add simulation-arm2d-qemu bsp

This commit is contained in:
李昂 2021-11-01 20:33:03 +08:00
parent 7b3f983c49
commit f84b429432
3307 changed files with 1734037 additions and 0 deletions

View File

@ -0,0 +1,614 @@
# Generated by Kconfiglib (https://github.com/ulfalizer/Kconfiglib)
#
# RT-Thread Kernel
#
CONFIG_RT_NAME_MAX=8
# CONFIG_RT_USING_ARCH_DATA_TYPE is not set
# CONFIG_RT_USING_SMP is not set
CONFIG_RT_ALIGN_SIZE=4
# CONFIG_RT_THREAD_PRIORITY_8 is not set
CONFIG_RT_THREAD_PRIORITY_32=y
# CONFIG_RT_THREAD_PRIORITY_256 is not set
CONFIG_RT_THREAD_PRIORITY_MAX=32
CONFIG_RT_TICK_PER_SECOND=1000
CONFIG_RT_USING_OVERFLOW_CHECK=y
CONFIG_RT_USING_HOOK=y
CONFIG_RT_USING_IDLE_HOOK=y
CONFIG_RT_IDLE_HOOK_LIST_SIZE=4
CONFIG_IDLE_THREAD_STACK_SIZE=256
CONFIG_RT_USING_TIMER_SOFT=y
CONFIG_RT_TIMER_THREAD_PRIO=4
CONFIG_RT_TIMER_THREAD_STACK_SIZE=512
#
# kservice optimization
#
# CONFIG_RT_KSERVICE_USING_STDLIB is not set
# CONFIG_RT_KSERVICE_USING_TINY_SIZE is not set
# end of kservice optimization
CONFIG_RT_DEBUG=y
CONFIG_RT_DEBUG_COLOR=y
# CONFIG_RT_DEBUG_INIT_CONFIG is not set
# CONFIG_RT_DEBUG_THREAD_CONFIG is not set
# CONFIG_RT_DEBUG_SCHEDULER_CONFIG is not set
# CONFIG_RT_DEBUG_IPC_CONFIG is not set
# CONFIG_RT_DEBUG_TIMER_CONFIG is not set
# CONFIG_RT_DEBUG_IRQ_CONFIG is not set
# CONFIG_RT_DEBUG_MEM_CONFIG is not set
# CONFIG_RT_DEBUG_SLAB_CONFIG is not set
# CONFIG_RT_DEBUG_MEMHEAP_CONFIG is not set
# CONFIG_RT_DEBUG_MODULE_CONFIG is not set
#
# Inter-Thread communication
#
CONFIG_RT_USING_SEMAPHORE=y
CONFIG_RT_USING_MUTEX=y
CONFIG_RT_USING_EVENT=y
CONFIG_RT_USING_MAILBOX=y
CONFIG_RT_USING_MESSAGEQUEUE=y
# CONFIG_RT_USING_SIGNALS is not set
# end of Inter-Thread communication
#
# Memory Management
#
CONFIG_RT_USING_MEMPOOL=y
# CONFIG_RT_USING_MEMHEAP is not set
# CONFIG_RT_USING_NOHEAP is not set
CONFIG_RT_USING_SMALL_MEM=y
# CONFIG_RT_USING_SLAB is not set
# CONFIG_RT_USING_USERHEAP is not set
# CONFIG_RT_USING_MEMTRACE is not set
CONFIG_RT_USING_HEAP=y
# end of Memory Management
#
# Kernel Device Object
#
CONFIG_RT_USING_DEVICE=y
# CONFIG_RT_USING_DEVICE_OPS is not set
# CONFIG_RT_USING_INTERRUPT_INFO is not set
CONFIG_RT_USING_CONSOLE=y
CONFIG_RT_CONSOLEBUF_SIZE=256
CONFIG_RT_CONSOLE_DEVICE_NAME="uart1"
# CONFIG_RT_PRINTF_LONGLONG is not set
# end of Kernel Device Object
CONFIG_RT_VER_NUM=0x40004
# end of RT-Thread Kernel
CONFIG_ARCH_ARM=y
CONFIG_RT_USING_CPU_FFS=y
CONFIG_ARCH_ARM_CORTEX_M=y
CONFIG_ARCH_ARM_CORTEX_M4=y
#
# RT-Thread Components
#
CONFIG_RT_USING_COMPONENTS_INIT=y
CONFIG_RT_USING_USER_MAIN=y
CONFIG_RT_MAIN_THREAD_STACK_SIZE=2048
CONFIG_RT_MAIN_THREAD_PRIORITY=10
#
# C++ features
#
# CONFIG_RT_USING_CPLUSPLUS is not set
# end of C++ features
#
# Command shell
#
CONFIG_RT_USING_FINSH=y
CONFIG_FINSH_THREAD_NAME="tshell"
CONFIG_FINSH_USING_HISTORY=y
CONFIG_FINSH_HISTORY_LINES=5
CONFIG_FINSH_USING_SYMTAB=y
CONFIG_FINSH_USING_DESCRIPTION=y
# CONFIG_FINSH_ECHO_DISABLE_DEFAULT is not set
CONFIG_FINSH_THREAD_PRIORITY=20
CONFIG_FINSH_THREAD_STACK_SIZE=4096
CONFIG_FINSH_CMD_SIZE=80
# CONFIG_FINSH_USING_AUTH is not set
CONFIG_FINSH_USING_MSH=y
CONFIG_FINSH_USING_MSH_DEFAULT=y
CONFIG_FINSH_USING_MSH_ONLY=y
CONFIG_FINSH_ARG_MAX=10
# end of Command shell
#
# Device virtual file system
#
# CONFIG_RT_USING_DFS is not set
# end of Device virtual file system
#
# Device Drivers
#
CONFIG_RT_USING_DEVICE_IPC=y
CONFIG_RT_PIPE_BUFSZ=512
# CONFIG_RT_USING_SYSTEM_WORKQUEUE is not set
CONFIG_RT_USING_SERIAL=y
CONFIG_RT_USING_SERIAL_V1=y
# CONFIG_RT_USING_SERIAL_V2 is not set
# CONFIG_RT_SERIAL_USING_DMA is not set
CONFIG_RT_SERIAL_RB_BUFSZ=64
# CONFIG_RT_USING_CAN is not set
# CONFIG_RT_USING_HWTIMER is not set
# CONFIG_RT_USING_CPUTIME is not set
# CONFIG_RT_USING_I2C is not set
# CONFIG_RT_USING_PHY is not set
CONFIG_RT_USING_PIN=y
# CONFIG_RT_USING_ADC is not set
# CONFIG_RT_USING_DAC is not set
# CONFIG_RT_USING_PWM is not set
# CONFIG_RT_USING_MTD_NOR is not set
# CONFIG_RT_USING_MTD_NAND is not set
# CONFIG_RT_USING_PM is not set
# CONFIG_RT_USING_RTC is not set
# CONFIG_RT_USING_SDIO is not set
# CONFIG_RT_USING_SPI is not set
# CONFIG_RT_USING_WDT is not set
# CONFIG_RT_USING_AUDIO is not set
# CONFIG_RT_USING_SENSOR is not set
# CONFIG_RT_USING_TOUCH is not set
# CONFIG_RT_USING_HWCRYPTO is not set
# CONFIG_RT_USING_PULSE_ENCODER is not set
# CONFIG_RT_USING_INPUT_CAPTURE is not set
# CONFIG_RT_USING_WIFI is not set
#
# Using USB
#
# CONFIG_RT_USING_USB_HOST is not set
# CONFIG_RT_USING_USB_DEVICE is not set
# end of Using USB
# end of Device Drivers
#
# POSIX layer and C standard library
#
CONFIG_RT_USING_LIBC=y
# CONFIG_RT_USING_PTHREADS is not set
# CONFIG_RT_USING_MODULE is not set
CONFIG_RT_LIBC_DEFAULT_TIMEZONE=8
# end of POSIX layer and C standard library
#
# Network
#
#
# Socket abstraction layer
#
# CONFIG_RT_USING_SAL is not set
# end of Socket abstraction layer
#
# Network interface device
#
# CONFIG_RT_USING_NETDEV is not set
# end of Network interface device
#
# light weight TCP/IP stack
#
# CONFIG_RT_USING_LWIP is not set
# end of light weight TCP/IP stack
#
# AT commands
#
# CONFIG_RT_USING_AT is not set
# end of AT commands
# end of Network
#
# VBUS(Virtual Software BUS)
#
# CONFIG_RT_USING_VBUS is not set
# end of VBUS(Virtual Software BUS)
#
# Utilities
#
# CONFIG_RT_USING_RYM is not set
# CONFIG_RT_USING_ULOG is not set
# CONFIG_RT_USING_UTEST is not set
# CONFIG_RT_USING_RT_LINK is not set
# end of Utilities
# CONFIG_RT_USING_LWP is not set
# end of RT-Thread Components
#
# RT-Thread online packages
#
#
# IoT - internet of things
#
# CONFIG_PKG_USING_LORAWAN_DRIVER is not set
# CONFIG_PKG_USING_PAHOMQTT is not set
# CONFIG_PKG_USING_UMQTT is not set
# CONFIG_PKG_USING_WEBCLIENT is not set
# CONFIG_PKG_USING_WEBNET is not set
# CONFIG_PKG_USING_MONGOOSE is not set
# CONFIG_PKG_USING_MYMQTT is not set
# CONFIG_PKG_USING_KAWAII_MQTT is not set
# CONFIG_PKG_USING_BC28_MQTT is not set
# CONFIG_PKG_USING_WEBTERMINAL is not set
# CONFIG_PKG_USING_CJSON is not set
# CONFIG_PKG_USING_JSMN is not set
# CONFIG_PKG_USING_LIBMODBUS is not set
# CONFIG_PKG_USING_FREEMODBUS is not set
# CONFIG_PKG_USING_LJSON is not set
# CONFIG_PKG_USING_EZXML is not set
# CONFIG_PKG_USING_NANOPB is not set
#
# Wi-Fi
#
#
# Marvell WiFi
#
# CONFIG_PKG_USING_WLANMARVELL is not set
# end of Marvell WiFi
#
# Wiced WiFi
#
# CONFIG_PKG_USING_WLAN_WICED is not set
# end of Wiced WiFi
# CONFIG_PKG_USING_RW007 is not set
# end of Wi-Fi
# CONFIG_PKG_USING_COAP is not set
# CONFIG_PKG_USING_NOPOLL is not set
# CONFIG_PKG_USING_NETUTILS is not set
# CONFIG_PKG_USING_CMUX is not set
# CONFIG_PKG_USING_PPP_DEVICE is not set
# CONFIG_PKG_USING_AT_DEVICE is not set
# CONFIG_PKG_USING_ATSRV_SOCKET is not set
# CONFIG_PKG_USING_WIZNET is not set
# CONFIG_PKG_USING_ZB_COORDINATOR is not set
#
# IoT Cloud
#
# CONFIG_PKG_USING_ONENET is not set
# CONFIG_PKG_USING_GAGENT_CLOUD is not set
# CONFIG_PKG_USING_ALI_IOTKIT is not set
# CONFIG_PKG_USING_AZURE is not set
# CONFIG_PKG_USING_TENCENT_IOT_EXPLORER is not set
# CONFIG_PKG_USING_JIOT-C-SDK is not set
# CONFIG_PKG_USING_UCLOUD_IOT_SDK is not set
# CONFIG_PKG_USING_JOYLINK is not set
# end of IoT Cloud
# CONFIG_PKG_USING_NIMBLE is not set
# CONFIG_PKG_USING_OTA_DOWNLOADER is not set
# CONFIG_PKG_USING_IPMSG is not set
# CONFIG_PKG_USING_LSSDP is not set
# CONFIG_PKG_USING_AIRKISS_OPEN is not set
# CONFIG_PKG_USING_LIBRWS is not set
# CONFIG_PKG_USING_TCPSERVER is not set
# CONFIG_PKG_USING_PROTOBUF_C is not set
# CONFIG_PKG_USING_DLT645 is not set
# CONFIG_PKG_USING_QXWZ is not set
# CONFIG_PKG_USING_SMTP_CLIENT is not set
# CONFIG_PKG_USING_ABUP_FOTA is not set
# CONFIG_PKG_USING_LIBCURL2RTT is not set
# CONFIG_PKG_USING_CAPNP is not set
# CONFIG_PKG_USING_RT_CJSON_TOOLS is not set
# CONFIG_PKG_USING_AGILE_TELNET is not set
# CONFIG_PKG_USING_NMEALIB is not set
# CONFIG_PKG_USING_AGILE_JSMN is not set
# CONFIG_PKG_USING_PDULIB is not set
# CONFIG_PKG_USING_BTSTACK is not set
# CONFIG_PKG_USING_LORAWAN_ED_STACK is not set
# CONFIG_PKG_USING_WAYZ_IOTKIT is not set
# CONFIG_PKG_USING_MAVLINK is not set
# CONFIG_PKG_USING_RAPIDJSON is not set
# CONFIG_PKG_USING_BSAL is not set
# CONFIG_PKG_USING_AGILE_MODBUS is not set
# CONFIG_PKG_USING_AGILE_FTP is not set
# CONFIG_PKG_USING_EMBEDDEDPROTO is not set
# CONFIG_PKG_USING_RT_LINK_HW is not set
# end of IoT - internet of things
#
# security packages
#
# CONFIG_PKG_USING_MBEDTLS is not set
# CONFIG_PKG_USING_libsodium is not set
# CONFIG_PKG_USING_TINYCRYPT is not set
# CONFIG_PKG_USING_TFM is not set
# CONFIG_PKG_USING_YD_CRYPTO is not set
# end of security packages
#
# language packages
#
# CONFIG_PKG_USING_LUA is not set
# CONFIG_PKG_USING_JERRYSCRIPT is not set
# CONFIG_PKG_USING_MICROPYTHON is not set
# end of language packages
#
# multimedia packages
#
# CONFIG_PKG_USING_OPENMV is not set
# CONFIG_PKG_USING_MUPDF is not set
# CONFIG_PKG_USING_STEMWIN is not set
# CONFIG_PKG_USING_WAVPLAYER is not set
# CONFIG_PKG_USING_TJPGD is not set
# CONFIG_PKG_USING_PDFGEN is not set
# CONFIG_PKG_USING_HELIX is not set
# CONFIG_PKG_USING_AZUREGUIX is not set
# CONFIG_PKG_USING_TOUCHGFX2RTT is not set
# CONFIG_PKG_USING_NUEMWIN is not set
# CONFIG_PKG_USING_MP3PLAYER is not set
# CONFIG_PKG_USING_TINYJPEG is not set
# end of multimedia packages
#
# tools packages
#
# CONFIG_PKG_USING_CMBACKTRACE is not set
# CONFIG_PKG_USING_EASYFLASH is not set
# CONFIG_PKG_USING_EASYLOGGER is not set
# CONFIG_PKG_USING_SYSTEMVIEW is not set
# CONFIG_PKG_USING_SEGGER_RTT is not set
# CONFIG_PKG_USING_RDB is not set
# CONFIG_PKG_USING_QRCODE is not set
# CONFIG_PKG_USING_ULOG_EASYFLASH is not set
# CONFIG_PKG_USING_ULOG_FILE is not set
# CONFIG_PKG_USING_LOGMGR is not set
# CONFIG_PKG_USING_ADBD is not set
# CONFIG_PKG_USING_COREMARK is not set
# CONFIG_PKG_USING_DHRYSTONE is not set
# CONFIG_PKG_USING_MEMORYPERF is not set
# CONFIG_PKG_USING_NR_MICRO_SHELL is not set
# CONFIG_PKG_USING_CHINESE_FONT_LIBRARY is not set
# CONFIG_PKG_USING_LUNAR_CALENDAR is not set
# CONFIG_PKG_USING_BS8116A is not set
# CONFIG_PKG_USING_GPS_RMC is not set
# CONFIG_PKG_USING_URLENCODE is not set
# CONFIG_PKG_USING_UMCN is not set
# CONFIG_PKG_USING_LWRB2RTT is not set
# CONFIG_PKG_USING_CPU_USAGE is not set
# CONFIG_PKG_USING_GBK2UTF8 is not set
# CONFIG_PKG_USING_VCONSOLE is not set
# CONFIG_PKG_USING_KDB is not set
# CONFIG_PKG_USING_WAMR is not set
# CONFIG_PKG_USING_MICRO_XRCE_DDS_CLIENT is not set
# CONFIG_PKG_USING_LWLOG is not set
# CONFIG_PKG_USING_ANV_TRACE is not set
# CONFIG_PKG_USING_ANV_MEMLEAK is not set
# CONFIG_PKG_USING_ANV_TESTSUIT is not set
# CONFIG_PKG_USING_ANV_BENCH is not set
# CONFIG_PKG_USING_DEVMEM is not set
# CONFIG_PKG_USING_REGEX is not set
# CONFIG_PKG_USING_MEM_SANDBOX is not set
# CONFIG_PKG_USING_SOLAR_TERMS is not set
# CONFIG_PKG_USING_GAN_ZHI is not set
# end of tools packages
#
# system packages
#
#
# acceleration: Assembly language or algorithmic acceleration packages
#
# CONFIG_PKG_USING_RT_MEMCPY_CM is not set
# CONFIG_PKG_USING_QFPLIB_M0_FULL is not set
# CONFIG_PKG_USING_QFPLIB_M0_TINY is not set
# CONFIG_PKG_USING_QFPLIB_M3 is not set
# end of acceleration: Assembly language or algorithmic acceleration packages
#
# Micrium: Micrium software products porting for RT-Thread
#
# CONFIG_PKG_USING_UCOSIII_WRAPPER is not set
# CONFIG_PKG_USING_UCOSII_WRAPPER is not set
# CONFIG_PKG_USING_UC_CRC is not set
# CONFIG_PKG_USING_UC_CLK is not set
# CONFIG_PKG_USING_UC_COMMON is not set
# CONFIG_PKG_USING_UC_MODBUS is not set
# end of Micrium: Micrium software products porting for RT-Thread
# CONFIG_PKG_USING_GUIENGINE is not set
# CONFIG_PKG_USING_PERSIMMON is not set
# CONFIG_PKG_USING_CAIRO is not set
# CONFIG_PKG_USING_PIXMAN is not set
# CONFIG_PKG_USING_PARTITION is not set
# CONFIG_PKG_USING_FAL is not set
# CONFIG_PKG_USING_FLASHDB is not set
# CONFIG_PKG_USING_SQLITE is not set
# CONFIG_PKG_USING_RTI is not set
# CONFIG_PKG_USING_LITTLEVGL2RTT is not set
# CONFIG_PKG_USING_CMSIS is not set
# CONFIG_PKG_USING_DFS_YAFFS is not set
# CONFIG_PKG_USING_LITTLEFS is not set
# CONFIG_PKG_USING_DFS_JFFS2 is not set
# CONFIG_PKG_USING_DFS_UFFS is not set
# CONFIG_PKG_USING_LWEXT4 is not set
# CONFIG_PKG_USING_THREAD_POOL is not set
# CONFIG_PKG_USING_ROBOTS is not set
# CONFIG_PKG_USING_EV is not set
# CONFIG_PKG_USING_SYSWATCH is not set
# CONFIG_PKG_USING_SYS_LOAD_MONITOR is not set
# CONFIG_PKG_USING_PLCCORE is not set
# CONFIG_PKG_USING_RAMDISK is not set
# CONFIG_PKG_USING_MININI is not set
# CONFIG_PKG_USING_QBOOT is not set
# CONFIG_PKG_USING_PPOOL is not set
# CONFIG_PKG_USING_OPENAMP is not set
# CONFIG_PKG_USING_RT_KPRINTF_THREADSAFE is not set
# CONFIG_PKG_USING_LPM is not set
# CONFIG_PKG_USING_TLSF is not set
# CONFIG_PKG_USING_EVENT_RECORDER is not set
CONFIG_PKG_USING_ARM_2D=y
CONFIG_PKG_ARM_2D_PATH="/packages/system/Arm-2D"
CONFIG_PKG_USING_ARM_2D_LATEST_VERSION=y
CONFIG_PKG_ARM_2D_VER="latest"
CONFIG_PKG_ARM_2D_USE_EXAMPLE=y
CONFIG_PKG_ARM_2D_USE_EXAMPLE_BASIC=y
# CONFIG_PKG_ARM_2D_USE_EXAMPLE_COMPLEX is not set
# end of system packages
#
# peripheral libraries and drivers
#
# CONFIG_PKG_USING_SENSORS_DRIVERS is not set
# CONFIG_PKG_USING_REALTEK_AMEBA is not set
# CONFIG_PKG_USING_SHT2X is not set
# CONFIG_PKG_USING_SHT3X is not set
# CONFIG_PKG_USING_AS7341 is not set
# CONFIG_PKG_USING_STM32_SDIO is not set
# CONFIG_PKG_USING_ICM20608 is not set
# CONFIG_PKG_USING_U8G2 is not set
# CONFIG_PKG_USING_BUTTON is not set
# CONFIG_PKG_USING_PCF8574 is not set
# CONFIG_PKG_USING_SX12XX is not set
# CONFIG_PKG_USING_SIGNAL_LED is not set
# CONFIG_PKG_USING_LEDBLINK is not set
# CONFIG_PKG_USING_LITTLED is not set
# CONFIG_PKG_USING_LKDGUI is not set
# CONFIG_PKG_USING_NRF5X_SDK is not set
# CONFIG_PKG_USING_NRFX is not set
# CONFIG_PKG_USING_WM_LIBRARIES is not set
# CONFIG_PKG_USING_KENDRYTE_SDK is not set
# CONFIG_PKG_USING_INFRARED is not set
# CONFIG_PKG_USING_AGILE_BUTTON is not set
# CONFIG_PKG_USING_AGILE_LED is not set
# CONFIG_PKG_USING_AT24CXX is not set
# CONFIG_PKG_USING_MOTIONDRIVER2RTT is not set
# CONFIG_PKG_USING_AD7746 is not set
# CONFIG_PKG_USING_PCA9685 is not set
# CONFIG_PKG_USING_I2C_TOOLS is not set
# CONFIG_PKG_USING_NRF24L01 is not set
# CONFIG_PKG_USING_TOUCH_DRIVERS is not set
# CONFIG_PKG_USING_MAX17048 is not set
# CONFIG_PKG_USING_RPLIDAR is not set
# CONFIG_PKG_USING_AS608 is not set
# CONFIG_PKG_USING_RC522 is not set
# CONFIG_PKG_USING_WS2812B is not set
# CONFIG_PKG_USING_EMBARC_BSP is not set
# CONFIG_PKG_USING_EXTERN_RTC_DRIVERS is not set
# CONFIG_PKG_USING_MULTI_RTIMER is not set
# CONFIG_PKG_USING_MAX7219 is not set
# CONFIG_PKG_USING_BEEP is not set
# CONFIG_PKG_USING_EASYBLINK is not set
# CONFIG_PKG_USING_PMS_SERIES is not set
# CONFIG_PKG_USING_CAN_YMODEM is not set
# CONFIG_PKG_USING_LORA_RADIO_DRIVER is not set
# CONFIG_PKG_USING_QLED is not set
# CONFIG_PKG_USING_PAJ7620 is not set
# CONFIG_PKG_USING_AGILE_CONSOLE is not set
# CONFIG_PKG_USING_LD3320 is not set
# CONFIG_PKG_USING_WK2124 is not set
# CONFIG_PKG_USING_LY68L6400 is not set
# CONFIG_PKG_USING_DM9051 is not set
# CONFIG_PKG_USING_SSD1306 is not set
# CONFIG_PKG_USING_QKEY is not set
# CONFIG_PKG_USING_RS485 is not set
# CONFIG_PKG_USING_NES is not set
# CONFIG_PKG_USING_VIRTUAL_SENSOR is not set
# CONFIG_PKG_USING_VDEVICE is not set
# CONFIG_PKG_USING_SGM706 is not set
# CONFIG_PKG_USING_STM32WB55_SDK is not set
# CONFIG_PKG_USING_RDA58XX is not set
# CONFIG_PKG_USING_LIBNFC is not set
# CONFIG_PKG_USING_MFOC is not set
# CONFIG_PKG_USING_TMC51XX is not set
# CONFIG_PKG_USING_TCA9534 is not set
# CONFIG_PKG_USING_KOBUKI is not set
# CONFIG_PKG_USING_ROSSERIAL is not set
# CONFIG_PKG_USING_MICRO_ROS is not set
# CONFIG_PKG_USING_MCP23008 is not set
# end of peripheral libraries and drivers
#
# AI packages
#
# CONFIG_PKG_USING_LIBANN is not set
# CONFIG_PKG_USING_NNOM is not set
# CONFIG_PKG_USING_ONNX_BACKEND is not set
# CONFIG_PKG_USING_ONNX_PARSER is not set
# CONFIG_PKG_USING_TENSORFLOWLITEMICRO is not set
# CONFIG_PKG_USING_ELAPACK is not set
# CONFIG_PKG_USING_ULAPACK is not set
# CONFIG_PKG_USING_QUEST is not set
# CONFIG_PKG_USING_NAXOS is not set
# end of AI packages
#
# miscellaneous packages
#
# CONFIG_PKG_USING_LIBCSV is not set
# CONFIG_PKG_USING_OPTPARSE is not set
# CONFIG_PKG_USING_FASTLZ is not set
# CONFIG_PKG_USING_MINILZO is not set
# CONFIG_PKG_USING_QUICKLZ is not set
# CONFIG_PKG_USING_LZMA is not set
# CONFIG_PKG_USING_MULTIBUTTON is not set
# CONFIG_PKG_USING_FLEXIBLE_BUTTON is not set
# CONFIG_PKG_USING_CANFESTIVAL is not set
# CONFIG_PKG_USING_ZLIB is not set
# CONFIG_PKG_USING_MINIZIP is not set
# CONFIG_PKG_USING_DSTR is not set
# CONFIG_PKG_USING_TINYFRAME is not set
# CONFIG_PKG_USING_KENDRYTE_DEMO is not set
# CONFIG_PKG_USING_DIGITALCTRL is not set
# CONFIG_PKG_USING_UPACKER is not set
# CONFIG_PKG_USING_UPARAM is not set
#
# samples: kernel and components samples
#
# CONFIG_PKG_USING_KERNEL_SAMPLES is not set
# CONFIG_PKG_USING_FILESYSTEM_SAMPLES is not set
# CONFIG_PKG_USING_NETWORK_SAMPLES is not set
# CONFIG_PKG_USING_PERIPHERAL_SAMPLES is not set
# end of samples: kernel and components samples
# CONFIG_PKG_USING_HELLO is not set
# CONFIG_PKG_USING_VI is not set
# CONFIG_PKG_USING_KI is not set
# CONFIG_PKG_USING_ARMv7M_DWT is not set
# CONFIG_PKG_USING_VT100 is not set
# CONFIG_PKG_USING_UKAL is not set
# CONFIG_PKG_USING_CRCLIB is not set
#
# entertainment: terminal games and other interesting software packages
#
# CONFIG_PKG_USING_THREES is not set
# CONFIG_PKG_USING_2048 is not set
# CONFIG_PKG_USING_SNAKE is not set
# CONFIG_PKG_USING_TETRIS is not set
# CONFIG_PKG_USING_DONUT is not set
# CONFIG_PKG_USING_ACLOCK is not set
# end of entertainment: terminal games and other interesting software packages
# CONFIG_PKG_USING_LWGPS is not set
# CONFIG_PKG_USING_STATE_MACHINE is not set
# CONFIG_PKG_USING_MCURSES is not set
# CONFIG_PKG_USING_COWSAY is not set
# end of miscellaneous packages
# end of RT-Thread online packages
#
# samples: kernel and components samples
#
# end of samples: kernel and components samples
CONFIG_RT_STUDIO_BUILT_IN=y

