pikapython/bsp/TC264D/Lcf_Tasking_Tricore_Tc.lsl

442 lines
15 KiB
Plaintext
Raw Normal View History

2022-01-18 00:58:54 +08:00
/**********************************************************************************************************************
* \file Lcf_Tasking_Tricore_Tc.lsl
* \brief Linker command file for Tasking compiler.
* \copyright Copyright (C) Infineon Technologies AG 2019
*
* Use of this file is subject to the terms of use agreed between (i) you or the company in which ordinary course of
* business you are acting and (ii) Infineon Technologies AG or its licensees. If and as long as no such terms of use
* are agreed, use of this file is subject to following:
*
* Boost Software License - Version 1.0 - August 17th, 2003
*
* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and
* accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute,
* and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the
* Software is furnished to do so, all subject to the following:
*
* The copyright notices in the Software and this entire statement, including the above license grant, this restriction
* and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all
* derivative works of the Software, unless such copies or derivative works are solely in the form of
* machine-executable object code generated by a source language processor.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*********************************************************************************************************************/
#define LCF_CSA0_SIZE 8k
#define LCF_USTACK0_SIZE 2k
#define LCF_ISTACK0_SIZE 1k
#define LCF_CSA1_SIZE 8k
#define LCF_USTACK1_SIZE 2k
#define LCF_ISTACK1_SIZE 1k
#define LCF_HEAP_SIZE 2k
#define LCF_CPU0 0
#define LCF_CPU1 1
/*Un comment one of the below statements to enable CpuX DMI RAM to hold global variables*/
/*#define LCF_DEFAULT_HOST LCF_CPU0*/
#define LCF_DEFAULT_HOST LCF_CPU1
#define LCF_DSPR1_START 0x60000000
#define LCF_DSPR1_SIZE 120k
#define LCF_DSPR0_START 0x70000000
#define LCF_DSPR0_SIZE 72k
#define LCF_CSA1_OFFSET (LCF_DSPR1_SIZE - 1k - LCF_CSA1_SIZE)
#define LCF_ISTACK1_OFFSET (LCF_CSA1_OFFSET - 256 - LCF_ISTACK1_SIZE)
#define LCF_USTACK1_OFFSET (LCF_ISTACK1_OFFSET - 256 - LCF_USTACK1_SIZE)
#define LCF_CSA0_OFFSET (LCF_DSPR0_SIZE - 1k - LCF_CSA0_SIZE)
#define LCF_ISTACK0_OFFSET (LCF_CSA0_OFFSET - 256 - LCF_ISTACK0_SIZE)
#define LCF_USTACK0_OFFSET (LCF_ISTACK0_OFFSET - 256 - LCF_USTACK0_SIZE)
#define LCF_HEAP0_OFFSET (LCF_USTACK0_OFFSET - LCF_HEAP_SIZE)
#define LCF_HEAP1_OFFSET (LCF_USTACK1_OFFSET - LCF_HEAP_SIZE)
#define LCF_INTVEC0_START 0x800F4000
#define LCF_TRAPVEC0_START 0x80000100
#define LCF_TRAPVEC1_START 0x800F6000
#define INTTAB0 (LCF_INTVEC0_START)
#define TRAPTAB0 (LCF_TRAPVEC0_START)
#define TRAPTAB1 (LCF_TRAPVEC1_START)
#define RESET 0x80000020
#include "tc1v1_6_x.lsl"
// Specify a multi-core processor environment (mpe)
processor mpe
{
derivative = tc26B;
}
derivative tc26B
{
core tc0
{
architecture = TC1V1.6.X;
space_id_offset = 100; // add 100 to all space IDs in the architecture definition
copytable_space = vtc:linear; // use the copy table in the virtual core for 'bss' and initialized data sections
}
core tc1 // core 1 TC16E
{
architecture = TC1V1.6.X;
space_id_offset = 200; // add 200 to all space IDs in the architecture definition
copytable_space = vtc:linear; // use the copy table in the virtual core for 'bss' and initialized data sections
}
core vtc
{
architecture = TC1V1.6.X;
import tc0; // add all address spaces of core tc0 to core vtc for linking and locating
import tc1; // tc1
}
bus sri
{
mau = 8;
width = 32;
// map shared addresses one-to-one to real cores and virtual cores
map (dest=bus:tc0:fpi_bus, src_offset=0, dest_offset=0, size=0xc0000000);
