwm.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#endif
#define MAX_PERIOD 65535
#define MIN_PERIOD 3
#define MIN_PULSE 2
enum
{
#ifdef BSP_USING_PWM1
PWM1_INDEX,
#endif
#ifdef BSP_USING_PWM2
PWM2_INDEX,
#endif
#ifdef BSP_USING_PWM3
PWM3_INDEX,
#endif
#ifdef BSP_USING_PWM4
PWM4_INDEX,
#endif
#ifdef BSP_USING_PWM5
PWM5_INDEX,
#endif
#ifdef BSP_USING_PWM6
PWM6_INDEX,
#endif
#ifdef BSP_USING_PWM7
PWM7_INDEX,
#endif
#ifdef BSP_USING_PWM8
PWM8_INDEX,
#endif
#ifdef BSP_USING_PWM9
PWM9_INDEX,
#endif
#ifdef BSP_USING_PWM10
PWM10_INDEX,
#endif
#ifdef BSP_USING_PWM11
PWM11_INDEX,
#endif
#ifdef BSP_USING_PWM12
PWM12_INDEX,
#endif
#ifdef BSP_USING_PWM13
PWM13_INDEX,
#endif
#ifdef BSP_USING_PWM14
PWM14_INDEX,
#endif
#ifdef BSP_USING_PWM15
PWM15_INDEX,
#endif
#ifdef BSP_USING_PWM16
PWM16_INDEX,
#endif
#ifdef BSP_USING_PWM17
PWM17_INDEX,
#endif
};
struct rt_device_pwm
{
struct rt_device parent;
const struct rt_pwm_ops *ops;
};
struct stm32_pwm
{
struct rt_device_pwm pwm_device;
TIM_HandleTypeDef tim_handle;
rt_uint8_t channel;
char *name;
rt_base_t pin;
};
static struct stm32_pwm stm32_pwm_obj[] =
{
#ifdef BSP_USING_PWM1
PWM1_CONFIG,
#endif
#ifdef BSP_USING_PWM2
PWM2_CONFIG,
#endif
#ifdef BSP_USING_PWM3
PWM3_CONFIG,
#endif
#ifdef BSP_USING_PWM4
PWM4_CONFIG,
#endif
#ifdef BSP_USING_PWM5
PWM5_CONFIG,
#endif
#ifdef BSP_USING_PWM6
PWM6_CONFIG,
#endif
#ifdef BSP_USING_PWM7
PWM7_CONFIG,
#endif
#ifdef BSP_USING_PWM8
PWM8_CONFIG,
#endif
#ifdef BSP_USING_PWM9
PWM9_CONFIG,
#endif
#ifdef BSP_USING_PWM10
PWM10_CONFIG,
#endif
#ifdef BSP_USING_PWM11
PWM11_CONFIG,
#endif
#ifdef BSP_USING_PWM12
PWM12_CONFIG,
#endif
#ifdef BSP_USING_PWM13
PWM13_CONFIG,
#endif
#ifdef BSP_USING_PWM14
PWM14_CONFIG,
#endif
#ifdef BSP_USING_PWM15
PWM15_CONFIG,
#endif
#ifdef BSP_USING_PWM16
PWM16_CONFIG,
#endif
#ifdef BSP_USING_PWM17
PWM17_CONFIG,
#endif
};
/* APBx timer clocks frequency doubler state related to APB1CLKDivider value */
static void stm32_tim_pclkx_doubler_get(rt_uint32_t *pclk1_doubler, rt_uint32_t *pclk2_doubler)
{
rt_uint32_t flatency = 0;
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RT_ASSERT(pclk1_doubler != RT_NULL);
RT_ASSERT(pclk1_doubler != RT_NULL);
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &flatency);
*pclk1_doubler = 1;
*pclk2_doubler = 1;
#if defined(SOC_SERIES_STM32MP1)
if (RCC_ClkInitStruct.APB1_Div != RCC_APB1_DIV1)
{
*pclk1_doubler = 2;
}
if (RCC_ClkInitStruct.APB2_Div != RCC_APB2_DIV1)
{
*pclk2_doubler = 2;
}
#else
if (RCC_ClkInitStruct.APB1CLKDivider != RCC_HCLK_DIV1)
{
*pclk1_doubler = 2;
}
#if !(defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0))
if (RCC_ClkInitStruct.APB2CLKDivider != RCC_HCLK_DIV1)
{
*pclk2_doubler = 2;
}
#endif /* !(defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)) */
#endif /* defined(SOC_SERIES_STM32MP1) */
}
static void stm32_tim_enable_clock(TIM_HandleTypeDef* htim_base)
{
RT_ASSERT(htim_base != RT_NULL);
if(RT_FALSE);
#ifdef TIM1
else if(htim_base->Instance==TIM1)
{
__HAL_RCC_TIM1_CLK_ENABLE();
}
#endif /* TIM1 */
#ifdef TIM2