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,36 @@
# Sources
*.c text diff=c
*.cc text diff=cpp
*.cxx text diff=cpp
*.cpp text diff=cpp
*.c++ text diff=cpp
*.hpp text diff=cpp
*.h text diff=c
*.h++ text diff=cpp
*.hh text diff=cpp
# Compiled Object files
*.slo binary
*.lo binary
*.o binary
*.obj binary
# Precompiled Headers
*.gch binary
*.pch binary
# Compiled Dynamic libraries
*.so binary
*.dylib binary
*.dll binary
# Compiled Static libraries
*.lai binary
*.la binary
*.a binary
*.lib binary
# Executables
*.exe binary
*.out binary
*.app binary

View File

@ -0,0 +1,28 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>stm32f429-qemu</name>
<comment />
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.cdt.managedbuilder.core.genmakebuilder</name>
<triggers>clean,full,incremental,</triggers>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.cdt.managedbuilder.core.ScannerConfigBuilder</name>
<triggers>full,incremental,</triggers>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.cdt.core.cnature</nature>
<nature>org.rt-thread.studio.rttnature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.managedBuildNature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.ScannerConfigNature</nature>
</natures>
<linkedResources />
</projectDescription>

Binary file not shown.

View File

@ -0,0 +1,2 @@
eclipse.preferences.version=1
toolchain.path.1287942917=C\:\\Program Files (x86)\\GNU Arm Embedded Toolchain\\10 2021.10\\bin

View File

@ -0,0 +1,14 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project>
<configuration id="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094" name="Debug">
<extension point="org.eclipse.cdt.core.LanguageSettingsProvider">
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="-235046127524563677" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT ARM Cross GCC Built-in Compiler Settings " parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>
</extension>
</configuration>
</project>

View File

@ -0,0 +1,2 @@
eclipse.preferences.version=1
encoding/<project>=UTF-8

View File

@ -0,0 +1,3 @@
content-types/enabled=true
content-types/org.eclipse.cdt.core.asmSource/file-extensions=s
eclipse.preferences.version=1

View File

@ -0,0 +1,60 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="ilg.gnumcueclipse.debug.gdbjtag.pyocd.launchConfigurationType">
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.adapterName" value="DAP-LINK"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doContinue" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doDebugInRam" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doFirstReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doGdbServerAllocateConsole" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doSecondReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doStartGdbServer" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.enableSemihosting" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.firstResetType" value="init"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbClientOtherCommands" value="set mem inaccessible-by-default off"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbClientOtherOptions" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerBusSpeed" value="1000000"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerConnectionAddress" value=""/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerEnableSemihosting" value="false"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerExecutable" value="${debugger_install_path}/${daplink_debugger_relative_path}\pyocd.exe"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerFlashMode" value="0"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerGdbPortNumber" value="3333"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerOther" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerTelnetPortNumber" value="4444"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.otherInitCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.otherRunCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.secondResetType" value="halt"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}repo\Extract\Chip_Support_Packages\RealThread\STM32F4\0.1.9\debug\svd\STM32F429x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="GNU MCU PyOCD"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="false"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${rtt_gnu_gcc}/arm-none-eabi-gdb.exe"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="stm32f429-qemu"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/stm32f429-qemu"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="GBK"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_OUTPUT_ON" value="true"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="true"/>
</launchConfiguration>

View File

@ -0,0 +1,83 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="ilg.gnumcueclipse.debug.gdbjtag.jlink.launchConfigurationType">
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.adapterName" value="J-Link"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doConnectToRunning" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doContinue" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doDebugInRam" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doFirstReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerAllocateConsole" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerAllocateSemihostingConsole" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerInitRegs" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerLocalOnly" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerSilent" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerVerifyDownload" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doSecondReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doStartGdbServer" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableFlashBreakpoints" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSemihosting" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSemihostingIoclientGdbClient" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSemihostingIoclientTelnet" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSwo" value="true"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.firstResetSpeed" value="1000"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.firstResetType" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.flashDeviceName" value="STM32F429VI"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbClientOtherCommands" value="set mem inaccessible-by-default off"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbClientOtherOptions" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerConnection" value="usb"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerConnectionAddress" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDebugInterface" value="swd"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDeviceEndianness" value="little"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDeviceName" value="STM32F429VI"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDeviceSpeed" value="auto"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerExecutable" value="${debugger_install_path}/${jlink_debugger_relative_path}\JLinkGDBServerCL.exe"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerGdbPortNumber" value="2331"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerLog" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerOther" value="-singlerun"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerRunAfterStopDebug" value="true"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerSwoPortNumber" value="2332"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerTelnetPortNumber" value="2333"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.interfaceSpeed" value="auto"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.jlinkExecutable" value="${debugger_install_path}/${jlink_debugger_relative_path}\JLink.exe"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.otherInitCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.otherRunCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.secondResetType" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.swoEnableTargetCpuFreq" value="0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.swoEnableTargetPortMask" value="0x1"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.swoEnableTargetSwoFreq" value="0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}\repo\Extract\Chip_Support_Packages\RealThread\STM32F4\0.1.9\debug\svd\STM32F429x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="GNU MCU J-Link"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="2331"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${rtt_gnu_gcc}/arm-none-eabi-gdb.exe"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="stm32f429-qemu"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/stm32f429-qemu"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="GBK"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_OUTPUT_ON" value="true"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="true"/>
</launchConfiguration>

View File

@ -0,0 +1,63 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="ilg.gnumcueclipse.debug.gdbjtag.qemu.launchConfigurationType">
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.disableGraphics" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doContinue" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doDebugInRam" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doFirstReset" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doSecondReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doStartGdbServer" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.enableSemihosting" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbClientOtherCommands" value="set mem inaccessible-by-default off"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbClientOtherOptions" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerBoardModel" value="stm32f429-atk-apollo"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerCpuQuantity" value="1"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerEnableNetwork" value="false"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerExecutable" value="${debugger_install_path}/${qemu_debugger_relative_path}\qemu-system-arm.exe"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerExtraQemuCmd" value=" --kernel Debug/rtthread.elf -show-cursor"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerSdcardMemory" value="0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerSerialPort" value="COM1"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerStartup" value="${debugger_install_path}/${qemu_debugger_relative_path}\qemu-system-arm.exe -M stm32f429-atk-apollo -serial stdio -monitor null -S -s"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerTapName" value=""/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerUseSdcard" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerUseSerial" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.otherInitCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.otherRunCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}\repo\Extract\Chip_Support_Packages\RealThread\STM32F4\0.1.9\debug\svd\STM32F429x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.ipAddress" value="localhost"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="GNU MCU QEMU"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="1234"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${cross_prefix}gdb${cross_suffix}"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="stm32f429-qemu"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_ID_ATTR" value=""/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/stm32f429-qemu"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="GBK"/>
<stringAttribute key="org.eclipse.dsf.launch.MEMORY_BLOCKS" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;memoryBlockExpressionList context=&quot;Context string&quot;/&gt;&#13;&#10;"/>
<stringAttribute key="process_factory_id" value="org.eclipse.cdt.dsf.gdb.GdbProcessFactory"/>
</launchConfiguration>

View File

@ -0,0 +1,57 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="org.rtthread.studio.debug.gdbjtag.stlink.launchConfigurationType">
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}\repo\Extract\Chip_Support_Packages\RealThread\STM32F4\0.1.9\debug\svd\STM32F429x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.connectMode" value="NORMAL"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.debugInterface" value="SWD"/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.delay" value="3"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doHalt" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doReset" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.flashVerify" value="false"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.initCommands" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.ipAddress" value="localhost"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDeviceId" value="org.eclipse.cdt.debug.gdbjtag.core.jtagdevice.genericDevice"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.otherDownloadOption" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.otherGdbserverOption" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="61235"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.resetMode" value=" -hardRst"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.resetRun" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.runCommands" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${rtt_gnu_gcc}/arm-none-eabi-gdb.exe"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.DEBUGGER_START_MODE" value="remote"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="stm32f429-qemu"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/stm32f429-qemu"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="GBK"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_OUTPUT_ON" value="true"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="true"/>
<stringAttribute key="org.rtthread.studio.debug.gdbjtag.stlink.adapterName" value="ST-LINK"/>
<booleanAttribute key="org.rtthread.studio.debug.gdbjtag.stlink.doContinue" value="true"/>
<stringAttribute key="org.rtthread.studio.debug.gdbjtag.stlink.gdbServerDeviceName" value="STM32F429VI"/>
<stringAttribute key="org.rtthread.studio.debug.gdbjtag.stlink.gdbServerExecutable" value="${debugger_install_path}/${stlink_debugger_relative_path}/ST-LINK_gdbserver.exe"/>
<stringAttribute key="org.rtthread.studio.debug.gdbjtag.stlink.stlinkGdbServer" value="${debugger_install_path}/${stlink_debugger_relative_path}/tools/bin/STM32_Programmer_CLI.exe"/>
<booleanAttribute key="org.rtthread.studio.debug.gdbjtag.stlink.useRemoteTarget" value="true"/>
</launchConfiguration>

View File

@ -0,0 +1,27 @@
mainmenu "RT-Thread Configuration"
config BSP_DIR
string
option env="BSP_ROOT"
default "."
config RTT_DIR
string
option env="RTT_ROOT"
default "rt-thread"
config PKGS_DIR
string
option env="PKGS_ROOT"
default "packages"
source "$RTT_DIR/Kconfig"
source "$PKGS_DIR/Kconfig"
source "$PKGS_DIR/packages/misc/samples/Kconfig"
config RT_STUDIO_BUILT_IN
bool
select ARCH_ARM_CORTEX_M4
select RT_USING_COMPONENTS_INIT
select RT_USING_USER_MAIN
default y

View File

@ -0,0 +1,8 @@
# dependence
## rt-thread studio
https://download-sh-cmcc.rt-thread.org:9151/www/studio/download/RT-Thread%20Studio-v2.1.2-setup-x86_64_20210831-1200.exe
## latest arm gcc enbi toolchain
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe

View File

@ -0,0 +1,15 @@
# for module compiling
import os
Import('RTT_ROOT')
from building import *
cwd = GetCurrentDir()
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')

View File

@ -0,0 +1,36 @@
import os
import sys
import rtconfig
RTT_ROOT = os.path.normpath(os.getcwd() + '/rt-thread')
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
try:
from building import *
except Exception as e:
print("Error message:", e.message)
print('Cannot found RT-Thread root directory, please check RTT_ROOT')
print(RTT_ROOT)
sys.exit(-1)
TARGET = 'rt-thread.elf'
DefaultEnvironment(tools=[])
env = Environment(tools = ['mingw'],
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
AR = rtconfig.AR, ARFLAGS = '-rc',
CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS,
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
env.AppendUnique(CPPDEFINES = [])
Export('RTT_ROOT')
Export('rtconfig')
# prepare building environment
objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
# make a building
DoBuilding(TARGET, objs)

View File

@ -0,0 +1,18 @@
#ifndef CCONFIG_H__
#define CCONFIG_H__
/* Automatically generated file; DO NOT EDIT. */
/* compiler configure file for RT-Thread in GCC*/
#define HAVE_NEWLIB_H 1
#define LIBC_VERSION "newlib 2.4.0"
#define HAVE_SYS_SIGNAL_H 1
#define HAVE_SYS_SELECT_H 1
#define HAVE_PTHREAD_H 1
#define HAVE_FDSET 1
#define HAVE_SIGACTION 1
#define GCC_VERSION_STR "5.4.1 20160919 (release) [ARM/embedded-5-branch revision 240496]"
#define STDC "2011"
#endif

View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-19 RealThread first version
*/
#include <rtthread.h>
#include <board.h>
#include <drv_common.h>
RT_WEAK void rt_hw_board_init()
{
extern void hw_board_init(char *clock_src, int32_t clock_src_freq, int32_t clock_target_freq);
/* Heap initialization */
#if defined(RT_USING_HEAP)
rt_system_heap_init((void *) HEAP_BEGIN, (void *) HEAP_END);
#endif
hw_board_init(BSP_CLOCK_SOURCE, BSP_CLOCK_SOURCE_FREQ_MHZ, BSP_CLOCK_SYSTEM_FREQ_MHZ);
/* Set the shell console output device */
#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
/* Board underlying hardware initialization */
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
}