map (dest=bus:tc1:fpi_bus, src_offset=0, dest_offset=0, size=0xc0000000);
map (dest=bus:vtc:fpi_bus, src_offset=0, dest_offset=0, size=0xc0000000);
}
memory dsram1 // Data Scratch Pad Ram
{
mau = 8;
size = 120k;
type = ram;
map (dest=bus:tc1:fpi_bus, dest_offset=0xd0000000, size=120k, priority=8);
map (dest=bus:sri, dest_offset=0x60000000, size=120k);
}
memory psram1 // Program Scratch Pad Ram
{
mau = 8;
size = 32k;
type = ram;
map (dest=bus:tc1:fpi_bus, dest_offset=0xc0000000, size=32k, priority=8);
map (dest=bus:sri, dest_offset=0x60100000, size=32k);
}
memory dsram0 // Data Scratch Pad Ram
{
mau = 8;
size = 72k;
type = ram;
map (dest=bus:tc0:fpi_bus, dest_offset=0xd0000000, size=72k, priority=8);
map (dest=bus:sri, dest_offset=0x70000000, size=72k);
}
memory psram0 // Program Scratch Pad Ram
{
mau = 8;
size = 16k;
type = ram;
map (dest=bus:tc0:fpi_bus, dest_offset=0xc0000000, size=16k, priority=8);
map (dest=bus:sri, dest_offset=0x70100000, size=16k);
}
memory pfls0
{
mau = 8;
size = 1M;
type = rom;
map cached (dest=bus:sri, dest_offset=0x80000000, size=1M);
map not_cached (dest=bus:sri, dest_offset=0xa0000000, reserved, size=1M);
}
memory pfls1
{
mau = 8;
size = 1536K;
type = rom;
map cached (dest=bus:sri, dest_offset=0x80100000, size=1536K);
map not_cached (dest=bus:sri, dest_offset=0xa0100000, reserved, size=1536K);
}
memory dfls0
{
mau = 8;
size = 1m+16k;
type = reserved nvram;
map (dest=bus:sri, dest_offset=0xaf000000, size=1040k );
}
memory edmem
{
mau = 8;
size = 512K;
type = ram;
map (dest=bus:sri, dest_offset=0x9f000000, size=512K);
map (dest=bus:sri, dest_offset=0xbf000000, reserved, size=512K);
}
#if (__VERSION__ >= 6003)
section_setup :vtc:linear
{
heap "heap" (min_size = (1k), fixed, align = 8);
}
#endif
section_setup :vtc:linear
{
start_address
(
symbol = "_START"
);
}
section_setup :vtc:linear
{
stack "ustack_tc0" (min_size = 1k, fixed, align = 8);
stack "istack_tc0" (min_size = 1k, fixed, align = 8);
stack "ustack_tc1" (min_size = 1k, fixed, align = 8);
stack "istack_tc1" (min_size = 1k, fixed, align = 8);
}
/*Section setup for the copy table*/
section_setup :vtc:linear
{
copytable
(
align = 4,
dest = linear,
table
{
symbol = "_lc_ub_table_tc0";
space = :tc0:linear, :tc0:abs24, :tc0:abs18, :tc0:csa;
},
table
{
symbol = "_lc_ub_table_tc1";
space = :tc1:linear, :tc1:abs24, :tc1:abs18, :tc1:csa;
}
);
}
/*Near data sections*/
section_layout :vtc:abs18
{
group (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram1)
{
select "(.zdata.zdata_cpu1|.zdata.zdata_cpu1*)";
select "(.zbss.zbss_cpu1|.zbss.zbss_cpu1*)";
}
group (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram0)
{
select "(.zdata.zdata_cpu0|.zdata.zdata_cpu0*)";
select "(.zbss.zbss_cpu0|.zbss.zbss_cpu0*)";
}
# if LCF_DEFAULT_HOST == LCF_CPU1
group (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram1)
# endif
# if LCF_DEFAULT_HOST == LCF_CPU0
group (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram0)
# endif
{
select "(.zdata|.zdata*)";
select "(.zbss|.zbss*)";
}
}
section_layout :vtc:linear
{
/*Small data sections, No option given for CPU specific user sections to make generated code portable across Cpus*/
# if LCF_DEFAULT_HOST == LCF_CPU1
group a0 (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram1)
# endif
# if LCF_DEFAULT_HOST == LCF_CPU0
group a0 (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram0)
# endif
{
select "(.sdata |.sdata*)";
select "(.sbss |.sbss*)";
}
"_SMALL_DATA_" := sizeof(group:a0) > 0 ? addressof(group:a0) + 32k : addressof(group:a0) & 0xF0000000 + 32k;
group (ordered, contiguous, align = 4, run_addr = mem:edmem)
{
select "(.data.edmemdata|.data.edmemdata*)";
select "(.bss.edmembss|.bss.edmembss*)";
}
group (ordered, contiguous, align = 4, run_addr = mem:dsram1)
{