else if(htim_base->Instance==TIM2)
{
__HAL_RCC_TIM2_CLK_ENABLE();
}
#endif /* TIM2 */
#ifdef TIM3
else if(htim_base->Instance==TIM3)
{
__HAL_RCC_TIM3_CLK_ENABLE();
}
#endif /* TIM3 */
#ifdef TIM4
else if(htim_base->Instance==TIM4)
{
__HAL_RCC_TIM4_CLK_ENABLE();
}
#endif /* TIM4 */
#ifdef TIM5
else if(htim_base->Instance==TIM5)
{
__HAL_RCC_TIM5_CLK_ENABLE();
}
#endif /* TIM5 */
#ifdef TIM6
else if(htim_base->Instance==TIM6)
{
__HAL_RCC_TIM6_CLK_ENABLE();
}
#endif /* TIM6 */
#ifdef TIM7
else if(htim_base->Instance==TIM7)
{
__HAL_RCC_TIM7_CLK_ENABLE();
}
#endif /* TIM7 */
#ifdef TIM8
else if(htim_base->Instance==TIM8)
{
__HAL_RCC_TIM8_CLK_ENABLE();
}
#endif /* TIM8 */
#ifdef TIM9
else if(htim_base->Instance==TIM9)
{
__HAL_RCC_TIM9_CLK_ENABLE();
}
#endif /* TIM9 */
#ifdef TIM10
else if(htim_base->Instance==TIM10)
{
__HAL_RCC_TIM10_CLK_ENABLE();
}
#endif /* TIM10 */
#ifdef TIM11
else if(htim_base->Instance==TIM11)
{
__HAL_RCC_TIM11_CLK_ENABLE();
}
#endif /* TIM11 */
#ifdef TIM12
else if(htim_base->Instance==TIM12)
{
__HAL_RCC_TIM12_CLK_ENABLE();
}
#endif /* TIM12 */
#ifdef TIM13
else if(htim_base->Instance==TIM13)
{
__HAL_RCC_TIM13_CLK_ENABLE();
}
#endif /* TIM13 */
#ifdef TIM14
else if(htim_base->Instance==TIM14)
{
__HAL_RCC_TIM14_CLK_ENABLE();
}
#endif /* TIM14 */
#ifdef TIM15
else if(htim_base->Instance==TIM15)
{
__HAL_RCC_TIM15_CLK_ENABLE();
}
#endif /* TIM15 */
#ifdef TIM16
else if(htim_base->Instance==TIM16)
{
__HAL_RCC_TIM16_CLK_ENABLE();
}
#endif /* TIM16 */
#ifdef TIM17
else if(htim_base->Instance==TIM17)
{
__HAL_RCC_TIM17_CLK_ENABLE();
}
#endif /* TIM17 */
#ifdef TIM18
else if(htim_base->Instance==TIM18)
{
__HAL_RCC_TIM18_CLK_ENABLE();
}
#endif /* TIM18 */
#ifdef TIM19
else if(htim_base->Instance==TIM19)
{
__HAL_RCC_TIM19_CLK_ENABLE();
}
#endif /* TIM19 */
else
{
RT_ASSERT(RT_TRUE);
}
}
static rt_uint64_t tim_clock_get(TIM_HandleTypeDef *htim)
{
rt_uint32_t pclk1_doubler, pclk2_doubler;
rt_uint64_t tim_clock;
stm32_tim_pclkx_doubler_get(&pclk1_doubler, &pclk2_doubler);
/* Some series may only have APBPERIPH_BASE, don't have HAL_RCC_GetPCLK2Freq */
#if defined(APBPERIPH_BASE)
tim_clock = (rt_uint32_t)(HAL_RCC_GetPCLK1Freq() * pclk1_doubler);
#elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
if ((rt_uint32_t)htim->Instance >= APB2PERIPH_BASE)
{
tim_clock = (rt_uint32_t)(HAL_RCC_GetPCLK2Freq() * pclk2_doubler);
}
else
{
tim_clock = (rt_uint32_t)(HAL_RCC_GetPCLK1Freq() * pclk1_doubler);
}
#endif
return tim_clock;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
struct rt_pwm_ops
{
rt_err_t (*control)(struct rt_device_pwm *device, int cmd, void *arg);
};
static struct rt_pwm_ops drv_ops =
{
drv_pwm_control
};
struct rt_pwm_configuration
{
rt_uint32_t channel; /* 0 ~ n or 0 ~ -n, which depends on specific MCU requirements */
rt_uint32_t period; /* unit:ns 1ns~4.29s:1Ghz~0.23hz */
rt_uint32_t pulse; /* unit:ns (pulse<=period) */
rt_uint32_t dead_time; /* unit:ns */
rt_uint32_t phase; /*unit: degree, 0~360, which is the phase of pwm output, */
/*
* RT_TRUE : The channel of pwm is complememtary.