View File

@ -0,0 +1,452 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-19 RealThread first version
*/
#ifndef __BOARD_H__
#define __BOARD_H__
#include <stm32f4xx.h>
#include <drv_common.h>
#ifdef __cplusplus
extern "C"
{
#endif
/*-------------------------- CHIP CONFIG BEGIN --------------------------*/
#define CHIP_FAMILY_STM32
#define CHIP_SERIES_STM32F4
#define CHIP_NAME_STM32F429ZI
/*-------------------------- CHIP CONFIG END --------------------------*/
/*-------------------------- ROM/RAM CONFIG BEGIN --------------------------*/
#define ROM_START ((uint32_t)0x08000000)
#define ROM_SIZE (2048 * 1024)
#define ROM_END ((uint32_t)(ROM_START + ROM_SIZE))
#define RAM_START (0x20000000)
#define RAM_SIZE (192 * 1024)
#define RAM_END (RAM_START + RAM_SIZE)
/*-------------------------- ROM/RAM CONFIG END --------------------------*/
/*-------------------------- CLOCK CONFIG BEGIN --------------------------*/
#define BSP_CLOCK_SOURCE ("HSI")
#define BSP_CLOCK_SOURCE_FREQ_MHZ ((int32_t)0)
#define BSP_CLOCK_SYSTEM_FREQ_MHZ ((int32_t)180)
/*-------------------------- CLOCK CONFIG END --------------------------*/
/*-------------------------- UART CONFIG BEGIN --------------------------*/
/** After configuring corresponding UART or UART DMA, you can use it.
*
* STEP 1, define macro define related to the serial port opening based on the serial port number
* such as #define BSP_USING_UART1
*
* STEP 2, according to the corresponding pin of serial port, define the related serial port information macro
* such as #define BSP_UART1_TX_PIN "PA9"
* #define BSP_UART1_RX_PIN "PA10"
*
* STEP 3, if you want using SERIAL DMA, you must open it in the RT-Thread Settings.
* RT-Thread Setting -> Components -> Device Drivers -> Serial Device Drivers -> Enable Serial DMA Mode
*
* STEP 4, according to serial port number to define serial port tx/rx DMA function in the board.h file
* such as #define BSP_UART1_RX_USING_DMA
*
*/
#define BSP_USING_UART1
#define BSP_UART1_TX_PIN "PA9"
#define BSP_UART1_RX_PIN "PA10"
/*-------------------------- UART CONFIG END --------------------------*/
/*-------------------------- I2C CONFIG BEGIN --------------------------*/
/** if you want to use i2c bus(soft simulate) you can use the following instructions.
*
* STEP 1, open i2c driver framework(soft simulate) support in the RT-Thread Settings file
*
* STEP 2, define macro related to the i2c bus
* such as #define BSP_USING_I2C1
*
* STEP 3, according to the corresponding pin of i2c port, modify the related i2c port and pin information
* such as #define BSP_I2C1_SCL_PIN GET_PIN(port, pin) -> GET_PIN(C, 11)
* #define BSP_I2C1_SDA_PIN GET_PIN(port, pin) -> GET_PIN(C, 12)
*/
/*#define BSP_USING_I2C1*/
#ifdef BSP_USING_I2C1
#define BSP_I2C1_SCL_PIN GET_PIN(port, pin)
#define BSP_I2C1_SDA_PIN GET_PIN(port, pin)
#endif
/*#define BSP_USING_I2C2*/
#ifdef BSP_USING_I2C2
#define BSP_I2C2_SCL_PIN GET_PIN(port, pin)
#define BSP_I2C2_SDA_PIN GET_PIN(port, pin)
#endif
/*-------------------------- I2C CONFIG END --------------------------*/
/*-------------------------- SPI CONFIG BEGIN --------------------------*/
/** if you want to use spi bus you can use the following instructions.
*
* STEP 1, open spi driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the spi bus
* such as #define BSP_USING_SPI1
*
* STEP 3, copy your spi init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support spi peripherals. define macro related to the peripherals
* such as #define HAL_SPI_MODULE_ENABLED
*/
/*#define BSP_USING_SPI1*/
/*#define BSP_USING_SPI2*/
/*#define BSP_USING_SPI3*/
/*-------------------------- SPI CONFIG END --------------------------*/
/*-------------------------- QSPI CONFIG BEGIN --------------------------*/
/** if you want to use qspi you can use the following instructions.
*
* STEP 1, open qspi driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the qspi
* such as #define BSP_USING_QSPI
*
* STEP 3, copy your qspi init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_QSPI_MspInit(QSPI_HandleTypeDef* hqspi)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support qspi peripherals. define macro related to the peripherals
* such as #define HAL_QSPI_MODULE_ENABLED
*
*/
/*#define BSP_USING_QSPI*/
/*-------------------------- QSPI CONFIG END --------------------------*/
/*-------------------------- PWM CONFIG BEGIN --------------------------*/
/** if you want to use pwm you can use the following instructions.
*
* STEP 1, open pwm driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the pwm
* such as #define BSP_USING_PWM1
*
* STEP 3, copy your pwm timer init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end if board.c file
* such as void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base) and
* void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support pwm peripherals. define macro related to the peripherals
* such as #define HAL_TIM_MODULE_ENABLED
*
*/
/*#define BSP_USING_PWM1*/
/*#define BSP_USING_PWM2*/
/*#define BSP_USING_PWM3*/
/*-------------------------- PWM CONFIG END --------------------------*/
/*-------------------------- ADC CONFIG BEGIN --------------------------*/
/** if you want to use adc you can use the following instructions.
*
* STEP 1, open adc driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the adc
* such as #define BSP_USING_ADC1
*
* STEP 3, copy your adc init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support adc peripherals. define macro related to the peripherals
* such as #define HAL_ADC_MODULE_ENABLED
*
*/
/*#define BSP_USING_ADC1*/
/*#define BSP_USING_ADC2*/
/*#define BSP_USING_ADC3*/
/*-------------------------- ADC CONFIG END --------------------------*/
/*-------------------------- WDT CONFIG BEGIN --------------------------*/
/** if you want to use wdt you can use the following instructions.
*
* STEP 1, open wdt driver framework support in the RT-Thread Settings file
*
* STEP 2, modify your stm32xxxx_hal_config.h file to support wdt peripherals. define macro related to the peripherals
* such as #define HAL_IWDG_MODULE_ENABLED
*
*/
/*-------------------------- WDT CONFIG END --------------------------*/
/*-------------------------- HARDWARE TIMER CONFIG BEGIN --------------------------*/
/** if you want to use hardware timer you can use the following instructions.
*
* STEP 1, open hwtimer driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the hwtimer
* such as #define BSP_USING_TIM and
* #define BSP_USING_TIM1
*
* STEP 3, copy your hardwire timer init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support hardwere timer peripherals. define macro related to the peripherals
* such as #define HAL_TIM_MODULE_ENABLED
*
*/
/*#define BSP_USING_TIM*/
#ifdef BSP_USING_TIM
/*#define BSP_USING_TIM15*/
/*#define BSP_USING_TIM16*/
/*#define BSP_USING_TIM17*/
#endif
/*-------------------------- HAREWARE TIMER CONFIG END --------------------------*/
/*-------------------------- RTC CONFIG BEGIN --------------------------*/
/** if you want to use rtc(hardware) you can use the following instructions.
*
* STEP 1, open rtc driver framework(hardware) support in the RT-Thread Settings file
*
* STEP 2, define macro related to the rtc
* such as BSP_USING_ONCHIP_RTC
*
* STEP 3, modify your stm32xxxx_hal_config.h file to support rtc peripherals. define macro related to the peripherals
* such as #define HAL_RTC_MODULE_ENABLED
*
*/
/*#define BSP_USING_ONCHIP_RTC*/
/*-------------------------- RTC CONFIG END --------------------------*/
/*-------------------------- SDIO CONFIG BEGIN --------------------------*/
/** if you want to use sdio you can use the following instructions.
*
* STEP 1, open sdio driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the sdio
* such as BSP_USING_SDIO
*
* STEP 3, copy your sdio init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_SD_MspInit(SD_HandleTypeDef* hsd)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support sdio peripherals. define macro related to the peripherals
* such as #define HAL_SD_MODULE_ENABLED
*
* STEP 5, config your device file system or another applications
*
*/
/*#define BSP_USING_SDIO*/
/*-------------------------- SDIO CONFIG END --------------------------*/
/*-------------------------- ETH CONFIG BEGIN --------------------------*/
/** if you want to use eth you can use the following instructions.
*
* STEP 1, define macro related to the eth
* such as BSP_USING_ETH
*
* STEP 2, copy your eth init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end if board.c file
* such as void HAL_ETH_MspInit(ETH_HandleTypeDef* heth)
*
* STEP 3, modify your stm32xxxx_hal_config.h file to support eth peripherals. define macro related to the peripherals
* such as #define HAL_ETH_MODULE_ENABLED
*
* STEP 4, config your phy type
* such as #define PHY_USING_LAN8720A
* #define PHY_USING_DM9161CEP
* #define PHY_USING_DP83848C
* STEP 5, implement your phy reset function in the end of board.c file
* void phy_reset(void)
*
* STEP 6, config your lwip or other network stack
*
*/
/*#define BSP_USING_ETH*/
#ifdef BSP_USING_ETH
/*#define PHY_USING_LAN8720A*/
/*#define PHY_USING_DM9161CEP*/
/*#define PHY_USING_DP83848C*/
#endif
/*-------------------------- ETH CONFIG END --------------------------*/
/*-------------------------- USB HOST CONFIG BEGIN --------------------------*/
/** if you want to use usb host you can use the following instructions.
*
* STEP 1, open usb host driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the usb host
* such as BSP_USING_USBHOST
*
* STEP 3, copy your usb host init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_HCD_MspInit(HCD_HandleTypeDef* hhcd)
*
* STEP 4, config your usb peripheral clock in SystemClock_Config() generated by STM32CubeMX and replace this function in board.c
*
* STEP 5, modify your stm32xxxx_hal_config.h file to support usb host peripherals. define macro related to the peripherals
* such as #define HAL_HCD_MODULE_ENABLED
*
*/
/*#define BSP_USING_USBHOST*/
/*-------------------------- USB HOST CONFIG END --------------------------*/
/*-------------------------- USB DEVICE CONFIG BEGIN --------------------------*/
/** if you want to use usb device you can use the following instructions.
*
* STEP 1, open usb device driver framework support in the RT-Thread Settings file
*
* STEP 2 define macro related to the usb device
* such as BSP_USING_USBDEVICE
*
* STEP 3, copy your usb device init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd)
*
* STEP 4, config your usb peripheral clock in SystemClock_Config() generated by STM32CubeMX and replace this function in board.c
*
* STEP 5, modify your stm32xxxx_hal_config.h file to support usb device peripherals. define macro related to the peripherals
* such as #define HAL_PCD_MODULE_ENABLED
*
*/
/*#define BSP_USING_USBDEVICE*/
/*-------------------------- USB DEVICE CONFIG END --------------------------*/
/*-------------------------- ON_CHIP_FLASH CONFIG BEGIN --------------------------*/
/** if you want to use on chip flash you can use the following instructions.
*
* STEP 1 define macro related to the on chip flash
* such as BSP_USING_ON_CHIP_FLASH
*
* STEP 2, modify your stm32xxxx_hal_config.h file to support on chip flash peripherals. define macro related to the peripherals
* such as #define HAL_FLASH_MODULE_ENABLED
*
*/
/*#define BSP_USING_ON_CHIP_FLASH*/
/*-------------------------- ON_CHIP_FLASH CONFIG END --------------------------*/
/*-------------------------- BSP_USING_SDRAM CONFIG BEGIN --------------------------*/
#define BSP_USING_SDRAM
/* parameters for sdram peripheral */
/* Bank1 or Bank2 */
#define SDRAM_TARGET_BANK 1
/* stm32f4 Bank1:0XC0000000 Bank2:0XD0000000 */
#define SDRAM_BANK_ADDR ((uint32_t)0XC0000000)
/* data width: 8, 16, 32 */
#define SDRAM_DATA_WIDTH 16
/* column bit numbers: 8, 9, 10, 11 */
#define SDRAM_COLUMN_BITS 9
/* row bit numbers: 11, 12, 13 */
#define SDRAM_ROW_BITS 13
/* cas latency clock number: 1, 2, 3 */
#define SDRAM_CAS_LATENCY 3
/* read pipe delay: 0, 1, 2 */
#define SDRAM_RPIPE_DELAY 1
/* clock divid: 2, 3 */
#define SDCLOCK_PERIOD 2
/* refresh rate counter */
#define SDRAM_REFRESH_COUNT ((uint32_t)0x02AB)
#define SDRAM_SIZE ((uint32_t)0x2000000)
/* Timing configuration for W9825G6KH-6 */
/* 90 MHz of SD clock frequency (180MHz/2) */
/* TMRD: 2 Clock cycles */
#define LOADTOACTIVEDELAY 2
/* TXSR: 7x11.90ns */
#define EXITSELFREFRESHDELAY 8
/* TRAS: 4x11.90ns */
#define SELFREFRESHTIME 6
/* TRC: 7x11.90ns */
#define ROWCYCLEDELAY 6
/* TWR: 2 Clock cycles */
#define WRITERECOVERYTIME 2
/* TRP: 2x11.90ns */
#define RPDELAY 2
/* TRCD: 2x11.90ns */
#define RCDDELAY 2
/* memory mode register */
#define SDRAM_MODEREG_BURST_LENGTH_1 ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_LENGTH_2 ((uint16_t)0x0001)
#define SDRAM_MODEREG_BURST_LENGTH_4 ((uint16_t)0x0002)
#define SDRAM_MODEREG_BURST_LENGTH_8 ((uint16_t)0x0004)
#define SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_TYPE_INTERLEAVED ((uint16_t)0x0008)
#define SDRAM_MODEREG_CAS_LATENCY_2 ((uint16_t)0x0020)
#define SDRAM_MODEREG_CAS_LATENCY_3 ((uint16_t)0x0030)
#define SDRAM_MODEREG_OPERATING_MODE_STANDARD ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_PROGRAMMED ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_SINGLE ((uint16_t)0x0200)
/*-------------------------- BSP_USING_SDRAM CONFIG END --------------------------*/
/*-------------------------- BSP_USING_LCD CONFIG BEGIN --------------------------*/
#define BSP_USING_LCD
#define LCD_WIDTH 800
#define LCD_HEIGHT 480
#define LCD_BITS_PER_PIXEL 16
#define LCD_BUF_SIZE (LCD_WIDTH * LCD_HEIGHT * LCD_BITS_PER_PIXEL / 8)
#define LCD_PIXEL_FORMAT RTGRAPHIC_PIXEL_FORMAT_RGB565
#define LCD_HSYNC_WIDTH 2
#define LCD_VSYNC_HEIGHT 2
#define LCD_HBP 46
#define LCD_VBP 23
#define LCD_HFP 22
#define LCD_VFP 22
#define LCD_BACKLIGHT_USING_GPIO
#define LCD_BL_GPIO_NUM GET_PIN(D, 7)
#define LCD_DISP_GPIO_NUM GET_PIN(D, 4)
/*-------------------------- BSP_USING_LCD CONFIG END --------------------------*/
#ifdef __cplusplus
}
#endif
#endif /* __BOARD_H__ */

View File

@ -0,0 +1,286 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-05 zylx first version
* 2018-12-12 greedyhao Porting for stm32f7xx
* 2019-02-01 yuneizhilin fix the stm32_adc_init function initialization issue
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.adc"
#include <drv_log.h>
static ADC_HandleTypeDef adc_config[] =
{
#ifdef BSP_USING_ADC1
ADC1_CONFIG,
#endif
#ifdef BSP_USING_ADC2
ADC2_CONFIG,
#endif
#ifdef BSP_USING_ADC3
ADC3_CONFIG,
#endif
};
struct stm32_adc
{
ADC_HandleTypeDef ADC_Handler;
struct rt_adc_device stm32_adc_device;
};
static struct stm32_adc stm32_adc_obj[sizeof(adc_config) / sizeof(adc_config[0])];
static rt_err_t stm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
stm32_adc_handler = device->parent.user_data;
if (enabled)
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
ADC_Enable(stm32_adc_handler);
#else
__HAL_ADC_ENABLE(stm32_adc_handler);
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
ADC_Disable(stm32_adc_handler);
#else
__HAL_ADC_DISABLE(stm32_adc_handler);
#endif
}
return RT_EOK;
}
static rt_uint32_t stm32_adc_get_channel(rt_uint32_t channel)
{
rt_uint32_t stm32_channel = 0;
switch (channel)
{
case 0:
stm32_channel = ADC_CHANNEL_0;
break;
case 1:
stm32_channel = ADC_CHANNEL_1;
break;
case 2:
stm32_channel = ADC_CHANNEL_2;
break;
case 3:
stm32_channel = ADC_CHANNEL_3;
break;
case 4:
stm32_channel = ADC_CHANNEL_4;
break;
case 5:
stm32_channel = ADC_CHANNEL_5;
break;
case 6:
stm32_channel = ADC_CHANNEL_6;
break;
case 7:
stm32_channel = ADC_CHANNEL_7;
break;
case 8:
stm32_channel = ADC_CHANNEL_8;
break;
case 9:
stm32_channel = ADC_CHANNEL_9;
break;
case 10:
stm32_channel = ADC_CHANNEL_10;
break;
case 11:
stm32_channel = ADC_CHANNEL_11;
break;
case 12:
stm32_channel = ADC_CHANNEL_12;
break;
case 13:
stm32_channel = ADC_CHANNEL_13;
break;
case 14:
stm32_channel = ADC_CHANNEL_14;
break;
case 15:
stm32_channel = ADC_CHANNEL_15;
break;
#ifdef ADC_CHANNEL_16
case 16:
stm32_channel = ADC_CHANNEL_16;
break;
#endif
case 17:
stm32_channel = ADC_CHANNEL_17;
break;
#ifdef ADC_CHANNEL_18
case 18:
stm32_channel = ADC_CHANNEL_18;
break;
#endif
#ifdef ADC_CHANNEL_19
case 19:
stm32_channel = ADC_CHANNEL_19;
break;
#endif
}
return stm32_channel;
}
static rt_err_t stm32_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
ADC_ChannelConfTypeDef ADC_ChanConf;
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
stm32_adc_handler = device->parent.user_data;
rt_memset(&ADC_ChanConf, 0, sizeof(ADC_ChanConf));
#ifndef ADC_CHANNEL_16
if (channel == 16)
{
LOG_E("ADC channel must not be 16.");
return -RT_ERROR;
}
#endif
/* ADC channel number is up to 17 */
#if !defined(ADC_CHANNEL_18)
if (channel <= 17)
/* ADC channel number is up to 19 */
#elif defined(ADC_CHANNEL_19)
if (channel <= 19)
/* ADC channel number is up to 18 */
#else
if (channel <= 18)
#endif
{
/* set stm32 ADC channel */
ADC_ChanConf.Channel = stm32_adc_get_channel(channel);
}
else
{
#if !defined(ADC_CHANNEL_18)
LOG_E("ADC channel must be between 0 and 17.");
#elif defined(ADC_CHANNEL_19)
LOG_E("ADC channel must be between 0 and 19.");
#else
LOG_E("ADC channel must be between 0 and 18.");
#endif
return -RT_ERROR;
}
ADC_ChanConf.Rank = 1;
#if defined(SOC_SERIES_STM32F0)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
#elif defined(SOC_SERIES_STM32F1)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_112CYCLES;
#elif defined(SOC_SERIES_STM32L4)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
#endif
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
ADC_ChanConf.Offset = 0;
#endif
#ifdef SOC_SERIES_STM32L4
ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE;
ADC_ChanConf.SingleDiff = LL_ADC_SINGLE_ENDED;
#endif
HAL_ADC_ConfigChannel(stm32_adc_handler, &ADC_ChanConf);
/* start ADC */
HAL_ADC_Start(stm32_adc_handler);
/* Wait for the ADC to convert */
HAL_ADC_PollForConversion(stm32_adc_handler, 100);
/* get ADC value */
*value = (rt_uint32_t)HAL_ADC_GetValue(stm32_adc_handler);
return RT_EOK;
}
static const struct rt_adc_ops stm_adc_ops =
{
.enabled = stm32_adc_enabled,
.convert = stm32_get_adc_value,
};
static int stm32_adc_init(void)
{
int result = RT_EOK;
/* save adc name */
char name_buf[5] = {'a', 'd', 'c', '0', 0};
int i = 0;
for (i = 0; i < sizeof(adc_config) / sizeof(adc_config[0]); i++)
{
/* ADC init */
name_buf[3] = '0';
stm32_adc_obj[i].ADC_Handler = adc_config[i];
#if defined(ADC1)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC1)
{
name_buf[3] = '1';
}
#endif
#if defined(ADC2)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC2)
{
name_buf[3] = '2';
}
#endif
#if defined(ADC3)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC3)
{
name_buf[3] = '3';
}
#endif
if (HAL_ADC_Init(&stm32_adc_obj[i].ADC_Handler) != HAL_OK)
{
LOG_E("%s init failed", name_buf);
result = -RT_ERROR;
}
else
{
/* register ADC device */
if (rt_hw_adc_register(&stm32_adc_obj[i].stm32_adc_device, name_buf, &stm_adc_ops, &stm32_adc_obj[i].ADC_Handler) == RT_EOK)
{
LOG_D("%s init success", name_buf);
}
else
{
LOG_E("%s register failed", name_buf);
result = -RT_ERROR;
}
}
}
return result;
}
INIT_BOARD_EXPORT(stm32_adc_init);
#endif /* BSP_USING_ADC */

View File

@ -0,0 +1,90 @@
/*
* Copyright (c) 2006-2019, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-10-26 ChenYong first version
* 2020-01-08 xiangxistu add HSI configuration
*/
#include <board.h>
#include <rtthread.h>
#include <stm32f4xx.h>
#include "drv_common.h"
#define DBG_TAG "board"
#define DBG_LVL DBG_LOG
#include <rtdbg.h>
void system_clock_config(int target_freq_mhz)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/**Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE
|RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/**Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
SystemCoreClockUpdate();
}
int clock_information(void)
{
LOG_D("System Clock information");
LOG_D("SYSCLK_Frequency = %d", HAL_RCC_GetSysClockFreq());
LOG_D("HCLK_Frequency = %d", HAL_RCC_GetHCLKFreq());
LOG_D("PCLK1_Frequency = %d", HAL_RCC_GetPCLK1Freq());
LOG_D("PCLK2_Frequency = %d", HAL_RCC_GetPCLK2Freq());
return RT_EOK;
}
INIT_BOARD_EXPORT(clock_information);
void clk_init(char *clk_source, int source_freq, int target_freq)
{
system_clock_config(target_freq);
}

View File

@ -0,0 +1,149 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-7 SummerGift first version
*/
#include "drv_common.h"
#include "board.h"
#ifdef RT_USING_FINSH
#include <finsh.h>
static void reboot(uint8_t argc, char **argv)
{
rt_hw_cpu_reset();
}
FINSH_FUNCTION_EXPORT_ALIAS(reboot, __cmd_reboot, Reboot System);
#endif /* RT_USING_FINSH */
/* SysTick configuration */
void rt_hw_systick_init(void)
{
#if defined (SOC_SERIES_STM32H7)
HAL_SYSTICK_Config((HAL_RCCEx_GetD1SysClockFreq()) / RT_TICK_PER_SECOND);
#else
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / RT_TICK_PER_SECOND);
#endif
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/**
* This is the timer interrupt service routine.
*
*/
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_IncTick();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
uint32_t HAL_GetTick(void)
{
return rt_tick_get() * 1000 / RT_TICK_PER_SECOND;
}
void HAL_SuspendTick(void)
{
}
void HAL_ResumeTick(void)
{
}
void HAL_Delay(__IO uint32_t Delay)
{
}
/* re-implement tick interface for STM32 HAL */
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/* Return function status */
return HAL_OK;
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void _Error_Handler(char *s, int num)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler */
}
/**
* This function will delay for some us.
*
* @param us the delay time of us
*/
void rt_hw_us_delay(rt_uint32_t us)
{
rt_uint32_t start, now, delta, reload, us_tick;
start = SysTick->VAL;
reload = SysTick->LOAD;
us_tick = SystemCoreClock / 1000000UL;
do {
now = SysTick->VAL;
delta = start > now ? start - now : reload + start - now;
} while(delta < us_tick * us);
}
/**
* This function will initial STM32 board.
*/
void hw_board_init(char *clock_src, int32_t clock_src_freq, int32_t clock_target_freq)
{
extern void rt_hw_systick_init(void);
extern void clk_init(char *clk_source, int source_freq, int target_freq);
#ifdef SCB_EnableICache
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
#endif
#ifdef SCB_EnableDCache
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
#endif
/* HAL_Init() function is called at the beginning of the program */
HAL_Init();
/* enable interrupt */
__set_PRIMASK(0);
/* System clock initialization */
clk_init(clock_src, clock_src_freq, clock_target_freq);
/* disbale interrupt */
__set_PRIMASK(1);
rt_hw_systick_init();
/* Pin driver initialization is open by default */
#ifdef RT_USING_PIN
extern int rt_hw_pin_init(void);
rt_hw_pin_init();
#endif
/* USART driver initialization is open by default */
#ifdef RT_USING_SERIAL
extern int rt_hw_usart_init(void);
rt_hw_usart_init();
#endif
}