select "(.data.data_cpu1|.data.data_cpu1*)";
select "(.bss.bss_cpu1|.bss.bss_cpu1*)";
}
group (ordered, contiguous, align = 4, run_addr = mem:dsram0)
{
select "(.data.data_cpu0|.data.data_cpu0*)";
select "(.bss.bss_cpu0|.bss.bss_cpu0*)";
}
# if LCF_DEFAULT_HOST == LCF_CPU1
group (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram1)
# endif
# if LCF_DEFAULT_HOST == LCF_CPU0
group (ordered, contiguous, align = 4, attributes=rw, run_addr = mem:dsram0)
# endif
{
select "(.data|.data*)";
select "(.bss|.bss*)";
}
/*Heap sections*/
# if LCF_DEFAULT_HOST == LCF_CPU1
group (ordered, align = 4, run_addr = mem:dsram1[LCF_HEAP1_OFFSET])
# endif
# if LCF_DEFAULT_HOST == LCF_CPU0
group (ordered, align = 4, run_addr = mem:dsram0[LCF_HEAP0_OFFSET])
# endif
{
heap "heap" (size = LCF_HEAP_SIZE);
}
group (ordered, align = 8, run_addr = mem:dsram1[LCF_USTACK1_OFFSET])
{
stack "ustack_tc1" (size = LCF_USTACK1_SIZE);
}
"__USTACK1":= "_lc_ue_ustack_tc1";
"__USTACK1_END":= "_lc_ub_ustack_tc1";
group (ordered, align = 8, run_addr = mem:dsram1[LCF_ISTACK1_OFFSET])
{
stack "istack_tc1" (size = LCF_ISTACK1_SIZE);
}
"__ISTACK1":= "_lc_ue_istack_tc1";
"__ISTACK1_END":= "_lc_ub_istack_tc1";
group (ordered, align = 64, attributes=rw, run_addr=mem:dsram1[LCF_CSA1_OFFSET])
reserved "csa_tc1" (size = LCF_CSA1_SIZE);
"__CSA1":= "_lc_ub_csa_tc1";
"__CSA1_END":= "_lc_ue_csa_tc1";
group (ordered, align = 8, run_addr = mem:dsram0[LCF_USTACK0_OFFSET])
{
stack "ustack_tc0" (size = LCF_USTACK0_SIZE);
}
"__USTACK0":= "_lc_ue_ustack_tc0";
"__USTACK0_END":= "_lc_ub_ustack_tc0";
group (ordered, align = 8, run_addr = mem:dsram0[LCF_ISTACK0_OFFSET])
{
stack "istack_tc0" (size = LCF_ISTACK0_SIZE);
}
"__ISTACK0":= "_lc_ue_istack_tc0";
"__ISTACK0_END":= "_lc_ub_istack_tc0";
group (ordered, align = 64, attributes=rw, run_addr=mem:dsram0[LCF_CSA0_OFFSET])
reserved "csa_tc0" (size = LCF_CSA0_SIZE);
"__CSA0":= "_lc_ub_csa_tc0";
"__CSA0_END":= "_lc_ue_csa_tc0";
}
section_layout :vtc:linear
{
"_lc_u_int_tab" = (LCF_INTVEC0_START);
"__INTTAB_CPU0" = (LCF_INTVEC0_START);
"__INTTAB_CPU1" = (LCF_INTVEC0_START);
// interrupt vector tables for tc0, tc1, tc2
group int_tab_tc0 (ordered)
{
# include "inttab0.lsl"
}
group trapvec_tc0 (ordered, run_addr=LCF_TRAPVEC0_START)
{
select "(.text.traptab_cpu0*)";
}
group trapvec_tc1 (ordered, run_addr=LCF_TRAPVEC1_START)
{
select "(.text.traptab_cpu1*)";
}
group code_psram0 (ordered, attributes=rwx, copy, run_addr=mem:psram0)
{
select "(.text.psram_cpu0*)";
select "(.text.cpu0_psram*)";
}
group code_psram1 (ordered, attributes=rwx, copy, run_addr=mem:psram1)
{
select "(.text.psram_cpu1*)";
select "(.text.cpu1_psram*)";
}
}
section_layout :vtc:abs18
{
group (ordered, run_addr=mem:pfls0)
{
select ".zrodata*";
}
}
section_layout :vtc:linear
{
group bmh_0 (ordered, run_addr=0x80000000)
{
select "*.bmhd_0";
}
group bmh_1 (ordered, run_addr=0x80020000)
{
select "*.bmhd_1";
}
group reset (ordered, run_addr=0x80000020)
{
select "*.start";
}
group interface_const (ordered, run_addr=0x80000040)
{
select "*.interface_const";
}
"__IF_CONST" := addressof(group:ainterface_const);
group a1 (ordered, run_addr=mem:pfls0)
{
select ".srodata*";
select ".ldata*";
}
"_LITERAL_DATA_" := sizeof(group:a1) > 0 ? addressof(group:a1) + 32k : addressof(group:a1) & 0xF0000000 + 32k;
"_A1_MEM" = "_LITERAL_DATA_";
"_A9_DATA_" := 0x00000000;
"_A9_MEM" = "_A9_DATA_";
group (ordered, run_addr=mem:pfls0)
{
select ".rodata*";
}
group (ordered, run_addr=mem:pfls0)
{
select ".text*";
}
group a8 (ordered, run_addr=mem:pfls0)
{
select "(.rodata_a8|.rodata_a8*)";
}
"_A8_DATA_" := sizeof(group:a8) > 0 ? addressof(group:a8) + 32k : addressof(group:a8) & 0xF0000000 + 32k;
"_A8_MEM" := "_A8_DATA_";
"__TRAPTAB_CPU0" := TRAPTAB0;
"__TRAPTAB_CPU1" := TRAPTAB1;
}
}