* RT_FALSE : The channel of pwm is nomal.
*/
rt_bool_t complementary;
};
static rt_err_t drv_pwm_enable(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
if (!configuration->complementary)
{
if (!enable)
{
HAL_TIM_PWM_Stop(htim, channel);
}
else
{
HAL_TIM_PWM_Start(htim, channel);
}
}
else if (configuration->complementary)
{
if (!enable)
{
HAL_TIMEx_PWMN_Stop(htim, channel);
}
else
{
HAL_TIMEx_PWMN_Start(htim, channel);
}
}
return RT_EOK;
}
static rt_err_t drv_pwm_get(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
rt_uint64_t tim_clock;
tim_clock = tim_clock_get(htim);
if (__HAL_TIM_GET_CLOCKDIVISION(htim) == TIM_CLOCKDIVISION_DIV2)
{
tim_clock = tim_clock / 2;
}
else if (__HAL_TIM_GET_CLOCKDIVISION(htim) == TIM_CLOCKDIVISION_DIV4)
{
tim_clock = tim_clock / 4;
}
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
configuration->period = (__HAL_TIM_GET_AUTORELOAD(htim) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
configuration->pulse = (__HAL_TIM_GET_COMPARE(htim, channel) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
rt_uint32_t period, pulse;
rt_uint64_t tim_clock, psc;
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
tim_clock = tim_clock_get(htim);
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
period = (rt_uint64_t)configuration->period * tim_clock / 1000ULL ;
psc = period / MAX_PERIOD + 1;
period = period / psc;
__HAL_TIM_SET_PRESCALER(htim, psc - 1);
if (period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
__HAL_TIM_SET_AUTORELOAD(htim, period - 1);
pulse = (rt_uint64_t)configuration->pulse * tim_clock / psc / 1000ULL;
if (pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
/*To determine user input, output high level is required*/
else if (pulse >= period)
{
pulse = period + 1;
}
__HAL_TIM_SET_COMPARE(htim, channel, pulse - 1);
/* If you want the PWM setting to take effect immediately,
please uncommon the following code, but it will cause the last PWM cycle not complete. */
//__HAL_TIM_SET_COUNTER(htim, 0);
//HAL_TIM_GenerateEvent(htim, TIM_EVENTSOURCE_UPDATE); /* Update frequency value */
return RT_EOK;
}
static rt_err_t drv_pwm_set_period(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
rt_uint32_t period;
rt_uint64_t tim_clock, psc;
tim_clock = tim_clock_get(htim);
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
period = (rt_uint64_t)configuration->period * tim_clock / 1000ULL ;
psc = period / MAX_PERIOD + 1;
period = period / psc;
__HAL_TIM_SET_PRESCALER(htim, psc - 1);
if (period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
__HAL_TIM_SET_AUTORELOAD(htim, period - 1);
return RT_EOK;
}
static rt_err_t drv_pwm_set_pulse(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
rt_uint32_t period, pulse;
rt_uint64_t tim_clock;
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
tim_clock = tim_clock_get(htim);
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
period = (__HAL_TIM_GET_AUTORELOAD(htim) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
pulse = (rt_uint64_t)configuration->pulse * (__HAL_TIM_GET_AUTORELOAD(htim) + 1) / period;
if (pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
else if (pulse > period)
{
pulse = period;
}
__HAL_TIM_SET_COMPARE(htim, channel, pulse - 1);
return RT_EOK;
}
#ifdef PIKA_HAL
#define RT_DEVICE_CTRL_BASE(_) 0
#endif
#define PWM_CMD_ENABLE (RT_DEVICE_CTRL_BASE(PWM) + 0)