View File

@ -0,0 +1,667 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 SummerGift first version
* 2018-12-25 zylx fix some bugs
* 2019-06-10 SummerGift optimize PHY state detection process
* 2019-09-03 xiaofan optimize link change detection process
*/
#include<rtthread.h>
#include<rtdevice.h>
#include "board.h"
#include "drv_config.h"
#ifdef BSP_USING_ETH
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "drv_eth.h"
/*
* Emac driver uses CubeMX tool to generate emac and phy's configuration,
* the configuration files can be found in CubeMX_Config folder.
*/
/* debug option */
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
//#define DRV_DEBUG
#define LOG_TAG "drv.emac"
#include <drv_log.h>
#define MAX_ADDR_LEN 6
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* ETH_Speed */
uint32_t ETH_Speed;
/* ETH_Duplex_Mode */
uint32_t ETH_Mode;
};
static ETH_DMADescTypeDef *DMARxDscrTab, *DMATxDscrTab;
static rt_uint8_t *Rx_Buff, *Tx_Buff;
static ETH_HandleTypeDef EthHandle;
static struct rt_stm32_eth stm32_eth_device;
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
extern void phy_reset(void);
/* EMAC initialization function */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
__HAL_RCC_ETH_CLK_ENABLE();
phy_reset();
/* ETHERNET Configuration */
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = (rt_uint8_t *)&stm32_eth_device.dev_addr[0];
EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_DISABLE;
EthHandle.Init.Speed = ETH_SPEED_100M;
EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
#ifdef RT_LWIP_USING_HW_CHECKSUM
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
#else
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
#endif
HAL_ETH_DeInit(&EthHandle);
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
if (HAL_ETH_Init(&EthHandle) != HAL_OK)
{
LOG_E("eth hardware init failed");
}
else
{
LOG_D("eth hardware init success");
}
/* Initialize Tx Descriptors list: Chain Mode */
HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, Tx_Buff, ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, Rx_Buff, ETH_RXBUFNB);
/* ETH interrupt Init */
HAL_NVIC_SetPriority(ETH_IRQn, 0x07, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
/* Enable MAC and DMA transmission and reception */
if (HAL_ETH_Start(&EthHandle) == HAL_OK)
{
LOG_D("emac hardware start");
}
else
{
LOG_E("emac hardware start faild");
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t ret = RT_ERROR;
HAL_StatusTypeDef state;
struct pbuf *q;
uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
__IO ETH_DMADescTypeDef *DmaTxDesc;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
DmaTxDesc = EthHandle.TxDesc;
bufferoffset = 0;
/* copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next)
{
/* Is this buffer available? If not, goto error */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
LOG_D("buffer not valid");
ret = ERR_USE;
goto error;
}
/* Get bytes in current lwIP buffer */
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE)
{
/* Copy data to Tx buffer*/
memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
/* Check if the buffer is available */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
LOG_E("dma tx desc buffer is not valid");
ret = ERR_USE;
goto error;
}
buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
#ifdef ETH_TX_DUMP
dump_hex(buffer, p->tot_len);
#endif
/* Prepare transmit descriptors to give to DMA */
/* TODO Optimize data send speed*/
LOG_D("transmit frame length :%d", framelength);
/* wait for unlocked */
while (EthHandle.Lock == HAL_LOCKED);
state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
if (state != HAL_OK)
{
LOG_E("eth transmit frame faild: %d", state);
}
ret = ERR_OK;
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
{
/* Clear TUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_TUS;
/* Resume DMA transmission*/
EthHandle.Instance->DMATPDR = 0;
}
return ret;
}
/* receive data*/
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
HAL_StatusTypeDef state;
uint16_t len = 0;
uint8_t *buffer;
__IO ETH_DMADescTypeDef *dmarxdesc;
uint32_t bufferoffset = 0;
uint32_t payloadoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t i = 0;
/* Get received frame */
state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
if (state != HAL_OK)
{
LOG_D("receive frame faild");
return NULL;
}
/* Obtain the size of the packet and put it into the "len" variable. */
len = EthHandle.RxFrameInfos.length;
buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
LOG_D("receive frame len : %d", len);
if (len > 0)
{
/* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
}
#ifdef ETH_RX_DUMP
dump_hex(buffer, p->tot_len);
#endif
if (p != NULL)
{
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
bufferoffset = 0;
for (q = p; q != NULL; q = q->next)
{
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE)
{
/* Copy data to pbuf */
memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i = 0; i < EthHandle.RxFrameInfos.SegCount; i++)
{
dmarxdesc->Status |= ETH_DMARXDESC_OWN;
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
EthHandle.RxFrameInfos.SegCount = 0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
EthHandle.Instance->DMARPDR = 0;
}
return p;
}
/* interrupt service routine */
void ETH_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_ETH_IRQHandler(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
rt_err_t result;
result = eth_device_ready(&(stm32_eth_device.parent));
if (result != RT_EOK)
LOG_I("RxCpltCallback err = %d", result);
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
{
LOG_E("eth err");
}
enum {
PHY_LINK = (1 << 0),
PHY_100M = (1 << 1),
PHY_FULL_DUPLEX = (1 << 2),
};
static void phy_linkchange()
{
static rt_uint8_t phy_speed = 0;
rt_uint8_t phy_speed_new = 0;
rt_uint32_t status;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BASIC_STATUS_REG, (uint32_t *)&status);
LOG_D("phy basic status reg is 0x%X", status);
if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
{
rt_uint32_t SR = 0;
phy_speed_new |= PHY_LINK;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_Status_REG, (uint32_t *)&SR);
LOG_D("phy control status reg is 0x%X", SR);
if (PHY_Status_SPEED_100M(SR))
{
phy_speed_new |= PHY_100M;
}
if (PHY_Status_FULL_DUPLEX(SR))
{
phy_speed_new |= PHY_FULL_DUPLEX;
}
}
if (phy_speed != phy_speed_new)
{
phy_speed = phy_speed_new;
if (phy_speed & PHY_LINK)
{
LOG_D("link up");
if (phy_speed & PHY_100M)
{
LOG_D("100Mbps");
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
}
else
{
stm32_eth_device.ETH_Speed = ETH_SPEED_10M;
LOG_D("10Mbps");
}
if (phy_speed & PHY_FULL_DUPLEX)
{
LOG_D("full-duplex");
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
}
else
{
LOG_D("half-duplex");
stm32_eth_device.ETH_Mode = ETH_MODE_HALFDUPLEX;
}
/* send link up. */
eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
}
else
{
LOG_I("link down");
eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
}
}
}
#ifdef PHY_USING_INTERRUPT_MODE
static void eth_phy_isr(void *args)
{
rt_uint32_t status = 0;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status);
LOG_D("phy interrupt status reg is 0x%X", status);
phy_linkchange();
}
#endif /* PHY_USING_INTERRUPT_MODE */
static void phy_monitor_thread_entry(void *parameter)
{
uint8_t phy_addr = 0xFF;
uint8_t detected_count = 0;
while(phy_addr == 0xFF)
{
/* phy search */
rt_uint32_t i, temp;
for (i = 0; i <= 0x1F; i++)
{
EthHandle.Init.PhyAddress = i;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ID1_REG, (uint32_t *)&temp);
if (temp != 0xFFFF && temp != 0x00)
{
phy_addr = i;
break;
}
}
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 10)
{
LOG_E("No PHY device was detected, please check hardware!");
}
}
LOG_D("Found a phy, address:0x%02X", phy_addr);
/* RESET PHY */
LOG_D("RESET PHY!");
HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK);
rt_thread_mdelay(2000);
HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK);
phy_linkchange();
#ifdef PHY_USING_INTERRUPT_MODE
/* configuration intterrupt pin */
rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs");
rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
/* enable phy interrupt */
HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
#if defined(PHY_INTERRUPT_CTRL_REG)
HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
#endif
#else /* PHY_USING_INTERRUPT_MODE */
stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
#endif /* PHY_USING_INTERRUPT_MODE */
}
/* Register the EMAC device */
static int rt_hw_stm32_eth_init(void)
{
rt_err_t state = RT_EOK;
/* Prepare receive and send buffers */
Rx_Buff = (rt_uint8_t *)rt_calloc(ETH_RXBUFNB, ETH_MAX_PACKET_SIZE);
if (Rx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
Tx_Buff = (rt_uint8_t *)rt_calloc(ETH_TXBUFNB, ETH_MAX_PACKET_SIZE);
if (Tx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
DMARxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_RXBUFNB, sizeof(ETH_DMADescTypeDef));
if (DMARxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
DMATxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_TXBUFNB, sizeof(ETH_DMADescTypeDef));
if (DMATxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
/* OUI 00-80-E1 STMICROELECTRONICS. */
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x80;
stm32_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4);
stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2);
stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
/* register eth device */
state = eth_device_init(&(stm32_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
goto __exit;
}
/* start phy monitor */
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
1024,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
else
{
state = -RT_ERROR;
}
__exit:
if (state != RT_EOK)
{
if (Rx_Buff)
{
rt_free(Rx_Buff);
}
if (Tx_Buff)
{
rt_free(Tx_Buff);
}
if (DMARxDscrTab)
{
rt_free(DMARxDscrTab);
}
if (DMATxDscrTab)
{
rt_free(DMATxDscrTab);
}
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
#endif /* BSP_USING_ETH */

View File

@ -0,0 +1,374 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-5 SummerGift first version
*/
#include "board.h"
#ifdef BSP_USING_ON_CHIP_FLASH
#include "drv_config.h"
#include "drv_flash.h"
#if defined(PKG_USING_FAL)
#include "fal.h"
#endif
//#define DRV_DEBUG
#define LOG_TAG "drv.flash"
#include <drv_log.h>
/* Base address of the Flash sectors Bank 1 */
#define ADDR_FLASH_SECTOR_0 ((uint32_t)0x08000000) /* Base @ of Sector 0, 16 Kbytes */
#define ADDR_FLASH_SECTOR_1 ((uint32_t)0x08004000) /* Base @ of Sector 1, 16 Kbytes */
#define ADDR_FLASH_SECTOR_2 ((uint32_t)0x08008000) /* Base @ of Sector 2, 16 Kbytes */
#define ADDR_FLASH_SECTOR_3 ((uint32_t)0x0800C000) /* Base @ of Sector 3, 16 Kbytes */
#define ADDR_FLASH_SECTOR_4 ((uint32_t)0x08010000) /* Base @ of Sector 4, 64 Kbytes */
#define ADDR_FLASH_SECTOR_5 ((uint32_t)0x08020000) /* Base @ of Sector 5, 128 Kbytes */
#define ADDR_FLASH_SECTOR_6 ((uint32_t)0x08040000) /* Base @ of Sector 6, 128 Kbytes */
#define ADDR_FLASH_SECTOR_7 ((uint32_t)0x08060000) /* Base @ of Sector 7, 128 Kbytes */
#define ADDR_FLASH_SECTOR_8 ((uint32_t)0x08080000) /* Base @ of Sector 8, 128 Kbytes */
#define ADDR_FLASH_SECTOR_9 ((uint32_t)0x080A0000) /* Base @ of Sector 9, 128 Kbytes */
#define ADDR_FLASH_SECTOR_10 ((uint32_t)0x080C0000) /* Base @ of Sector 10, 128 Kbytes */
#define ADDR_FLASH_SECTOR_11 ((uint32_t)0x080E0000) /* Base @ of Sector 11, 128 Kbytes */
/* Base address of the Flash sectors Bank 2 */
#define ADDR_FLASH_SECTOR_12 ((uint32_t)0x08100000) /* Base @ of Sector 0, 16 Kbytes */
#define ADDR_FLASH_SECTOR_13 ((uint32_t)0x08104000) /* Base @ of Sector 1, 16 Kbytes */
#define ADDR_FLASH_SECTOR_14 ((uint32_t)0x08108000) /* Base @ of Sector 2, 16 Kbytes */
#define ADDR_FLASH_SECTOR_15 ((uint32_t)0x0810C000) /* Base @ of Sector 3, 16 Kbytes */
#define ADDR_FLASH_SECTOR_16 ((uint32_t)0x08110000) /* Base @ of Sector 4, 64 Kbytes */
#define ADDR_FLASH_SECTOR_17 ((uint32_t)0x08120000) /* Base @ of Sector 5, 128 Kbytes */
#define ADDR_FLASH_SECTOR_18 ((uint32_t)0x08140000) /* Base @ of Sector 6, 128 Kbytes */
#define ADDR_FLASH_SECTOR_19 ((uint32_t)0x08160000) /* Base @ of Sector 7, 128 Kbytes */
#define ADDR_FLASH_SECTOR_20 ((uint32_t)0x08180000) /* Base @ of Sector 8, 128 Kbytes */
#define ADDR_FLASH_SECTOR_21 ((uint32_t)0x081A0000) /* Base @ of Sector 9, 128 Kbytes */
#define ADDR_FLASH_SECTOR_22 ((uint32_t)0x081C0000) /* Base @ of Sector 10, 128 Kbytes */
#define ADDR_FLASH_SECTOR_23 ((uint32_t)0x081E0000) /* Base @ of Sector 11, 128 Kbytes */
/**
* @brief Gets the sector of a given address
* @param None
* @retval The sector of a given address
*/
static rt_uint32_t GetSector(rt_uint32_t Address)
{
rt_uint32_t sector = 0;
if((Address < ADDR_FLASH_SECTOR_1) && (Address >= ADDR_FLASH_SECTOR_0))
{
sector = FLASH_SECTOR_0;
}
else if((Address < ADDR_FLASH_SECTOR_2) && (Address >= ADDR_FLASH_SECTOR_1))
{
sector = FLASH_SECTOR_1;
}
else if((Address < ADDR_FLASH_SECTOR_3) && (Address >= ADDR_FLASH_SECTOR_2))
{
sector = FLASH_SECTOR_2;
}
else if((Address < ADDR_FLASH_SECTOR_4) && (Address >= ADDR_FLASH_SECTOR_3))
{
sector = FLASH_SECTOR_3;
}
else if((Address < ADDR_FLASH_SECTOR_5) && (Address >= ADDR_FLASH_SECTOR_4))
{
sector = FLASH_SECTOR_4;
}
else if((Address < ADDR_FLASH_SECTOR_6) && (Address >= ADDR_FLASH_SECTOR_5))
{
sector = FLASH_SECTOR_5;
}
else if((Address < ADDR_FLASH_SECTOR_7) && (Address >= ADDR_FLASH_SECTOR_6))
{
sector = FLASH_SECTOR_6;
}
else if((Address < ADDR_FLASH_SECTOR_8) && (Address >= ADDR_FLASH_SECTOR_7))
{
sector = FLASH_SECTOR_7;
}
#if defined(FLASH_SECTOR_8)
else if((Address < ADDR_FLASH_SECTOR_9) && (Address >= ADDR_FLASH_SECTOR_8))
{
sector = FLASH_SECTOR_8;
}
#endif
#if defined(FLASH_SECTOR_9)
else if((Address < ADDR_FLASH_SECTOR_10) && (Address >= ADDR_FLASH_SECTOR_9))
{
sector = FLASH_SECTOR_9;
}
#endif
#if defined(FLASH_SECTOR_10)
else if((Address < ADDR_FLASH_SECTOR_11) && (Address >= ADDR_FLASH_SECTOR_10))
{
sector = FLASH_SECTOR_10;
}
#endif
#if defined(FLASH_SECTOR_11)
else if((Address < ADDR_FLASH_SECTOR_12) && (Address >= ADDR_FLASH_SECTOR_11))
{
sector = FLASH_SECTOR_11;
}
#endif
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) || defined(STM32F469xx) || defined(STM32F479xx)
else if((Address < ADDR_FLASH_SECTOR_13) && (Address >= ADDR_FLASH_SECTOR_12))
{
sector = FLASH_SECTOR_12;
}
else if((Address < ADDR_FLASH_SECTOR_14) && (Address >= ADDR_FLASH_SECTOR_13))
{
sector = FLASH_SECTOR_13;
}
else if((Address < ADDR_FLASH_SECTOR_15) && (Address >= ADDR_FLASH_SECTOR_14))
{
sector = FLASH_SECTOR_14;
}
else if((Address < ADDR_FLASH_SECTOR_16) && (Address >= ADDR_FLASH_SECTOR_15))
{
sector = FLASH_SECTOR_15;
}
else if((Address < ADDR_FLASH_SECTOR_17) && (Address >= ADDR_FLASH_SECTOR_16))
{
sector = FLASH_SECTOR_16;
}
else if((Address < ADDR_FLASH_SECTOR_18) && (Address >= ADDR_FLASH_SECTOR_17))
{
sector = FLASH_SECTOR_17;
}
else if((Address < ADDR_FLASH_SECTOR_19) && (Address >= ADDR_FLASH_SECTOR_18))
{
sector = FLASH_SECTOR_18;
}
else if((Address < ADDR_FLASH_SECTOR_20) && (Address >= ADDR_FLASH_SECTOR_19))
{
sector = FLASH_SECTOR_19;
}
else if((Address < ADDR_FLASH_SECTOR_21) && (Address >= ADDR_FLASH_SECTOR_20))
{
sector = FLASH_SECTOR_20;
}
else if((Address < ADDR_FLASH_SECTOR_22) && (Address >= ADDR_FLASH_SECTOR_21))
{
sector = FLASH_SECTOR_21;
}
else if((Address < ADDR_FLASH_SECTOR_23) && (Address >= ADDR_FLASH_SECTOR_22))
{
sector = FLASH_SECTOR_22;
}
else /* (Address < FLASH_END_ADDR) && (Address >= ADDR_FLASH_SECTOR_23) */
{
sector = FLASH_SECTOR_23;
}
#endif
return sector;
}
/**
* Read data from flash.
* @note This operation's units is word.
*
* @param addr flash address
* @param buf buffer to store read data
* @param size read bytes size
*
* @return result
*/
int stm32_flash_read(rt_uint32_t addr, rt_uint8_t *buf, size_t size)
{
size_t i;
if ((addr + size) > STM32_FLASH_END_ADDRESS)
{
LOG_E("read outrange flash size! addr is (0x%p)", (void*)(addr + size));
return -1;
}
for (i = 0; i < size; i++, buf++, addr++)
{
*buf = *(rt_uint8_t *) addr;
}
return size;
}
/**
* Write data to flash.
* @note This operation's units is word.
* @note This operation must after erase. @see flash_erase.
*
* @param addr flash address
* @param buf the write data buffer
* @param size write bytes size
*
* @return result
*/
int stm32_flash_write(rt_uint32_t addr, const rt_uint8_t *buf, size_t size)
{
rt_err_t result = RT_EOK;
rt_uint32_t end_addr = addr + size;
if ((end_addr) > STM32_FLASH_END_ADDRESS)
{
LOG_E("write outrange flash size! addr is (0x%p)", (void*)(addr + size));
return -RT_EINVAL;
}
if (size < 1)
{
return -RT_EINVAL;
}
HAL_FLASH_Unlock();
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
for (size_t i = 0; i < size; i++, addr++, buf++)
{
/* write data to flash */
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_BYTE, addr, (rt_uint64_t)(*buf)) == HAL_OK)
{
if (*(rt_uint8_t *)addr != *buf)
{
result = -RT_ERROR;
break;
}
}
else
{
result = -RT_ERROR;
break;
}
}
HAL_FLASH_Lock();
if (result != RT_EOK)
{
return result;
}
return size;
}
/**
* Erase data on flash.
* @note This operation is irreversible.
* @note This operation's units is different which on many chips.
*
* @param addr flash address
* @param size erase bytes size
*
* @return result
*/
int stm32_flash_erase(rt_uint32_t addr, size_t size)
{
rt_err_t result = RT_EOK;
rt_uint32_t FirstSector = 0, NbOfSectors = 0;
rt_uint32_t SECTORError = 0;
if ((addr + size) > STM32_FLASH_END_ADDRESS)
{
LOG_E("ERROR: erase outrange flash size! addr is (0x%p)\n", (void*)(addr + size));
return -RT_EINVAL;
}
/*Variable used for Erase procedure*/
FLASH_EraseInitTypeDef EraseInitStruct;
/* Unlock the Flash to enable the flash control register access */
HAL_FLASH_Unlock();
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
/* Get the 1st sector to erase */
FirstSector = GetSector(addr);
/* Get the number of sector to erase from 1st sector*/
NbOfSectors = GetSector(addr + size - 1) - FirstSector + 1;
/* Fill EraseInit structure*/
EraseInitStruct.TypeErase = FLASH_TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = FLASH_VOLTAGE_RANGE_3;
EraseInitStruct.Sector = FirstSector;
EraseInitStruct.NbSectors = NbOfSectors;
if (HAL_FLASHEx_Erase(&EraseInitStruct, (uint32_t *)&SECTORError) != HAL_OK)
{
result = -RT_ERROR;
goto __exit;
}
__exit:
HAL_FLASH_Lock();
if (result != RT_EOK)
{
return result;
}
LOG_D("erase done: addr (0x%p), size %d", (void*)addr, size);
return size;
}
#if defined(PKG_USING_FAL)
static int fal_flash_read_16k(long offset, rt_uint8_t *buf, size_t size);
static int fal_flash_read_64k(long offset, rt_uint8_t *buf, size_t size);
static int fal_flash_read_128k(long offset, rt_uint8_t *buf, size_t size);
static int fal_flash_write_16k(long offset, const rt_uint8_t *buf, size_t size);
static int fal_flash_write_64k(long offset, const rt_uint8_t *buf, size_t size);
static int fal_flash_write_128k(long offset, const rt_uint8_t *buf, size_t size);
static int fal_flash_erase_16k(long offset, size_t size);
static int fal_flash_erase_64k(long offset, size_t size);
static int fal_flash_erase_128k(long offset, size_t size);
const struct fal_flash_dev stm32_onchip_flash_16k = { "onchip_flash_16k", STM32_FLASH_START_ADRESS_16K, FLASH_SIZE_GRANULARITY_16K, (16 * 1024), {NULL, fal_flash_read_16k, fal_flash_write_16k, fal_flash_erase_16k} };
const struct fal_flash_dev stm32_onchip_flash_64k = { "onchip_flash_64k", STM32_FLASH_START_ADRESS_64K, FLASH_SIZE_GRANULARITY_64K, (64 * 1024), {NULL, fal_flash_read_64k, fal_flash_write_64k, fal_flash_erase_64k} };
const struct fal_flash_dev stm32_onchip_flash_128k = { "onchip_flash_128k", STM32_FLASH_START_ADRESS_128K, FLASH_SIZE_GRANULARITY_128K, (128 * 1024), {NULL, fal_flash_read_128k, fal_flash_write_128k, fal_flash_erase_128k} };
static int fal_flash_read_16k(long offset, rt_uint8_t *buf, size_t size)
{
return stm32_flash_read(stm32_onchip_flash_16k.addr + offset, buf, size);
}
static int fal_flash_read_64k(long offset, rt_uint8_t *buf, size_t size)
{
return stm32_flash_read(stm32_onchip_flash_64k.addr + offset, buf, size);
}
static int fal_flash_read_128k(long offset, rt_uint8_t *buf, size_t size)
{
return stm32_flash_read(stm32_onchip_flash_128k.addr + offset, buf, size);
}
static int fal_flash_write_16k(long offset, const rt_uint8_t *buf, size_t size)
{
return stm32_flash_write(stm32_onchip_flash_16k.addr + offset, buf, size);
}
static int fal_flash_write_64k(long offset, const rt_uint8_t *buf, size_t size)
{
return stm32_flash_write(stm32_onchip_flash_64k.addr + offset, buf, size);
}
static int fal_flash_write_128k(long offset, const rt_uint8_t *buf, size_t size)
{
return stm32_flash_write(stm32_onchip_flash_128k.addr + offset, buf, size);
}
static int fal_flash_erase_16k(long offset, size_t size)
{
return stm32_flash_erase(stm32_onchip_flash_16k.addr + offset, size);
}
static int fal_flash_erase_64k(long offset, size_t size)
{
return stm32_flash_erase(stm32_onchip_flash_64k.addr + offset, size);
}
static int fal_flash_erase_128k(long offset, size_t size)
{
return stm32_flash_erase(stm32_onchip_flash_128k.addr + offset, size);
}
#endif
#endif /* BSP_USING_ON_CHIP_FLASH */

View File

@ -0,0 +1,811 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-06 balanceTWK first version
* 2019-04-23 WillianChan Fix GPIO serial number disorder
*/
#include "board.h"
#include "drv_common.h"
#ifdef RT_USING_PIN
#include <rtdevice.h>
#define __STM32_PIN(index, gpio, gpio_index) \
{ \
index, GPIO##gpio, GPIO_PIN_##gpio_index \
}
#define __STM32_PIN_RESERVE \
{ \
-1, 0, 0 \
}
/* STM32 GPIO driver */
struct pin_index
{
int index;
GPIO_TypeDef *gpio;
uint32_t pin;
};
struct pin_irq_map
{
rt_uint16_t pinbit;
IRQn_Type irqno;
};
static const struct pin_index pins[] =
{
#if defined(GPIOA)
__STM32_PIN(0 , A, 0 ),
__STM32_PIN(1 , A, 1 ),
__STM32_PIN(2 , A, 2 ),
__STM32_PIN(3 , A, 3 ),
__STM32_PIN(4 , A, 4 ),
__STM32_PIN(5 , A, 5 ),
__STM32_PIN(6 , A, 6 ),
__STM32_PIN(7 , A, 7 ),
__STM32_PIN(8 , A, 8 ),
__STM32_PIN(9 , A, 9 ),
__STM32_PIN(10, A, 10),
__STM32_PIN(11, A, 11),
__STM32_PIN(12, A, 12),
__STM32_PIN(13, A, 13),
__STM32_PIN(14, A, 14),
__STM32_PIN(15, A, 15),
#if defined(GPIOB)
__STM32_PIN(16, B, 0),
__STM32_PIN(17, B, 1),
__STM32_PIN(18, B, 2),
__STM32_PIN(19, B, 3),
__STM32_PIN(20, B, 4),
__STM32_PIN(21, B, 5),
__STM32_PIN(22, B, 6),
__STM32_PIN(23, B, 7),
__STM32_PIN(24, B, 8),
__STM32_PIN(25, B, 9),
__STM32_PIN(26, B, 10),
__STM32_PIN(27, B, 11),
__STM32_PIN(28, B, 12),
__STM32_PIN(29, B, 13),
__STM32_PIN(30, B, 14),
__STM32_PIN(31, B, 15),
#if defined(GPIOC)
__STM32_PIN(32, C, 0),
__STM32_PIN(33, C, 1),
__STM32_PIN(34, C, 2),
__STM32_PIN(35, C, 3),
__STM32_PIN(36, C, 4),
__STM32_PIN(37, C, 5),
__STM32_PIN(38, C, 6),
__STM32_PIN(39, C, 7),
__STM32_PIN(40, C, 8),
__STM32_PIN(41, C, 9),
__STM32_PIN(42, C, 10),
__STM32_PIN(43, C, 11),
__STM32_PIN(44, C, 12),
__STM32_PIN(45, C, 13),
__STM32_PIN(46, C, 14),
__STM32_PIN(47, C, 15),
#if defined(GPIOD)
__STM32_PIN(48, D, 0),
__STM32_PIN(49, D, 1),
__STM32_PIN(50, D, 2),
__STM32_PIN(51, D, 3),
__STM32_PIN(52, D, 4),
__STM32_PIN(53, D, 5),
__STM32_PIN(54, D, 6),
__STM32_PIN(55, D, 7),
__STM32_PIN(56, D, 8),
__STM32_PIN(57, D, 9),
__STM32_PIN(58, D, 10),
__STM32_PIN(59, D, 11),
__STM32_PIN(60, D, 12),
__STM32_PIN(61, D, 13),
__STM32_PIN(62, D, 14),
__STM32_PIN(63, D, 15),
#if defined(GPIOE)
__STM32_PIN(64, E, 0),
__STM32_PIN(65, E, 1),
__STM32_PIN(66, E, 2),
__STM32_PIN(67, E, 3),
__STM32_PIN(68, E, 4),
__STM32_PIN(69, E, 5),
__STM32_PIN(70, E, 6),
__STM32_PIN(71, E, 7),
__STM32_PIN(72, E, 8),
__STM32_PIN(73, E, 9),
__STM32_PIN(74, E, 10),
__STM32_PIN(75, E, 11),
__STM32_PIN(76, E, 12),
__STM32_PIN(77, E, 13),
__STM32_PIN(78, E, 14),
__STM32_PIN(79, E, 15),
#if defined(GPIOF)
__STM32_PIN(80, F, 0),
__STM32_PIN(81, F, 1),
__STM32_PIN(82, F, 2),
__STM32_PIN(83, F, 3),
__STM32_PIN(84, F, 4),
__STM32_PIN(85, F, 5),
__STM32_PIN(86, F, 6),
__STM32_PIN(87, F, 7),
__STM32_PIN(88, F, 8),
__STM32_PIN(89, F, 9),
__STM32_PIN(90, F, 10),
__STM32_PIN(91, F, 11),
__STM32_PIN(92, F, 12),
__STM32_PIN(93, F, 13),
__STM32_PIN(94, F, 14),
__STM32_PIN(95, F, 15),
#if defined(GPIOG)
__STM32_PIN(96, G, 0),
__STM32_PIN(97, G, 1),
__STM32_PIN(98, G, 2),
__STM32_PIN(99, G, 3),
__STM32_PIN(100, G, 4),
__STM32_PIN(101, G, 5),
__STM32_PIN(102, G, 6),
__STM32_PIN(103, G, 7),
__STM32_PIN(104, G, 8),
__STM32_PIN(105, G, 9),
__STM32_PIN(106, G, 10),
__STM32_PIN(107, G, 11),
__STM32_PIN(108, G, 12),
__STM32_PIN(109, G, 13),
__STM32_PIN(110, G, 14),
__STM32_PIN(111, G, 15),
#if defined(GPIOH)
__STM32_PIN(112, H, 0),
__STM32_PIN(113, H, 1),
__STM32_PIN(114, H, 2),
__STM32_PIN(115, H, 3),
__STM32_PIN(116, H, 4),
__STM32_PIN(117, H, 5),
__STM32_PIN(118, H, 6),
__STM32_PIN(119, H, 7),
__STM32_PIN(120, H, 8),
__STM32_PIN(121, H, 9),
__STM32_PIN(122, H, 10),
__STM32_PIN(123, H, 11),
__STM32_PIN(124, H, 12),
__STM32_PIN(125, H, 13),
__STM32_PIN(126, H, 14),
__STM32_PIN(127, H, 15),
#if defined(GPIOI)
__STM32_PIN(128, I, 0),
__STM32_PIN(129, I, 1),
__STM32_PIN(130, I, 2),
__STM32_PIN(131, I, 3),
__STM32_PIN(132, I, 4),
__STM32_PIN(133, I, 5),
__STM32_PIN(134, I, 6),
__STM32_PIN(135, I, 7),
__STM32_PIN(136, I, 8),
__STM32_PIN(137, I, 9),
__STM32_PIN(138, I, 10),
__STM32_PIN(139, I, 11),
__STM32_PIN(140, I, 12),
__STM32_PIN(141, I, 13),
__STM32_PIN(142, I, 14),
__STM32_PIN(143, I, 15),
#if defined(GPIOJ)
__STM32_PIN(144, J, 0),
__STM32_PIN(145, J, 1),
__STM32_PIN(146, J, 2),
__STM32_PIN(147, J, 3),
__STM32_PIN(148, J, 4),
__STM32_PIN(149, J, 5),
__STM32_PIN(150, J, 6),
__STM32_PIN(151, J, 7),
__STM32_PIN(152, J, 8),
__STM32_PIN(153, J, 9),
__STM32_PIN(154, J, 10),
__STM32_PIN(155, J, 11),
__STM32_PIN(156, J, 12),
__STM32_PIN(157, J, 13),
__STM32_PIN(158, J, 14),
__STM32_PIN(159, J, 15),
#if defined(GPIOK)
__STM32_PIN(160, K, 0),
__STM32_PIN(161, K, 1),
__STM32_PIN(162, K, 2),
__STM32_PIN(163, K, 3),
__STM32_PIN(164, K, 4),
__STM32_PIN(165, K, 5),
__STM32_PIN(166, K, 6),
__STM32_PIN(167, K, 7),
__STM32_PIN(168, K, 8),
__STM32_PIN(169, K, 9),
__STM32_PIN(170, K, 10),
__STM32_PIN(171, K, 11),
__STM32_PIN(172, K, 12),
__STM32_PIN(173, K, 13),
__STM32_PIN(174, K, 14),
__STM32_PIN(175, K, 15),
#endif /* defined(GPIOK) */
#endif /* defined(GPIOJ) */
#endif /* defined(GPIOI) */
#endif /* defined(GPIOH) */
#endif /* defined(GPIOG) */
#endif /* defined(GPIOF) */
#endif /* defined(GPIOE) */
#endif /* defined(GPIOD) */
#endif /* defined(GPIOC) */
#endif /* defined(GPIOB) */
#endif /* defined(GPIOA) */
};
static const struct pin_irq_map pin_irq_map[] =
{
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0)
{GPIO_PIN_0, EXTI0_1_IRQn},
{GPIO_PIN_1, EXTI0_1_IRQn},
{GPIO_PIN_2, EXTI2_3_IRQn},
{GPIO_PIN_3, EXTI2_3_IRQn},
{GPIO_PIN_4, EXTI4_15_IRQn},
{GPIO_PIN_5, EXTI4_15_IRQn},
{GPIO_PIN_6, EXTI4_15_IRQn},
{GPIO_PIN_7, EXTI4_15_IRQn},
{GPIO_PIN_8, EXTI4_15_IRQn},
{GPIO_PIN_9, EXTI4_15_IRQn},
{GPIO_PIN_10, EXTI4_15_IRQn},
{GPIO_PIN_11, EXTI4_15_IRQn},
{GPIO_PIN_12, EXTI4_15_IRQn},
{GPIO_PIN_13, EXTI4_15_IRQn},
{GPIO_PIN_14, EXTI4_15_IRQn},
{GPIO_PIN_15, EXTI4_15_IRQn},
#else
{GPIO_PIN_0, EXTI0_IRQn},
{GPIO_PIN_1, EXTI1_IRQn},
{GPIO_PIN_2, EXTI2_IRQn},
{GPIO_PIN_3, EXTI3_IRQn},
{GPIO_PIN_4, EXTI4_IRQn},
{GPIO_PIN_5, EXTI9_5_IRQn},
{GPIO_PIN_6, EXTI9_5_IRQn},
{GPIO_PIN_7, EXTI9_5_IRQn},
{GPIO_PIN_8, EXTI9_5_IRQn},
{GPIO_PIN_9, EXTI9_5_IRQn},
{GPIO_PIN_10, EXTI15_10_IRQn},
{GPIO_PIN_11, EXTI15_10_IRQn},
{GPIO_PIN_12, EXTI15_10_IRQn},
{GPIO_PIN_13, EXTI15_10_IRQn},
{GPIO_PIN_14, EXTI15_10_IRQn},
{GPIO_PIN_15, EXTI15_10_IRQn},
#endif
};
static struct rt_pin_irq_hdr pin_irq_hdr_tab[] =
{
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
};
static uint32_t pin_irq_enable_mask=0;
#define ITEM_NUM(items) sizeof(items) / sizeof(items[0])
static const struct pin_index *get_pin(uint8_t pin)
{
const struct pin_index *index;
if (pin < ITEM_NUM(pins))
{
index = &pins[pin];
if (index->index == -1)
index = RT_NULL;
}
else
{
index = RT_NULL;
}
return index;
};
static void stm32_pin_write(rt_device_t dev, rt_base_t pin, rt_base_t value)
{
const struct pin_index *index;
index = get_pin(pin);
if (index == RT_NULL)
{
return;
}
HAL_GPIO_WritePin(index->gpio, index->pin, (GPIO_PinState)value);
}
static int stm32_pin_read(rt_device_t dev, rt_base_t pin)
{
int value;
const struct pin_index *index;
value = PIN_LOW;
index = get_pin(pin);
if (index == RT_NULL)
{
return value;
}
value = HAL_GPIO_ReadPin(index->gpio, index->pin);
return value;
}
static void stm32_pin_mode(rt_device_t dev, rt_base_t pin, rt_base_t mode)
{
const struct pin_index *index;
GPIO_InitTypeDef GPIO_InitStruct;
index = get_pin(pin);
if (index == RT_NULL)
{
return;
}
/* Configure GPIO_InitStructure */
GPIO_InitStruct.Pin = index->pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
if (mode == PIN_MODE_OUTPUT)
{
/* output setting */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
else if (mode == PIN_MODE_INPUT)
{
/* input setting: not pull. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
else if (mode == PIN_MODE_INPUT_PULLUP)
{
/* input setting: pull up. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
}
else if (mode == PIN_MODE_INPUT_PULLDOWN)
{
/* input setting: pull down. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
}
else if (mode == PIN_MODE_OUTPUT_OD)
{
/* output setting: od. */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
}
rt_inline rt_int32_t bit2bitno(rt_uint32_t bit)
{
int i;
for (i = 0; i < 32; i++)
{
if ((0x01 << i) == bit)
{
return i;
}
}
return -1;
}
rt_inline const struct pin_irq_map *get_pin_irq_map(uint32_t pinbit)
{
rt_int32_t mapindex = bit2bitno(pinbit);
if (mapindex < 0 || mapindex >= ITEM_NUM(pin_irq_map))
{
return RT_NULL;
}
return &pin_irq_map[mapindex];
};
static rt_err_t stm32_pin_attach_irq(struct rt_device *device, rt_int32_t pin,
rt_uint32_t mode, void (*hdr)(void *args), void *args)
{
const struct pin_index *index;
rt_base_t level;
rt_int32_t irqindex = -1;
index = get_pin(pin);
if (index == RT_NULL)
{
return RT_ENOSYS;
}
irqindex = bit2bitno(index->pin);
if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
if (pin_irq_hdr_tab[irqindex].pin == pin &&
pin_irq_hdr_tab[irqindex].hdr == hdr &&
pin_irq_hdr_tab[irqindex].mode == mode &&
pin_irq_hdr_tab[irqindex].args == args)
{
rt_hw_interrupt_enable(level);
return RT_EOK;
}
if (pin_irq_hdr_tab[irqindex].pin != -1)
{
rt_hw_interrupt_enable(level);
return RT_EBUSY;
}
pin_irq_hdr_tab[irqindex].pin = pin;
pin_irq_hdr_tab[irqindex].hdr = hdr;
pin_irq_hdr_tab[irqindex].mode = mode;
pin_irq_hdr_tab[irqindex].args = args;
rt_hw_interrupt_enable(level);
return RT_EOK;
}
static rt_err_t stm32_pin_dettach_irq(struct rt_device *device, rt_int32_t pin)
{
const struct pin_index *index;
rt_base_t level;
rt_int32_t irqindex = -1;
index = get_pin(pin);
if (index == RT_NULL)
{
return RT_ENOSYS;
}
irqindex = bit2bitno(index->pin);
if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
if (pin_irq_hdr_tab[irqindex].pin == -1)
{
rt_hw_interrupt_enable(level);
return RT_EOK;
}
pin_irq_hdr_tab[irqindex].pin = -1;
pin_irq_hdr_tab[irqindex].hdr = RT_NULL;
pin_irq_hdr_tab[irqindex].mode = 0;
pin_irq_hdr_tab[irqindex].args = RT_NULL;
rt_hw_interrupt_enable(level);
return RT_EOK;
}
static rt_err_t stm32_pin_irq_enable(struct rt_device *device, rt_base_t pin,
rt_uint32_t enabled)
{
const struct pin_index *index;
const struct pin_irq_map *irqmap;
rt_base_t level;
rt_int32_t irqindex = -1;
GPIO_InitTypeDef GPIO_InitStruct;
index = get_pin(pin);
if (index == RT_NULL)
{
return RT_ENOSYS;
}
if (enabled == PIN_IRQ_ENABLE)
{
irqindex = bit2bitno(index->pin);
if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
if (pin_irq_hdr_tab[irqindex].pin == -1)
{
rt_hw_interrupt_enable(level);
return RT_ENOSYS;
}
irqmap = &pin_irq_map[irqindex];
/* Configure GPIO_InitStructure */
GPIO_InitStruct.Pin = index->pin;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
switch (pin_irq_hdr_tab[irqindex].mode)
{
case PIN_IRQ_MODE_RISING:
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
break;
case PIN_IRQ_MODE_FALLING:
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
break;
case PIN_IRQ_MODE_RISING_FALLING:
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
break;
}
HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
HAL_NVIC_SetPriority(irqmap->irqno, 5, 0);
HAL_NVIC_EnableIRQ(irqmap->irqno);
pin_irq_enable_mask |= irqmap->pinbit;
rt_hw_interrupt_enable(level);
}
else if (enabled == PIN_IRQ_DISABLE)
{
irqmap = get_pin_irq_map(index->pin);
if (irqmap == RT_NULL)
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
HAL_GPIO_DeInit(index->gpio, index->pin);
pin_irq_enable_mask &= ~irqmap->pinbit;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (( irqmap->pinbit>=GPIO_PIN_0 )&&( irqmap->pinbit<=GPIO_PIN_1 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_0|GPIO_PIN_1)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else if (( irqmap->pinbit>=GPIO_PIN_2 )&&( irqmap->pinbit<=GPIO_PIN_3 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_2|GPIO_PIN_3)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else if (( irqmap->pinbit>=GPIO_PIN_4 )&&( irqmap->pinbit<=GPIO_PIN_15 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|
GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
#else
if (( irqmap->pinbit>=GPIO_PIN_5 )&&( irqmap->pinbit<=GPIO_PIN_9 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else if (( irqmap->pinbit>=GPIO_PIN_10 )&&( irqmap->pinbit<=GPIO_PIN_15 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
#endif
rt_hw_interrupt_enable(level);
}
else
{
return -RT_ENOSYS;
}
return RT_EOK;
}
const static struct rt_pin_ops _stm32_pin_ops =
{
stm32_pin_mode,
stm32_pin_write,
stm32_pin_read,
stm32_pin_attach_irq,
stm32_pin_dettach_irq,
stm32_pin_irq_enable,
};
rt_inline void pin_irq_hdr(int irqno)
{
if (pin_irq_hdr_tab[irqno].hdr)
{
pin_irq_hdr_tab[irqno].hdr(pin_irq_hdr_tab[irqno].args);
}
}
#if defined(SOC_SERIES_STM32G0)
void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin)
{
pin_irq_hdr(bit2bitno(GPIO_Pin));
}
void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin)
{
pin_irq_hdr(bit2bitno(GPIO_Pin));
}
#else
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
pin_irq_hdr(bit2bitno(GPIO_Pin));
}
#endif
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32L0)
void EXTI0_1_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
rt_interrupt_leave();
}
void EXTI2_3_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_3);
rt_interrupt_leave();
}
void EXTI4_15_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_4);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_7);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_8);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_10);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_11);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_12);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_15);
}
#else
void EXTI0_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
rt_interrupt_leave();
}
void EXTI1_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
rt_interrupt_leave();
}
void EXTI2_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
rt_interrupt_leave();
}
void EXTI3_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_3);
rt_interrupt_leave();
}
void EXTI4_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_4);
rt_interrupt_leave();
}
void EXTI9_5_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_7);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_8);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
rt_interrupt_leave();
}
void EXTI15_10_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_10);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_11);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_12);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_15);
rt_interrupt_leave();
}
#endif
int rt_hw_pin_init(void)
{
#if defined(__HAL_RCC_GPIOA_CLK_ENABLE)
__HAL_RCC_GPIOA_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOB_CLK_ENABLE)
__HAL_RCC_GPIOB_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOC_CLK_ENABLE)
__HAL_RCC_GPIOC_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOD_CLK_ENABLE)
__HAL_RCC_GPIOD_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOE_CLK_ENABLE)
__HAL_RCC_GPIOE_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOF_CLK_ENABLE)
__HAL_RCC_GPIOF_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOG_CLK_ENABLE)
#ifdef SOC_SERIES_STM32L4
HAL_PWREx_EnableVddIO2();
#endif
__HAL_RCC_GPIOG_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOH_CLK_ENABLE)
__HAL_RCC_GPIOH_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOI_CLK_ENABLE)
__HAL_RCC_GPIOI_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOJ_CLK_ENABLE)
__HAL_RCC_GPIOJ_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOK_CLK_ENABLE)
__HAL_RCC_GPIOK_CLK_ENABLE();
#endif
return rt_device_pin_register("pin", &_stm32_pin_ops, RT_NULL);
}
#endif /* RT_USING_PIN */