#define PWM_CMD_DISABLE (RT_DEVICE_CTRL_BASE(PWM) + 1)
#define PWM_CMD_SET (RT_DEVICE_CTRL_BASE(PWM) + 2)
#define PWM_CMD_GET (RT_DEVICE_CTRL_BASE(PWM) + 3)
#define PWMN_CMD_ENABLE (RT_DEVICE_CTRL_BASE(PWM) + 4)
#define PWMN_CMD_DISABLE (RT_DEVICE_CTRL_BASE(PWM) + 5)
#define PWM_CMD_SET_PERIOD (RT_DEVICE_CTRL_BASE(PWM) + 6)
#define PWM_CMD_SET_PULSE (RT_DEVICE_CTRL_BASE(PWM) + 7)
#define PWM_CMD_SET_DEAD_TIME (RT_DEVICE_CTRL_BASE(PWM) + 8)
#define PWM_CMD_SET_PHASE (RT_DEVICE_CTRL_BASE(PWM) + 9)
#define PWM_CMD_ENABLE_IRQ (RT_DEVICE_CTRL_BASE(PWM) + 10)
#define PWM_CMD_DISABLE_IRQ (RT_DEVICE_CTRL_BASE(PWM) + 11)
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(htim, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(htim, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(htim, configuration);
case PWM_CMD_SET_PERIOD:
return drv_pwm_set_period(htim, configuration);
case PWM_CMD_SET_PULSE:
return drv_pwm_set_pulse(htim, configuration);
case PWM_CMD_GET:
return drv_pwm_get(htim, configuration);
default:
return -RT_EINVAL;
}
}
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32L4)
static uint32_t get_pwm_pin_alternate(rt_base_t pin){
#ifdef BSP_USING_PWM1
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOA:
switch(PIN_NO(pin)){
case 8:
case 9:
case 10:
case 11:
return GPIO_AF1_TIM1;
}
break;
}
#endif
#ifdef BSP_USING_PWM2
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOA:
switch(PIN_NO(pin)){
case 0:
case 1:
case 2:
case 3:
return GPIO_AF1_TIM2;
}
break;
}
#endif
#ifdef BSP_USING_PWM3
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOA:
switch(PIN_NO(pin)){
case 6:
case 7:
return GPIO_AF2_TIM3;
}
break;
case (uintptr_t)GPIOB:
switch(PIN_NO(pin)){
case 0:
case 1:
return GPIO_AF2_TIM3;
}
break;
}
#endif
#ifdef BSP_USING_PWM4
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOB:
switch(PIN_NO(pin)){
case 6:
case 7:
case 8:
case 9:
return GPIO_AF2_TIM4;
}
break;
}
#endif
return -1; // Returning -1 for error cases as NULL for int return type doesn't make sense
}
#endif
static void pwm_pin_init(struct stm32_pwm* device){
mp_hal_gpio_clock_enable(PIN_STPORT(device->pin));
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = PIN_STPIN(device->pin);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32L4)
GPIO_InitStruct.Alternate = get_pwm_pin_alternate(device->pin);
#endif
HAL_GPIO_Init(PIN_STPORT(device->pin), &GPIO_InitStruct);
}
static rt_err_t stm32_hw_pwm_init(struct stm32_pwm *device)
{
rt_err_t result = RT_EOK;
TIM_HandleTypeDef *tim = RT_NULL;
TIM_MasterConfigTypeDef master_config = {0};
TIM_ClockConfigTypeDef clock_config = {0};
RT_ASSERT(device != RT_NULL);
tim = (TIM_HandleTypeDef *)&device->tim_handle;
/* configure the timer to pwm mode */
tim->Init.Prescaler = 0;
tim->Init.CounterMode = TIM_COUNTERMODE_UP;
tim->Init.Period = 0;
tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4)
tim->Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
if (HAL_TIM_Base_Init(tim) != HAL_OK)
{
LOG_E("%s pwm init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
stm32_tim_enable_clock(tim);
clock_config.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(tim, &clock_config) != HAL_OK)
{
LOG_E("%s clock init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
if (HAL_TIM_PWM_Init(tim) != HAL_OK)
{
LOG_E("%s pwm init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
if(IS_TIM_MASTER_INSTANCE(tim->Instance))