View File

@ -0,0 +1,555 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-10 zylx first version
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_TIM
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.hwtimer"
#include <drv_log.h>
#ifdef RT_USING_HWTIMER
enum
{
#ifdef BSP_USING_TIM1
TIM1_INDEX,
#endif
#ifdef BSP_USING_TIM2
TIM2_INDEX,
#endif
#ifdef BSP_USING_TIM3
TIM3_INDEX,
#endif
#ifdef BSP_USING_TIM4
TIM4_INDEX,
#endif
#ifdef BSP_USING_TIM5
TIM5_INDEX,
#endif
#ifdef BSP_USING_TIM6
TIM6_INDEX,
#endif
#ifdef BSP_USING_TIM7
TIM7_INDEX,
#endif
#ifdef BSP_USING_TIM8
TIM8_INDEX,
#endif
#ifdef BSP_USING_TIM9
TIM9_INDEX,
#endif
#ifdef BSP_USING_TIM10
TIM10_INDEX,
#endif
#ifdef BSP_USING_TIM11
TIM11_INDEX,
#endif
#ifdef BSP_USING_TIM12
TIM12_INDEX,
#endif
#ifdef BSP_USING_TIM13
TIM13_INDEX,
#endif
#ifdef BSP_USING_TIM14
TIM14_INDEX,
#endif
#ifdef BSP_USING_TIM15
TIM15_INDEX,
#endif
#ifdef BSP_USING_TIM16
TIM16_INDEX,
#endif
#ifdef BSP_USING_TIM17
TIM17_INDEX,
#endif
};
struct stm32_hwtimer
{
rt_hwtimer_t time_device;
TIM_HandleTypeDef tim_handle;
IRQn_Type tim_irqn;
char *name;
};
static struct stm32_hwtimer stm32_hwtimer_obj[] =
{
#ifdef BSP_USING_TIM1
TIM1_CONFIG,
#endif
#ifdef BSP_USING_TIM2
TIM2_CONFIG,
#endif
#ifdef BSP_USING_TIM3
TIM3_CONFIG,
#endif
#ifdef BSP_USING_TIM4
TIM4_CONFIG,
#endif
#ifdef BSP_USING_TIM5
TIM5_CONFIG,
#endif
#ifdef BSP_USING_TIM6
TIM6_CONFIG,
#endif
#ifdef BSP_USING_TIM7
TIM7_CONFIG,
#endif
#ifdef BSP_USING_TIM8
TIM8_CONFIG,
#endif
#ifdef BSP_USING_TIM9
TIM9_CONFIG,
#endif
#ifdef BSP_USING_TIM10
TIM10_CONFIG,
#endif
#ifdef BSP_USING_TIM11
TIM11_CONFIG,
#endif
#ifdef BSP_USING_TIM12
TIM12_CONFIG,
#endif
#ifdef BSP_USING_TIM13
TIM13_CONFIG,
#endif
#ifdef BSP_USING_TIM14
TIM14_CONFIG,
#endif
#ifdef BSP_USING_TIM15
TIM15_CONFIG,
#endif
#ifdef BSP_USING_TIM16
TIM16_CONFIG,
#endif
#ifdef BSP_USING_TIM17
TIM17_CONFIG,
#endif
};
static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
uint32_t prescaler_value = 0;
TIM_HandleTypeDef *tim = RT_NULL;
struct stm32_hwtimer *tim_device = RT_NULL;
RT_ASSERT(timer != RT_NULL);
if (state)
{
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
tim_device = (struct stm32_hwtimer *)timer;
/* time init */
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (tim->Instance == TIM9 || tim->Instance == TIM10 || tim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (tim->Instance == TIM15 || tim->Instance == TIM16 || tim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if !defined(SOC_SERIES_STM32F0) && !defined(SOC_SERIES_STM32G0)
prescaler_value = (uint32_t)(HAL_RCC_GetPCLK2Freq() * 2 / 10000) - 1;
#endif
}
else
{
prescaler_value = (uint32_t)(HAL_RCC_GetPCLK1Freq() * 2 / 10000) - 1;
}
tim->Init.Period = 10000 - 1;
tim->Init.Prescaler = prescaler_value;
tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
{
tim->Init.CounterMode = TIM_COUNTERMODE_UP;
}
else
{
tim->Init.CounterMode = TIM_COUNTERMODE_DOWN;
}
tim->Init.RepetitionCounter = 0;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
tim->Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
if (HAL_TIM_Base_Init(tim) != HAL_OK)
{
LOG_E("%s init failed", tim_device->name);
return;
}
else
{
/* set the TIMx priority */
HAL_NVIC_SetPriority(tim_device->tim_irqn, 3, 0);
/* enable the TIMx global Interrupt */
HAL_NVIC_EnableIRQ(tim_device->tim_irqn);
/* clear update flag */
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
/* enable update request source */
__HAL_TIM_URS_ENABLE(tim);
LOG_D("%s init success", tim_device->name);
}
}
}
static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
{
rt_err_t result = RT_EOK;
TIM_HandleTypeDef *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
/* set tim cnt */
__HAL_TIM_SET_COUNTER(tim, 0);
/* set tim arr */
__HAL_TIM_SET_AUTORELOAD(tim, t - 1);
if (opmode == HWTIMER_MODE_ONESHOT)
{
/* set timer to single mode */
tim->Instance->CR1 |= TIM_OPMODE_SINGLE;
}
else
{
tim->Instance->CR1 &= (~TIM_OPMODE_SINGLE);
}
/* start timer */
if (HAL_TIM_Base_Start_IT(tim) != HAL_OK)
{
LOG_E("TIM start failed");
result = -RT_ERROR;
}
return result;
}
static void timer_stop(rt_hwtimer_t *timer)
{
TIM_HandleTypeDef *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
/* stop timer */
HAL_TIM_Base_Stop_IT(tim);
/* set tim cnt */
__HAL_TIM_SET_COUNTER(tim, 0);
}
static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
TIM_HandleTypeDef *tim = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(arg != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint32_t freq;
rt_uint16_t val;
/* set timer frequence */
freq = *((rt_uint32_t *)arg);
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (tim->Instance == TIM9 || tim->Instance == TIM10 || tim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (tim->Instance == TIM15 || tim->Instance == TIM16 || tim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if defined(SOC_SERIES_STM32L4)
val = HAL_RCC_GetPCLK2Freq() / freq;
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
val = HAL_RCC_GetPCLK2Freq() * 2 / freq;
#endif
}
else
{
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
val = HAL_RCC_GetPCLK1Freq() * 2 / freq;
#elif defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
val = HAL_RCC_GetPCLK1Freq() / freq;
#endif
}
__HAL_TIM_SET_PRESCALER(tim, val - 1);
/* Update frequency value */
tim->Instance->EGR |= TIM_EVENTSOURCE_UPDATE;
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}
static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
{
TIM_HandleTypeDef *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
return tim->Instance->CNT;
}
static const struct rt_hwtimer_info _info = TIM_DEV_INFO_CONFIG;
static const struct rt_hwtimer_ops _ops =
{
.init = timer_init,
.start = timer_start,
.stop = timer_stop,
.count_get = timer_counter_get,
.control = timer_ctrl,
};
#ifdef BSP_USING_TIM2
void TIM2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM2_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM3
void TIM3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM3_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM4
void TIM4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM4_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM5
void TIM5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM5_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM11
void TIM1_TRG_COM_TIM11_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM11_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM13
void TIM8_UP_TIM13_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM13_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM14
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
void TIM8_TRG_COM_TIM14_IRQHandler(void)
#elif defined(SOC_SERIES_STM32F0)
void TIM14_IRQHandler(void)
#endif
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM14_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM15
void TIM1_BRK_TIM15_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM15_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM16
#if defined(SOC_SERIES_STM32L4)
void TIM1_UP_TIM16_IRQHandler(void)
#elif defined(SOC_SERIES_STM32F0)
void TIM16_IRQHandler(void)
#endif
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM16_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM17
#if defined(SOC_SERIES_STM32L4)
void TIM1_TRG_COM_TIM17_IRQHandler(void)
#elif defined(SOC_SERIES_STM32F0)
void TIM17_IRQHandler(void)
#endif
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM17_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
#ifdef BSP_USING_TIM2
if (htim->Instance == TIM2)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM2_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM3
if (htim->Instance == TIM3)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM3_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM4
if (htim->Instance == TIM4)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM4_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM5
if (htim->Instance == TIM5)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM5_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM11
if (htim->Instance == TIM11)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM11_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM13
if (htim->Instance == TIM13)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM13_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM14
if (htim->Instance == TIM14)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM14_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM15
if (htim->Instance == TIM15)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM15_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM16
if (htim->Instance == TIM16)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM16_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM17
if (htim->Instance == TIM17)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM17_INDEX].time_device);
}
#endif
}
static int stm32_hwtimer_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(stm32_hwtimer_obj) / sizeof(stm32_hwtimer_obj[0]); i++)
{
stm32_hwtimer_obj[i].time_device.info = &_info;
stm32_hwtimer_obj[i].time_device.ops = &_ops;
if (rt_device_hwtimer_register(&stm32_hwtimer_obj[i].time_device, stm32_hwtimer_obj[i].name, &stm32_hwtimer_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", stm32_hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", stm32_hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(stm32_hwtimer_init);
#endif /* RT_USING_HWTIMER */
#endif /* BSP_USING_TIM */

View File

@ -0,0 +1,131 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-04 balanceTWK first version
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_LCD
#define LCD_DB_ADDR 0xC0000000
#define LCD_DB_PTR ((volatile uint16_t *)LCD_DB_ADDR)
static LTDC_HandleTypeDef LtdcHandle = {0};
int lcd_init(void)
{
LTDC_LayerCfgTypeDef pLayerCfg = {0};
/* LTDC Initialization -------------------------------------------------------*/
/* Polarity configuration */
/* Initialize the horizontal synchronization polarity as active low */
LtdcHandle.Init.HSPolarity = LTDC_HSPOLARITY_AL;
/* Initialize the vertical synchronization polarity as active low */
LtdcHandle.Init.VSPolarity = LTDC_VSPOLARITY_AL;
/* Initialize the data enable polarity as active low */
LtdcHandle.Init.DEPolarity = LTDC_DEPOLARITY_AL;
/* Initialize the pixel clock polarity as input pixel clock */
LtdcHandle.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
/* Timing configuration */
/* Horizontal synchronization width = Hsync - 1 */
LtdcHandle.Init.HorizontalSync = LCD_HSYNC_WIDTH - 1;
/* Vertical synchronization height = Vsync - 1 */
LtdcHandle.Init.VerticalSync = LCD_VSYNC_HEIGHT - 1;
/* Accumulated horizontal back porch = Hsync + HBP - 1 */
LtdcHandle.Init.AccumulatedHBP = LCD_HSYNC_WIDTH + LCD_HBP - 1;
/* Accumulated vertical back porch = Vsync + VBP - 1 */
LtdcHandle.Init.AccumulatedVBP = LCD_VSYNC_HEIGHT + LCD_VBP - 1;
/* Accumulated active width = Hsync + HBP + Active Width - 1 */
LtdcHandle.Init.AccumulatedActiveW = LCD_HSYNC_WIDTH + LCD_HBP + LCD_WIDTH - 1 ;
/* Accumulated active height = Vsync + VBP + Active Heigh - 1 */
LtdcHandle.Init.AccumulatedActiveH = LCD_VSYNC_HEIGHT + LCD_VBP + LCD_HEIGHT - 1;
/* Total height = Vsync + VBP + Active Heigh + VFP - 1 */
LtdcHandle.Init.TotalHeigh = LtdcHandle.Init.AccumulatedActiveH + LCD_VFP;
/* Total width = Hsync + HBP + Active Width + HFP - 1 */
LtdcHandle.Init.TotalWidth = LtdcHandle.Init.AccumulatedActiveW + LCD_HFP;
/* Configure R,G,B component values for LCD background color */
LtdcHandle.Init.Backcolor.Blue = 0;
LtdcHandle.Init.Backcolor.Green = 0;
LtdcHandle.Init.Backcolor.Red = 0;
LtdcHandle.Instance = LTDC;
/* Layer1 Configuration ------------------------------------------------------*/
/* Windowing configuration */
pLayerCfg.WindowX0 = 0;
pLayerCfg.WindowX1 = LCD_WIDTH;
pLayerCfg.WindowY0 = 0;
pLayerCfg.WindowY1 = LCD_HEIGHT;
pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
/* Start Address configuration : frame buffer is located at FLASH memory */
pLayerCfg.FBStartAdress = LCD_DB_ADDR;
/* Alpha constant (255 totally opaque) */
pLayerCfg.Alpha = 255;
/* Default Color configuration (configure A,R,G,B component values) */
pLayerCfg.Alpha0 = 255;
pLayerCfg.Backcolor.Blue = 0;
pLayerCfg.Backcolor.Green = 0;
pLayerCfg.Backcolor.Red = 0;
/* Configure blending factors */
/* Constant Alpha value: pLayerCfg.Alpha / 255
C: Current Layer Color
Cs: Background color
BC = Constant Alpha x C + (1 - Constant Alpha ) x Cs */
/* BlendingFactor1: Pixel Alpha x Constant Alpha */
pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
/* BlendingFactor2: 1 - (Pixel Alpha x Constant Alpha) */
pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
/* Configure the number of lines and number of pixels per line */
pLayerCfg.ImageWidth = LCD_WIDTH;
pLayerCfg.ImageHeight = LCD_HEIGHT;
/* Configure the LTDC */
if (HAL_LTDC_Init(&LtdcHandle) != HAL_OK)
{
rt_kprintf("LTDC init failed");
return -RT_ERROR;
}
/* Configure the Background Layer*/
if (HAL_LTDC_ConfigLayer(&LtdcHandle, &pLayerCfg, 0) != HAL_OK)
{
rt_kprintf("LTDC layer init failed");
return -RT_ERROR;
}
return RT_EOK;
}
INIT_PREV_EXPORT(lcd_init);
int32_t GLCD_DrawBitmap (uint32_t x,
uint32_t y,
uint32_t width,
uint32_t height,
const uint8_t *bitmap)
{
volatile uint16_t *phwDes = LCD_DB_PTR + y * LCD_WIDTH + x;
const uint16_t *phwSrc = (const uint16_t *)bitmap;
for (int_fast16_t i = 0; i < height; i++) {
rt_memcpy ((uint16_t *)phwDes, phwSrc, width * 2);
phwSrc += width;
phwDes += LCD_WIDTH;
}
return 0;
}
#endif /* BSP_USING_LCD */