{
master_config.MasterOutputTrigger = TIM_TRGO_RESET;
master_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(tim, &master_config) != HAL_OK)
{
LOG_E("%s master config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
TIM_OC_InitTypeDef oc_config = {0};
oc_config.OCMode = TIM_OCMODE_PWM1;
oc_config.Pulse = 0;
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
oc_config.OCIdleState = TIM_OCIDLESTATE_RESET;
/* config pwm channel */
if (device->channel & 0x01)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_1) != HAL_OK)
{
LOG_E("%s channel1 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x02)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_2) != HAL_OK)
{
LOG_E("%s channel2 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x04)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_3) != HAL_OK)
{
LOG_E("%s channel3 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x08)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_4) != HAL_OK)
{
LOG_E("%s channel4 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
/* pwm pin configuration */
pwm_pin_init(device);
/* enable update request source */
__HAL_TIM_URS_ENABLE(tim);
__exit:
return result;
}
#define PWM_CH1 0
#define PWM_CH2 1
#define PWM_CH3 2
#define PWM_CH4 3
int get_pwm_channel(rt_base_t pin) {
switch ((uintptr_t)PIN_STPORT(pin)) {
case (uintptr_t)GPIOA:
switch (PIN_NO(pin)) {
case 8:
case 0:
case 6:
case 4:
return PWM_CH1;
case 9:
case 1:
case 7:
return PWM_CH2;
case 10:
case 2:
return PWM_CH3;
case 11:
case 3:
return PWM_CH4;
}
break;
case (uintptr_t)GPIOB:
switch (PIN_NO(pin)) {
case 6:
return PWM_CH1;
case 7:
return PWM_CH2;
case 8:
return PWM_CH3;
case 9:
case 0:
case 1:
return PWM_CH4;
}
break;
case (uintptr_t)GPIOD:
switch (PIN_NO(pin)) {
case 0:
return PWM_CH1;
case 1:
return PWM_CH2;
}
break;
}
/* Channel not match */
return -1;
}
static int get_pwm_index(rt_base_t pin) {
#ifdef BSP_USING_PWM1
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOA:
switch(PIN_NO(pin)){
case 8:
case 9:
case 10:
case 11:
return PWM1_INDEX;
}
break;
}
#endif
#ifdef BSP_USING_PWM2
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOA:
switch(PIN_NO(pin)){
case 0:
case 1:
case 2:
case 3:
return PWM2_INDEX;
}
break;
}
#endif
#ifdef BSP_USING_PWM3
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOA:
switch(PIN_NO(pin)){
case 6:
case 7:
return PWM3_INDEX;
}
break;
case (uintptr_t)GPIOB:
switch(PIN_NO(pin)){
case 0:
case 1:
return PWM3_INDEX;
}
break;
}
#endif
#ifdef BSP_USING_PWM4
switch((uintptr_t)PIN_STPORT(pin)){
case (uintptr_t)GPIOB:
switch(PIN_NO(pin)){
case 6:
case 7:
case 8:
case 9:
return PWM4_INDEX;
}
break;
}
#endif
return -1; // Returning -1 for error cases as NULL for int return type doesn't make sense
}
static int stm32_pwm_set_channel(rt_base_t pin)
{
int channel = get_pwm_channel(pin);
int PWMX_INDEX = get_pwm_index(pin);
if (PWMX_INDEX != -1 && channel != -1)
{
stm32_pwm_obj[PWMX_INDEX].channel |= 1 << channel;
return 0;
}
return -1; // Unknown pin number or PWM not defined
}
static rt_err_t rt_device_pwm_register(struct rt_device_pwm *device, const char *name, const struct rt_pwm_ops *ops, const void *user_data)
{
rt_err_t result = RT_EOK;
rt_memset(device, 0, sizeof(struct rt_device_pwm));
#ifndef PIKA_HAL
#ifdef RT_USING_DEVICE_OPS
device->parent.ops = &pwm_device_ops;
#else
device->parent.init = RT_NULL;