View File

@ -0,0 +1,566 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 zylx first version
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_PWM
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#define MAX_PERIOD 65535
#define MIN_PERIOD 3
#define MIN_PULSE 2
extern void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
enum
{
#ifdef BSP_USING_PWM1
PWM1_INDEX,
#endif
#ifdef BSP_USING_PWM2
PWM2_INDEX,
#endif
#ifdef BSP_USING_PWM3
PWM3_INDEX,
#endif
#ifdef BSP_USING_PWM4
PWM4_INDEX,
#endif
#ifdef BSP_USING_PWM5
PWM5_INDEX,
#endif
#ifdef BSP_USING_PWM6
PWM6_INDEX,
#endif
#ifdef BSP_USING_PWM7
PWM7_INDEX,
#endif
#ifdef BSP_USING_PWM8
PWM8_INDEX,
#endif
#ifdef BSP_USING_PWM9
PWM9_INDEX,
#endif
#ifdef BSP_USING_PWM10
PWM10_INDEX,
#endif
#ifdef BSP_USING_PWM11
PWM11_INDEX,
#endif
#ifdef BSP_USING_PWM12
PWM12_INDEX,
#endif
#ifdef BSP_USING_PWM13
PWM13_INDEX,
#endif
#ifdef BSP_USING_PWM14
PWM14_INDEX,
#endif
#ifdef BSP_USING_PWM15
PWM15_INDEX,
#endif
#ifdef BSP_USING_PWM16
PWM16_INDEX,
#endif
#ifdef BSP_USING_PWM17
PWM17_INDEX,
#endif
};
struct stm32_pwm
{
struct rt_device_pwm pwm_device;
TIM_HandleTypeDef tim_handle;
rt_uint8_t channel;
char *name;
};
static struct stm32_pwm stm32_pwm_obj[] =
{
#ifdef BSP_USING_PWM1
PWM1_CONFIG,
#endif
#ifdef BSP_USING_PWM2
PWM2_CONFIG,
#endif
#ifdef BSP_USING_PWM3
PWM3_CONFIG,
#endif
#ifdef BSP_USING_PWM4
PWM4_CONFIG,
#endif
#ifdef BSP_USING_PWM5
PWM5_CONFIG,
#endif
#ifdef BSP_USING_PWM6
PWM6_CONFIG,
#endif
#ifdef BSP_USING_PWM7
PWM7_CONFIG,
#endif
#ifdef BSP_USING_PWM8
PWM8_CONFIG,
#endif
#ifdef BSP_USING_PWM9
PWM9_CONFIG,
#endif
#ifdef BSP_USING_PWM10
PWM10_CONFIG,
#endif
#ifdef BSP_USING_PWM11
PWM11_CONFIG,
#endif
#ifdef BSP_USING_PWM12
PWM12_CONFIG,
#endif
#ifdef BSP_USING_PWM13
PWM13_CONFIG,
#endif
#ifdef BSP_USING_PWM14
PWM14_CONFIG,
#endif
#ifdef BSP_USING_PWM15
PWM15_CONFIG,
#endif
#ifdef BSP_USING_PWM16
PWM16_CONFIG,
#endif
#ifdef BSP_USING_PWM17
PWM17_CONFIG,
#endif
};
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops drv_ops =
{
drv_pwm_control
};
static rt_err_t drv_pwm_enable(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
if (!enable)
{
HAL_TIM_PWM_Stop(htim, channel);
}
else
{
HAL_TIM_PWM_Start(htim, channel);
}
return RT_EOK;
}
static rt_err_t drv_pwm_get(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
rt_uint64_t tim_clock;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (htim->Instance == TIM9 || htim->Instance == TIM10 || htim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (htim->Instance == TIM15 || htim->Instance == TIM16 || htim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if !defined(SOC_SERIES_STM32F0) && !defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK2Freq() * 2;
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK1Freq();
#else
tim_clock = HAL_RCC_GetPCLK1Freq() * 2;
#endif
}
if (__HAL_TIM_GET_CLOCKDIVISION(htim) == TIM_CLOCKDIVISION_DIV2)
{
tim_clock = tim_clock / 2;
}
else if (__HAL_TIM_GET_CLOCKDIVISION(htim) == TIM_CLOCKDIVISION_DIV4)
{
tim_clock = tim_clock / 4;
}
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
configuration->period = (__HAL_TIM_GET_AUTORELOAD(htim) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
configuration->pulse = (__HAL_TIM_GET_COMPARE(htim, channel) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
rt_uint32_t period, pulse;
rt_uint64_t tim_clock, psc;
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (htim->Instance == TIM9 || htim->Instance == TIM10 || htim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (htim->Instance == TIM15 || htim->Instance == TIM16 || htim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if !defined(SOC_SERIES_STM32F0) && !defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK2Freq() * 2;
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK1Freq();
#else
tim_clock = HAL_RCC_GetPCLK1Freq() * 2;
#endif
}
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
period = (unsigned long long)configuration->period * tim_clock / 1000ULL ;
psc = period / MAX_PERIOD + 1;
period = period / psc;
__HAL_TIM_SET_PRESCALER(htim, psc - 1);
if (period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
__HAL_TIM_SET_AUTORELOAD(htim, period - 1);
pulse = (unsigned long long)configuration->pulse * tim_clock / psc / 1000ULL;
if (pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
else if (pulse > period)
{
pulse = period;
}
__HAL_TIM_SET_COMPARE(htim, channel, pulse - 1);
__HAL_TIM_SET_COUNTER(htim, 0);
/* Update frequency value */
HAL_TIM_GenerateEvent(htim, TIM_EVENTSOURCE_UPDATE);
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(htim, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(htim, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(htim, configuration);
case PWM_CMD_GET:
return drv_pwm_get(htim, configuration);
default:
return RT_EINVAL;
}
}
static rt_err_t stm32_hw_pwm_init(struct stm32_pwm *device)
{
rt_err_t result = RT_EOK;
TIM_HandleTypeDef *tim = RT_NULL;
TIM_OC_InitTypeDef oc_config = {0};
TIM_MasterConfigTypeDef master_config = {0};
TIM_ClockConfigTypeDef clock_config = {0};
RT_ASSERT(device != RT_NULL);
tim = (TIM_HandleTypeDef *)&device->tim_handle;
/* configure the timer to pwm mode */
tim->Init.Prescaler = 0;
tim->Init.CounterMode = TIM_COUNTERMODE_UP;
tim->Init.Period = 0;
tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4)
tim->Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
if (HAL_TIM_PWM_Init(tim) != HAL_OK)
{
LOG_E("%s pwm init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
clock_config.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(tim, &clock_config) != HAL_OK)
{
LOG_E("%s clock init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
master_config.MasterOutputTrigger = TIM_TRGO_RESET;
master_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(tim, &master_config) != HAL_OK)
{
LOG_E("%s master config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
oc_config.OCMode = TIM_OCMODE_PWM1;
oc_config.Pulse = 0;
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
oc_config.OCIdleState = TIM_OCIDLESTATE_RESET;
/* config pwm channel */
if (device->channel & 0x01)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_1) != HAL_OK)
{
LOG_E("%s channel1 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x02)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_2) != HAL_OK)
{
LOG_E("%s channel2 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x04)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_3) != HAL_OK)
{
LOG_E("%s channel3 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x08)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_4) != HAL_OK)
{
LOG_E("%s channel4 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
/* pwm pin configuration */
HAL_TIM_MspPostInit(tim);
/* enable update request source */
__HAL_TIM_URS_ENABLE(tim);
__exit:
return result;
}
static void pwm_get_channel(void)
{
#ifdef BSP_USING_PWM1_CH1
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM1_CH2
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM1_CH3
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM1_CH4
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM2_CH1
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM2_CH2
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM2_CH3
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM2_CH4
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM3_CH1
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM3_CH2
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM3_CH3
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM3_CH4
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM4_CH1
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM4_CH2
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM4_CH3
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM4_CH4
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM5_CH1
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM5_CH2
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM5_CH3
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM5_CH4
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM6_CH1
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM6_CH2
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM6_CH3
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM6_CH4
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM7_CH1
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM7_CH2
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM7_CH3
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM7_CH4
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM8_CH1
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM8_CH2
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM8_CH3
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM8_CH4
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM9_CH1
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM9_CH2
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM9_CH3
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM9_CH4
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM12_CH1
stm32_pwm_obj[PWM12_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM12_CH2
stm32_pwm_obj[PWM12_INDEX].channel |= 1 << 1;
#endif
}
static int stm32_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
pwm_get_channel();
for (i = 0; i < sizeof(stm32_pwm_obj) / sizeof(stm32_pwm_obj[0]); i++)
{
/* pwm init */
if (stm32_hw_pwm_init(&stm32_pwm_obj[i]) != RT_EOK)
{
LOG_E("%s init failed", stm32_pwm_obj[i].name);
result = -RT_ERROR;
goto __exit;
}
else
{
LOG_D("%s init success", stm32_pwm_obj[i].name);
/* register pwm device */
if (rt_device_pwm_register(&stm32_pwm_obj[i].pwm_device, stm32_pwm_obj[i].name, &drv_ops, &stm32_pwm_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", stm32_pwm_obj[i].name);
}
else
{
LOG_E("%s register failed", stm32_pwm_obj[i].name);
result = -RT_ERROR;
}
}
}
__exit:
return result;
}
INIT_DEVICE_EXPORT(stm32_pwm_init);
#endif /* RT_USING_PWM */

View File

@ -0,0 +1,398 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-27 zylx first version
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#include "drv_qspi.h"
#include "drv_config.h"
#ifdef RT_USING_QSPI
#define DRV_DEBUG
#define LOG_TAG "drv.qspi"
#include <drv_log.h>
#if defined(BSP_USING_QSPI)
struct stm32_hw_spi_cs
{
uint16_t Pin;
};
struct stm32_qspi_bus
{
QSPI_HandleTypeDef QSPI_Handler;
char *bus_name;
#ifdef BSP_QSPI_USING_DMA
DMA_HandleTypeDef hdma_quadspi;
#endif
};
struct rt_spi_bus _qspi_bus1;
struct stm32_qspi_bus _stm32_qspi_bus;
static int stm32_qspi_init(struct rt_qspi_device *device, struct rt_qspi_configuration *qspi_cfg)
{
int result = RT_EOK;
unsigned int i = 1;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(qspi_cfg != RT_NULL);
struct rt_spi_configuration *cfg = &qspi_cfg->parent;
struct stm32_qspi_bus *qspi_bus = device->parent.bus->parent.user_data;
rt_memset(&qspi_bus->QSPI_Handler, 0, sizeof(qspi_bus->QSPI_Handler));
QSPI_HandleTypeDef QSPI_Handler_config = QSPI_BUS_CONFIG;
qspi_bus->QSPI_Handler = QSPI_Handler_config;
while (cfg->max_hz < HAL_RCC_GetHCLKFreq() / (i + 1))
{
i++;
if (i == 255)
{
LOG_E("QSPI init failed, QSPI frequency(%d) is too low.", cfg->max_hz);
return -RT_ERROR;
}
}
/* 80/(1+i) */
qspi_bus->QSPI_Handler.Init.ClockPrescaler = i;
if (!(cfg->mode & RT_SPI_CPOL))
{
/* QSPI MODE0 */
qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_0;
}
else
{
/* QSPI MODE3 */
qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_3;
}
/* flash size */
qspi_bus->QSPI_Handler.Init.FlashSize = POSITION_VAL(qspi_cfg->medium_size) - 1;
result = HAL_QSPI_Init(&qspi_bus->QSPI_Handler);
if (result == HAL_OK)
{
LOG_D("qspi init success!");
}
else
{
LOG_E("qspi init failed (%d)!", result);
}
#ifdef BSP_QSPI_USING_DMA
/* QSPI interrupts must be enabled when using the HAL_QSPI_Receive_DMA */
HAL_NVIC_SetPriority(QSPI_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(QSPI_IRQn);
HAL_NVIC_SetPriority(QSPI_DMA_IRQ, 0, 0);
HAL_NVIC_EnableIRQ(QSPI_DMA_IRQ);
/* init QSPI DMA */
if(QSPI_DMA_RCC == RCC_AHB1ENR_DMA1EN)
{
__HAL_RCC_DMA1_CLK_ENABLE();
}
else
{
__HAL_RCC_DMA2_CLK_ENABLE();
}
HAL_DMA_DeInit(qspi_bus->QSPI_Handler.hdma);
DMA_HandleTypeDef hdma_quadspi_config = QSPI_DMA_CONFIG;
qspi_bus->hdma_quadspi = hdma_quadspi_config;
if (HAL_DMA_Init(&qspi_bus->hdma_quadspi) != HAL_OK)
{
LOG_E("qspi dma init failed (%d)!", result);
}
__HAL_LINKDMA(&qspi_bus->QSPI_Handler, hdma, qspi_bus->hdma_quadspi);
#endif /* BSP_QSPI_USING_DMA */
return result;
}
static void qspi_send_cmd(struct stm32_qspi_bus *qspi_bus, struct rt_qspi_message *message)
{
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
QSPI_CommandTypeDef Cmdhandler;
/* set QSPI cmd struct */
Cmdhandler.Instruction = message->instruction.content;
Cmdhandler.Address = message->address.content;
Cmdhandler.DummyCycles = message->dummy_cycles;
if (message->instruction.qspi_lines == 0)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_NONE;
}
else if (message->instruction.qspi_lines == 1)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE;
}
else if (message->instruction.qspi_lines == 2)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_2_LINES;
}
else if (message->instruction.qspi_lines == 4)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_4_LINES;
}
if (message->address.qspi_lines == 0)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_NONE;
}
else if (message->address.qspi_lines == 1)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE;
}
else if (message->address.qspi_lines == 2)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_2_LINES;
}
else if (message->address.qspi_lines == 4)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_4_LINES;
}
if (message->address.size == 24)
{
Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS;
}
else
{
Cmdhandler.AddressSize = QSPI_ADDRESS_32_BITS;
}
if (message->qspi_data_lines == 0)
{
Cmdhandler.DataMode = QSPI_DATA_NONE;
}
else if (message->qspi_data_lines == 1)
{
Cmdhandler.DataMode = QSPI_DATA_1_LINE;
}
else if (message->qspi_data_lines == 2)
{
Cmdhandler.DataMode = QSPI_DATA_2_LINES;
}
else if (message->qspi_data_lines == 4)
{
Cmdhandler.DataMode = QSPI_DATA_4_LINES;
}
Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE;
Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
Cmdhandler.NbData = message->parent.length;
HAL_QSPI_Command(&qspi_bus->QSPI_Handler, &Cmdhandler, 5000);
}
static rt_uint32_t qspixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_size_t len = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message;
struct stm32_qspi_bus *qspi_bus = device->bus->parent.user_data;
#ifdef BSP_QSPI_USING_SOFTCS
struct stm32_hw_spi_cs *cs = device->parent.user_data;
#endif
const rt_uint8_t *sndb = message->send_buf;
rt_uint8_t *rcvb = message->recv_buf;
rt_int32_t length = message->length;
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_take)
{
rt_pin_write(cs->pin, 0);
}
#endif
/* send data */
if (sndb)
{
qspi_send_cmd(qspi_bus, qspi_message);
if (qspi_message->parent.length != 0)
{
if (HAL_QSPI_Transmit(&qspi_bus->QSPI_Handler, (rt_uint8_t *)sndb, 5000) == HAL_OK)
{
len = length;
}
else
{
LOG_E("QSPI send data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
goto __exit;
}
}
else
{
len = 1;
}
}
else if (rcvb)/* recv data */
{
qspi_send_cmd(qspi_bus, qspi_message);
#ifdef BSP_QSPI_USING_DMA
if (HAL_QSPI_Receive_DMA(&qspi_bus->QSPI_Handler, rcvb) == HAL_OK)
#else
if (HAL_QSPI_Receive(&qspi_bus->QSPI_Handler, rcvb, 5000) == HAL_OK)
#endif
{
len = length;
#ifdef BSP_QSPI_USING_DMA
while (qspi_bus->QSPI_Handler.RxXferCount != 0);
#endif
}
else
{
LOG_E("QSPI recv data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
goto __exit;
}
}
__exit:
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_release)
{
rt_pin_write(cs->pin, 1);
}
#endif
return len;
}
static rt_err_t qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device;
return stm32_qspi_init(qspi_device, &qspi_device->config);
}
static const struct rt_spi_ops stm32_qspi_ops =
{
.configure = qspi_configure,
.xfer = qspixfer,
};
static int stm32_qspi_register_bus(struct stm32_qspi_bus *qspi_bus, const char *name)
{
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(name != RT_NULL);
_qspi_bus1.parent.user_data = qspi_bus;
return rt_qspi_bus_register(&_qspi_bus1, name, &stm32_qspi_ops);
}
/**
* @brief This function attach device to QSPI bus.
* @param device_name QSPI device name
* @param pin QSPI cs pin number
* @param data_line_width QSPI data lines width, such as 1, 2, 4
* @param enter_qspi_mode Callback function that lets FLASH enter QSPI mode
* @param exit_qspi_mode Callback function that lets FLASH exit QSPI mode
* @retval 0 : success
* -1 : failed
*/
rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
{
struct rt_qspi_device *qspi_device = RT_NULL;
struct stm32_hw_spi_cs *cs_pin = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = RT_ENOMEM;
goto __exit;
}
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = RT_ENOMEM;
goto __exit;
}
qspi_device->enter_qspi_mode = enter_qspi_mode;
qspi_device->exit_qspi_mode = exit_qspi_mode;
qspi_device->config.qspi_dl_width = data_line_width;
cs_pin->Pin = pin;
#ifdef BSP_QSPI_USING_SOFTCS
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, 1);
#endif
result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, (void *)cs_pin);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
if (cs_pin)
{
rt_free(cs_pin);
}
}
return result;
}
#ifdef BSP_QSPI_USING_DMA
void QSPI_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_QSPI_IRQHandler(&_stm32_qspi_bus.QSPI_Handler);
/* leave interrupt */
rt_interrupt_leave();
}
void QSPI_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&_stm32_qspi_bus.hdma_quadspi);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_QSPI_USING_DMA */
static int rt_hw_qspi_bus_init(void)
{
return stm32_qspi_register_bus(&_stm32_qspi_bus, "qspi1");
}
INIT_BOARD_EXPORT(rt_hw_qspi_bus_init);
#endif /* BSP_USING_QSPI */
#endif /* RT_USING_QSPI */

View File

@ -0,0 +1,252 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-04 balanceTWK first version
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_ONCHIP_RTC
#ifndef HAL_RTCEx_BKUPRead
#define HAL_RTCEx_BKUPRead(x1, x2) (~BKUP_REG_DATA)
#endif
#ifndef HAL_RTCEx_BKUPWrite
#define HAL_RTCEx_BKUPWrite(x1, x2, x3)
#endif
#ifndef RTC_BKP_DR1
#define RTC_BKP_DR1 RT_NULL
#endif
//#define DRV_DEBUG
#define LOG_TAG "drv.rtc"
#include <drv_log.h>
#define BKUP_REG_DATA 0xA5A5
static struct rt_device rtc;
static RTC_HandleTypeDef RTC_Handler;
static time_t get_rtc_timestamp(void)
{
RTC_TimeTypeDef RTC_TimeStruct = {0};
RTC_DateTypeDef RTC_DateStruct = {0};
struct tm tm_new;
HAL_RTC_GetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN);
tm_new.tm_sec = RTC_TimeStruct.Seconds;
tm_new.tm_min = RTC_TimeStruct.Minutes;
tm_new.tm_hour = RTC_TimeStruct.Hours;
tm_new.tm_mday = RTC_DateStruct.Date;
tm_new.tm_mon = RTC_DateStruct.Month - 1;
tm_new.tm_year = RTC_DateStruct.Year + 100;
LOG_D("get rtc time.");
return mktime(&tm_new);
}
static rt_err_t set_rtc_time_stamp(time_t time_stamp)
{
RTC_TimeTypeDef RTC_TimeStruct = {0};
RTC_DateTypeDef RTC_DateStruct = {0};
struct tm *p_tm;
p_tm = localtime(&time_stamp);
if (p_tm->tm_year < 100)
{
return -RT_ERROR;
}
RTC_TimeStruct.Seconds = p_tm->tm_sec ;
RTC_TimeStruct.Minutes = p_tm->tm_min ;
RTC_TimeStruct.Hours = p_tm->tm_hour;
RTC_DateStruct.Date = p_tm->tm_mday;
RTC_DateStruct.Month = p_tm->tm_mon + 1 ;
RTC_DateStruct.Year = p_tm->tm_year - 100;
RTC_DateStruct.WeekDay = p_tm->tm_wday + 1;
if (HAL_RTC_SetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN) != HAL_OK)
{
return -RT_ERROR;
}
if (HAL_RTC_SetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN) != HAL_OK)
{
return -RT_ERROR;
}
LOG_D("set rtc time.");
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR1, BKUP_REG_DATA);
return RT_EOK;
}
static void rt_rtc_init(void)
{
#ifndef SOC_SERIES_STM32H7
__HAL_RCC_PWR_CLK_ENABLE();
#endif
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
#ifdef BSP_RTC_USING_LSI
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
#else
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
#endif
HAL_RCC_OscConfig(&RCC_OscInitStruct);
}
static rt_err_t rt_rtc_config(struct rt_device *dev)
{
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
HAL_PWR_EnableBkUpAccess();
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
#ifdef BSP_RTC_USING_LSI
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
#else
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
#endif
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
/* Enable RTC Clock */
__HAL_RCC_RTC_ENABLE();
RTC_Handler.Instance = RTC;
if (HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR1) != BKUP_REG_DATA)
{
LOG_I("RTC hasn't been configured, please use <date> command to config.");
#if defined(SOC_SERIES_STM32F1)
RTC_Handler.Init.OutPut = RTC_OUTPUTSOURCE_NONE;
RTC_Handler.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
#elif defined(SOC_SERIES_STM32F0)
/* set the frequency division */
#ifdef BSP_RTC_USING_LSI
RTC_Handler.Init.AsynchPrediv = 0XA0;
RTC_Handler.Init.SynchPrediv = 0xFA;
#else
RTC_Handler.Init.AsynchPrediv = 0X7F;
RTC_Handler.Init.SynchPrediv = 0x0130;
#endif /* BSP_RTC_USING_LSI */
RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24;
RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE;
RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32H7)
/* set the frequency division */
#ifdef BSP_RTC_USING_LSI
RTC_Handler.Init.AsynchPrediv = 0X7D;
#else
RTC_Handler.Init.AsynchPrediv = 0X7F;
#endif /* BSP_RTC_USING_LSI */
RTC_Handler.Init.SynchPrediv = 0XFF;
RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24;
RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE;
RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#endif
if (HAL_RTC_Init(&RTC_Handler) != HAL_OK)
{
return -RT_ERROR;
}
}
return RT_EOK;
}
static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
{
rt_err_t result = RT_EOK;
RT_ASSERT(dev != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_RTC_GET_TIME:
*(rt_uint32_t *)args = get_rtc_timestamp();
LOG_D("RTC: get rtc_time %x\n", *(rt_uint32_t *)args);
break;
case RT_DEVICE_CTRL_RTC_SET_TIME:
if (set_rtc_time_stamp(*(rt_uint32_t *)args))
{
result = -RT_ERROR;
}
LOG_D("RTC: set rtc_time %x\n", *(rt_uint32_t *)args);
break;
}
return result;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops rtc_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
rt_rtc_control
};
#endif
static rt_err_t rt_hw_rtc_register(rt_device_t device, const char *name, rt_uint32_t flag)
{
RT_ASSERT(device != RT_NULL);
rt_rtc_init();
if (rt_rtc_config(device) != RT_EOK)
{
return -RT_ERROR;
}
#ifdef RT_USING_DEVICE_OPS
device->ops = &rtc_ops;
#else
device->init = RT_NULL;
device->open = RT_NULL;
device->close = RT_NULL;
device->read = RT_NULL;
device->write = RT_NULL;
device->control = rt_rtc_control;
#endif
device->type = RT_Device_Class_RTC;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->user_data = RT_NULL;
/* register a character device */
return rt_device_register(device, name, flag);
}
int rt_hw_rtc_init(void)
{
rt_err_t result;
result = rt_hw_rtc_register(&rtc, "rtc", RT_DEVICE_FLAG_RDWR);
if (result != RT_EOK)
{
LOG_E("rtc register err code: %d", result);
return result;
}
LOG_D("rtc init success");
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_rtc_init);
#endif /* BSP_USING_ONCHIP_RTC */