device->parent.open = RT_NULL;
device->parent.close = RT_NULL;
device->parent.read = _pwm_read;
device->parent.write = _pwm_write;
device->parent.control = _pwm_control;
#endif /* RT_USING_DEVICE_OPS */
#endif
device->parent.type = RT_Device_Class_PWM;
device->ops = ops;
device->parent.user_data = (void *)user_data;
#ifndef PIKA_HAL
result = rt_device_register(&device->parent, name, RT_DEVICE_FLAG_RDWR);
#endif
return result;
}
static volatile int stm32_pwm_inited = 0;
static int stm32_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(stm32_pwm_obj) / sizeof(stm32_pwm_obj[0]); i++)
{
LOG_D("%s init success", stm32_pwm_obj[i].name);
/* register pwm device */
if (rt_device_pwm_register(&stm32_pwm_obj[i].pwm_device, stm32_pwm_obj[i].name, &drv_ops, &stm32_pwm_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", stm32_pwm_obj[i].name);
}
else
{
LOG_E("%s register failed", stm32_pwm_obj[i].name);
result = -RT_ERROR;
}
// /* pwm init */
// if (stm32_hw_pwm_init(&stm32_pwm_obj[i]) != RT_EOK)
// {
// LOG_E("%s init failed", stm32_pwm_obj[i].name);
// result = -RT_ERROR;
// goto __exit;
// }
}
__exit:
return result;
}
#ifndef PIKA_HAL
INIT_DEVICE_EXPORT(stm32_pwm_init);
#endif
typedef struct platform_PWM {
struct stm32_pwm* pwm_obj;
struct rt_pwm_configuration pwm_configure;
} platform_PWM;
int pika_hal_platform_PWM_open(pika_dev* dev, char* name) {
if (!stm32_pwm_inited){
stm32_pwm_inited = 1;
stm32_pwm_init();
}
rt_base_t pin = _stm32_pin_get(name);
if(pin < 0){
pika_platform_printf("PWM Error: Pin %s not supported\n", name);
return -1;
}
int pwm_index = get_pwm_index(pin);
if(pwm_index < 0){
pika_platform_printf("PWM Error: Pin %s not supported\n", name);
return -1;
}
int ret = stm32_pwm_set_channel(pin);
if(ret < 0){
pika_platform_printf("PWM Error: Pin %s not supported\n", name);
return -1;
}
platform_PWM* pwm = pikaMalloc(sizeof(platform_PWM));
memset(pwm, 0, sizeof(platform_PWM));
pwm->pwm_obj = &stm32_pwm_obj[pwm_index];
pwm->pwm_obj->pin = pin;
pwm->pwm_configure.channel = get_pwm_channel(pin) + 1;
dev->platform_data = pwm;
return 0;
}
int pika_hal_platform_PWM_close(pika_dev* dev) {
platform_PWM* pwm = (platform_PWM*)dev->platform_data;
if(NULL != pwm){
pikaFree(pwm, sizeof(platform_PWM));
dev->platform_data = NULL;
}
return 0;
}
int pika_hal_platform_PWM_read(pika_dev* dev, void* buf, size_t count) {
return -1;
}
int pika_hal_platform_PWM_write(pika_dev* dev, void* buf, size_t count) {
return -1;
}
int pika_hal_platform_PWM_ioctl_config(pika_dev* dev,
pika_hal_PWM_config* cfg) {
platform_PWM* pwm = (platform_PWM*)dev->platform_data;
pwm->pwm_configure.period = cfg->period;
pwm->pwm_configure.pulse = cfg->duty;
if (dev->is_enabled){
drv_pwm_control(&pwm->pwm_obj->pwm_device, PWM_CMD_SET, &pwm->pwm_configure);
}
return 0;
}
int pika_hal_platform_PWM_ioctl_enable(pika_dev* dev) {
platform_PWM* pwm = (platform_PWM*)dev->platform_data;
if (!dev->is_enabled){
stm32_hw_pwm_init(pwm->pwm_obj);
drv_pwm_control(&pwm->pwm_obj->pwm_device, PWM_CMD_SET, &pwm->pwm_configure);
drv_pwm_control(&pwm->pwm_obj->pwm_device, PWM_CMD_ENABLE, &pwm->pwm_configure);
}
return 0;
}
int pika_hal_platform_PWM_ioctl_disable(pika_dev* dev) {
platform_PWM* pwm = (platform_PWM*)dev->platform_data;
drv_pwm_control(&pwm->pwm_obj->pwm_device, PWM_CMD_DISABLE, &pwm->pwm_configure);
return 0;
}
#endif /* BSP_USING_PWM */