View File

@ -0,0 +1,889 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-06-22 tyx first
* 2018-12-12 balanceTWK first version
* 2019-06-11 WillianChan Add SD card hot plug detection
*/
#include "board.h"
#include "drv_sdio.h"
#include "drv_config.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_SDIO
//#define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include <drv_log.h>
static struct stm32_sdio_config sdio_config = SDIO_BUS_CONFIG;
static struct stm32_sdio_class sdio_obj;
static struct rt_mmcsd_host *host;
#define SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS (100000)
#define RTHW_SDIO_LOCK(_sdio) rt_mutex_take(&_sdio->mutex, RT_WAITING_FOREVER)
#define RTHW_SDIO_UNLOCK(_sdio) rt_mutex_release(&_sdio->mutex);
struct sdio_pkg
{
struct rt_mmcsd_cmd *cmd;
void *buff;
rt_uint32_t flag;
};
struct rthw_sdio
{
struct rt_mmcsd_host *host;
struct stm32_sdio_des sdio_des;
struct rt_event event;
struct rt_mutex mutex;
struct sdio_pkg *pkg;
};
ALIGN(SDIO_ALIGN_LEN)
static rt_uint8_t cache_buf[SDIO_BUFF_SIZE];
static rt_uint32_t stm32_sdio_clk_get(struct stm32_sdio *hw_sdio)
{
return SDIO_CLOCK_FREQ;
}
/**
* @brief This function get order from sdio.
* @param data
* @retval sdio order
*/
static int get_order(rt_uint32_t data)
{
int order = 0;
switch (data)
{
case 1:
order = 0;
break;
case 2:
order = 1;
break;
case 4:
order = 2;
break;
case 8:
order = 3;
break;
case 16:
order = 4;
break;
case 32:
order = 5;
break;
case 64:
order = 6;
break;
case 128:
order = 7;
break;
case 256:
order = 8;
break;
case 512:
order = 9;
break;
case 1024:
order = 10;
break;
case 2048:
order = 11;
break;
case 4096:
order = 12;
break;
case 8192:
order = 13;
break;
case 16384:
order = 14;
break;
default :
order = 0;
break;
}
return order;
}
/**
* @brief This function wait sdio completed.
* @param sdio rthw_sdio
* @retval None
*/
static void rthw_sdio_wait_completed(struct rthw_sdio *sdio)
{
rt_uint32_t status;
struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
if (rt_event_recv(&sdio->event, 0xffffffff, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("wait completed timeout");
cmd->err = -RT_ETIMEOUT;
return;
}
if (sdio->pkg == RT_NULL)
{
return;
}
cmd->resp[0] = hw_sdio->resp1;
cmd->resp[1] = hw_sdio->resp2;
cmd->resp[2] = hw_sdio->resp3;
cmd->resp[3] = hw_sdio->resp4;
if (status & HW_SDIO_ERRORS)
{
if ((status & HW_SDIO_IT_CCRCFAIL) && (resp_type(cmd) & (RESP_R3 | RESP_R4)))
{
cmd->err = RT_EOK;
}
else
{
cmd->err = -RT_ERROR;
}
if (status & HW_SDIO_IT_CTIMEOUT)
{
cmd->err = -RT_ETIMEOUT;
}
if (status & HW_SDIO_IT_DCRCFAIL)
{
data->err = -RT_ERROR;
}
if (status & HW_SDIO_IT_DTIMEOUT)
{
data->err = -RT_ETIMEOUT;
}
if (cmd->err == RT_EOK)
{
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
LOG_D("err:0x%08x, %s%s%s%s%s%s%s cmd:%d arg:0x%08x rw:%c len:%d blksize:%d",
status,
status & HW_SDIO_IT_CCRCFAIL ? "CCRCFAIL " : "",
status & HW_SDIO_IT_DCRCFAIL ? "DCRCFAIL " : "",
status & HW_SDIO_IT_CTIMEOUT ? "CTIMEOUT " : "",
status & HW_SDIO_IT_DTIMEOUT ? "DTIMEOUT " : "",
status & HW_SDIO_IT_TXUNDERR ? "TXUNDERR " : "",
status & HW_SDIO_IT_RXOVERR ? "RXOVERR " : "",
status == 0 ? "NULL" : "",
cmd->cmd_code,
cmd->arg,
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
}
}
else
{
cmd->err = RT_EOK;
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
}
/**
* @brief This function transfer data by dma.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_transfer_by_dma(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_data *data;
int size;
void *buff;
struct stm32_sdio *hw_sdio;
if ((RT_NULL == pkg) || (RT_NULL == sdio))
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
data = pkg->cmd->data;
if (RT_NULL == data)
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
buff = pkg->buff;
if (RT_NULL == buff)
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
hw_sdio = sdio->sdio_des.hw_sdio;
size = data->blks * data->blksize;
if (data->flags & DATA_DIR_WRITE)
{
sdio->sdio_des.txconfig((rt_uint32_t *)buff, (rt_uint32_t *)&hw_sdio->fifo, size);
hw_sdio->dctrl |= HW_SDIO_DMA_ENABLE;
}
else if (data->flags & DATA_DIR_READ)
{
sdio->sdio_des.rxconfig((rt_uint32_t *)&hw_sdio->fifo, (rt_uint32_t *)buff, size);
hw_sdio->dctrl |= HW_SDIO_DMA_ENABLE | HW_SDIO_DPSM_ENABLE;
}
}
/**
* @brief This function send command.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_send_command(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t reg_cmd;
/* save pkg */
sdio->pkg = pkg;
LOG_D("CMD:%d ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d",
cmd->cmd_code,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
/* config cmd reg */
reg_cmd = cmd->cmd_code | HW_SDIO_CPSM_ENABLE;
if (resp_type(cmd) == RESP_NONE)
reg_cmd |= HW_SDIO_RESPONSE_NO;
else if (resp_type(cmd) == RESP_R2)
reg_cmd |= HW_SDIO_RESPONSE_LONG;
else
reg_cmd |= HW_SDIO_RESPONSE_SHORT;
/* config data reg */
if (data != RT_NULL)
{
rt_uint32_t dir = 0;
rt_uint32_t size = data->blks * data->blksize;
int order;
hw_sdio->dctrl = 0;
hw_sdio->dtimer = HW_SDIO_DATATIMEOUT;
hw_sdio->dlen = size;
order = get_order(data->blksize);
dir = (data->flags & DATA_DIR_READ) ? HW_SDIO_TO_HOST : 0;
hw_sdio->dctrl = HW_SDIO_IO_ENABLE | (order << 4) | dir;
}
/* transfer config */
if (data != RT_NULL)
{
rthw_sdio_transfer_by_dma(sdio, pkg);
}
/* open irq */
hw_sdio->mask |= HW_SDIO_IT_CMDSENT | HW_SDIO_IT_CMDREND | HW_SDIO_ERRORS;
if (data != RT_NULL)
{
hw_sdio->mask |= HW_SDIO_IT_DATAEND;
}
/* send cmd */
hw_sdio->arg = cmd->arg;
hw_sdio->cmd = reg_cmd;
/* wait completed */
rthw_sdio_wait_completed(sdio);
/* Waiting for data to be sent to completion */
if (data != RT_NULL)
{
volatile rt_uint32_t count = SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS;
while (count && (hw_sdio->sta & (HW_SDIO_IT_TXACT | HW_SDIO_IT_RXACT)))
{
count--;
}
if ((count == 0) || (hw_sdio->sta & HW_SDIO_ERRORS))
{
cmd->err = -RT_ERROR;
}
}
/* close irq, keep sdio irq */
hw_sdio->mask = hw_sdio->mask & HW_SDIO_IT_SDIOIT ? HW_SDIO_IT_SDIOIT : 0x00;
/* clear pkg */
sdio->pkg = RT_NULL;
}
/**
* @brief This function send sdio request.
* @param sdio rthw_sdio
* @param req request
* @retval None
*/
static void rthw_sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdio_pkg pkg;
struct rthw_sdio *sdio = host->private_data;
struct rt_mmcsd_data *data;
RTHW_SDIO_LOCK(sdio);
if (req->cmd != RT_NULL)
{
memset(&pkg, 0, sizeof(pkg));
data = req->cmd->data;
pkg.cmd = req->cmd;
if (data != RT_NULL)
{
rt_uint32_t size = data->blks * data->blksize;
RT_ASSERT(size <= SDIO_BUFF_SIZE);
pkg.buff = data->buf;
if ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1))
{
pkg.buff = cache_buf;
if (data->flags & DATA_DIR_WRITE)
{
memcpy(cache_buf, data->buf, size);
}
}
}
rthw_sdio_send_command(sdio, &pkg);
if ((data != RT_NULL) && (data->flags & DATA_DIR_READ) && ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1)))
{
memcpy(data->buf, cache_buf, data->blksize * data->blks);
}
}
if (req->stop != RT_NULL)
{
memset(&pkg, 0, sizeof(pkg));
pkg.cmd = req->stop;
rthw_sdio_send_command(sdio, &pkg);
}
RTHW_SDIO_UNLOCK(sdio);
mmcsd_req_complete(sdio->host);
}
/**
* @brief This function config sdio.
* @param host rt_mmcsd_host
* @param io_cfg rt_mmcsd_io_cfg
* @retval None
*/
static void rthw_sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_uint32_t clkcr, div, clk_src;
rt_uint32_t clk = io_cfg->clock;
struct rthw_sdio *sdio = host->private_data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
clk_src = sdio->sdio_des.clk_get(sdio->sdio_des.hw_sdio);
if (clk_src < 400 * 1000)
{
LOG_E("The clock rate is too low! rata:%d", clk_src);
return;
}
if (clk > host->freq_max) clk = host->freq_max;
if (clk > clk_src)
{
LOG_W("Setting rate is greater than clock source rate.");
clk = clk_src;
}
LOG_D("clk:%d width:%s%s%s power:%s%s%s",
clk,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : ""
);
RTHW_SDIO_LOCK(sdio);
div = clk_src / clk;
if ((clk == 0) || (div == 0))
{
clkcr = 0;
}
else
{
if (div < 2)
{
div = 2;
}
else if (div > 0xFF)
{
div = 0xFF;
}
div -= 2;
clkcr = div | HW_SDIO_CLK_ENABLE;
}
if (io_cfg->bus_width == MMCSD_BUS_WIDTH_8)
{
clkcr |= HW_SDIO_BUSWIDE_8B;
}
else if (io_cfg->bus_width == MMCSD_BUS_WIDTH_4)
{
clkcr |= HW_SDIO_BUSWIDE_4B;
}
else
{
clkcr |= HW_SDIO_BUSWIDE_1B;
}
hw_sdio->clkcr = clkcr;
switch (io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
hw_sdio->power = HW_SDIO_POWER_OFF;
break;
case MMCSD_POWER_UP:
hw_sdio->power = HW_SDIO_POWER_UP;
break;
case MMCSD_POWER_ON:
hw_sdio->power = HW_SDIO_POWER_ON;
break;
default:
LOG_W("unknown power_mode %d", io_cfg->power_mode);
break;
}
RTHW_SDIO_UNLOCK(sdio);
}
/**
* @brief This function update sdio interrupt.
* @param host rt_mmcsd_host
* @param enable
* @retval None
*/
void rthw_sdio_irq_update(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rthw_sdio *sdio = host->private_data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
if (enable)
{
LOG_D("enable sdio irq");
hw_sdio->mask |= HW_SDIO_IT_SDIOIT;
}
else
{
LOG_D("disable sdio irq");
hw_sdio->mask &= ~HW_SDIO_IT_SDIOIT;
}
}
/**
* @brief This function delect sdcard.
* @param host rt_mmcsd_host
* @retval 0x01
*/
static rt_int32_t rthw_sd_delect(struct rt_mmcsd_host *host)
{
LOG_D("try to detect device");
return 0x01;
}
/**
* @brief This function interrupt process function.
* @param host rt_mmcsd_host
* @retval None
*/
void rthw_sdio_irq_process(struct rt_mmcsd_host *host)
{
int complete = 0;
struct rthw_sdio *sdio = host->private_data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t intstatus = hw_sdio->sta;
if (intstatus & HW_SDIO_ERRORS)
{
hw_sdio->icr = HW_SDIO_ERRORS;
complete = 1;
}
else
{
if (intstatus & HW_SDIO_IT_CMDREND)
{
hw_sdio->icr = HW_SDIO_IT_CMDREND;
if (sdio->pkg != RT_NULL)
{
if (!sdio->pkg->cmd->data)
{
complete = 1;
}
else if ((sdio->pkg->cmd->data->flags & DATA_DIR_WRITE))
{
hw_sdio->dctrl |= HW_SDIO_DPSM_ENABLE;
}
}
}
if (intstatus & HW_SDIO_IT_CMDSENT)
{
hw_sdio->icr = HW_SDIO_IT_CMDSENT;
if (resp_type(sdio->pkg->cmd) == RESP_NONE)
{
complete = 1;
}
}
if (intstatus & HW_SDIO_IT_DATAEND)
{
hw_sdio->icr = HW_SDIO_IT_DATAEND;
complete = 1;
}
}
if ((intstatus & HW_SDIO_IT_SDIOIT) && (hw_sdio->mask & HW_SDIO_IT_SDIOIT))
{
hw_sdio->icr = HW_SDIO_IT_SDIOIT;
sdio_irq_wakeup(host);
}
if (complete)
{
hw_sdio->mask &= ~HW_SDIO_ERRORS;
rt_event_send(&sdio->event, intstatus);
}
}
static const struct rt_mmcsd_host_ops ops =
{
rthw_sdio_request,
rthw_sdio_iocfg,
rthw_sd_delect,
rthw_sdio_irq_update,
};
/**
* @brief This function create mmcsd host.
* @param sdio_des stm32_sdio_des
* @retval rt_mmcsd_host
*/
struct rt_mmcsd_host *sdio_host_create(struct stm32_sdio_des *sdio_des)
{
struct rt_mmcsd_host *host;
struct rthw_sdio *sdio = RT_NULL;
if ((sdio_des == RT_NULL) || (sdio_des->txconfig == RT_NULL) || (sdio_des->rxconfig == RT_NULL))
{
LOG_E("L:%d F:%s %s %s %s",
(sdio_des == RT_NULL ? "sdio_des is NULL" : ""),
(sdio_des ? (sdio_des->txconfig ? "txconfig is NULL" : "") : ""),
(sdio_des ? (sdio_des->rxconfig ? "rxconfig is NULL" : "") : "")
);
return RT_NULL;
}
sdio = rt_malloc(sizeof(struct rthw_sdio));
if (sdio == RT_NULL)
{
LOG_E("L:%d F:%s malloc rthw_sdio fail");
return RT_NULL;
}
rt_memset(sdio, 0, sizeof(struct rthw_sdio));
host = mmcsd_alloc_host();
if (host == RT_NULL)
{
LOG_E("L:%d F:%s mmcsd alloc host fail");
rt_free(sdio);
return RT_NULL;
}
rt_memcpy(&sdio->sdio_des, sdio_des, sizeof(struct stm32_sdio_des));
sdio->sdio_des.hw_sdio = (sdio_des->hw_sdio == RT_NULL ? (struct stm32_sdio *)SDIO_BASE_ADDRESS : sdio_des->hw_sdio);
sdio->sdio_des.clk_get = (sdio_des->clk_get == RT_NULL ? stm32_sdio_clk_get : sdio_des->clk_get);
rt_event_init(&sdio->event, "sdio", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio", RT_IPC_FLAG_FIFO);
/* set host defautl attributes */
host->ops = &ops;
host->freq_min = 400 * 1000;
host->freq_max = SDIO_MAX_FREQ;
host->valid_ocr = 0X00FFFF80;/* The voltage range supported is 1.65v-3.6v */
#ifndef SDIO_USING_1_BIT
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#else
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#endif
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 512;
/* link up host and sdio */
sdio->host = host;
host->private_data = sdio;
rthw_sdio_irq_update(host, 1);
/* ready to change */
mmcsd_change(host);
return host;
}
/**
* @brief This function configures the DMATX.
* @param BufferSRC: pointer to the source buffer
* @param BufferSize: buffer size
* @retval None
*/
void SD_LowLevel_DMA_TxConfig(uint32_t *src, uint32_t *dst, uint32_t BufferSize)
{
#if defined(SOC_SERIES_STM32F1)
static uint32_t size = 0;
size += BufferSize * 4;
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_tx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
sdio_obj.dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
/* DMA_PFCTRL */
HAL_DMA_DeInit(&sdio_obj.dma.handle_tx);
HAL_DMA_Init(&sdio_obj.dma.handle_tx);
HAL_DMA_Start(&sdio_obj.dma.handle_tx, (uint32_t)src, (uint32_t)dst, BufferSize);
#elif defined(SOC_SERIES_STM32L4)
static uint32_t size = 0;
size += BufferSize * 4;
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_tx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_tx.Init.Request = sdio_config.dma_tx.request;
sdio_obj.dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
sdio_obj.dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.Mode = DMA_NORMAL;
sdio_obj.dma.handle_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_DeInit(&sdio_obj.dma.handle_tx);
HAL_DMA_Init(&sdio_obj.dma.handle_tx);
HAL_DMA_Start(&sdio_obj.dma.handle_tx, (uint32_t)src, (uint32_t)dst, BufferSize);
#else
static uint32_t size = 0;
size += BufferSize * 4;
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_tx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_tx.Init.Channel = sdio_config.dma_tx.channel;
sdio_obj.dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
sdio_obj.dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.Mode = DMA_PFCTRL;
sdio_obj.dma.handle_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
sdio_obj.dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
sdio_obj.dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
sdio_obj.dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
sdio_obj.dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
/* DMA_PFCTRL */
HAL_DMA_DeInit(&sdio_obj.dma.handle_tx);
HAL_DMA_Init(&sdio_obj.dma.handle_tx);
HAL_DMA_Start(&sdio_obj.dma.handle_tx, (uint32_t)src, (uint32_t)dst, BufferSize);
#endif
}
/**
* @brief This function configures the DMARX.
* @param BufferDST: pointer to the destination buffer
* @param BufferSize: buffer size
* @retval None
*/
void SD_LowLevel_DMA_RxConfig(uint32_t *src, uint32_t *dst, uint32_t BufferSize)
{
#if defined(SOC_SERIES_STM32F1)
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_rx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
sdio_obj.dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_rx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_DeInit(&sdio_obj.dma.handle_rx);
HAL_DMA_Init(&sdio_obj.dma.handle_rx);
HAL_DMA_Start(&sdio_obj.dma.handle_rx, (uint32_t)src, (uint32_t)dst, BufferSize);
#elif defined(SOC_SERIES_STM32L4)
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_rx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_rx.Init.Request = sdio_config.dma_tx.request;
sdio_obj.dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
sdio_obj.dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.Mode = DMA_NORMAL;
sdio_obj.dma.handle_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_DeInit(&sdio_obj.dma.handle_rx);
HAL_DMA_Init(&sdio_obj.dma.handle_rx);
HAL_DMA_Start(&sdio_obj.dma.handle_rx, (uint32_t)src, (uint32_t)dst, BufferSize);
#else
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_rx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_rx.Init.Channel = sdio_config.dma_tx.channel;
sdio_obj.dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
sdio_obj.dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.Mode = DMA_PFCTRL;
sdio_obj.dma.handle_rx.Init.Priority = DMA_PRIORITY_MEDIUM;
sdio_obj.dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
sdio_obj.dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
sdio_obj.dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
sdio_obj.dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_DMA_DeInit(&sdio_obj.dma.handle_rx);
HAL_DMA_Init(&sdio_obj.dma.handle_rx);
HAL_DMA_Start(&sdio_obj.dma.handle_rx, (uint32_t)src, (uint32_t)dst, BufferSize);
#endif
}
/**
* @brief This function get stm32 sdio clock.
* @param hw_sdio: stm32_sdio
* @retval PCLK2Freq
*/
static rt_uint32_t stm32_sdio_clock_get(struct stm32_sdio *hw_sdio)
{
return HAL_RCC_GetPCLK2Freq();
}
static rt_err_t DMA_TxConfig(rt_uint32_t *src, rt_uint32_t *dst, int Size)
{
SD_LowLevel_DMA_TxConfig((uint32_t *)src, (uint32_t *)dst, Size / 4);
return RT_EOK;
}
static rt_err_t DMA_RxConfig(rt_uint32_t *src, rt_uint32_t *dst, int Size)
{
SD_LowLevel_DMA_RxConfig((uint32_t *)src, (uint32_t *)dst, Size / 4);
return RT_EOK;
}
void SDIO_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* Process All SDIO Interrupt Sources */
rthw_sdio_irq_process(host);
/* leave interrupt */
rt_interrupt_leave();
}
int rt_hw_sdio_init(void)
{
struct stm32_sdio_des sdio_des;
SD_HandleTypeDef hsd;
hsd.Instance = SDCARD_INSTANCE;
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, sdio_config.dma_rx.dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, sdio_config.dma_rx.dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, sdio_config.dma_rx.dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, sdio_config.dma_rx.dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
HAL_NVIC_SetPriority(SDIO_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(SDIO_IRQn);
HAL_SD_MspInit(&hsd);
sdio_des.clk_get = stm32_sdio_clock_get;
sdio_des.hw_sdio = (struct stm32_sdio *)SDCARD_INSTANCE;
sdio_des.rxconfig = DMA_RxConfig;
sdio_des.txconfig = DMA_TxConfig;
host = sdio_host_create(&sdio_des);
if (host == RT_NULL)
{
LOG_E("host create fail");
return -1;
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
void stm32_mmcsd_change(void)
{
mmcsd_change(host);
}
#endif

View File

@ -0,0 +1,263 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-04 zylx first version
*/
#include <board.h>
#ifdef BSP_USING_SDRAM
#define DRV_DEBUG
#define LOG_TAG "drv.sdram"
#include <drv_log.h>
static SDRAM_HandleTypeDef hsdram1;
static FMC_SDRAM_CommandTypeDef command;
#ifdef RT_USING_MEMHEAP_AS_HEAP
static struct rt_memheap system_heap;
#endif
/**
* @brief Perform the SDRAM exernal memory inialization sequence
* @param hsdram: SDRAM handle
* @param Command: Pointer to SDRAM command structure
* @retval None
*/
static void SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command)
{
__IO uint32_t tmpmrd = 0;
uint32_t target_bank = 0;
#if SDRAM_TARGET_BANK == 1
target_bank = FMC_SDRAM_CMD_TARGET_BANK1;
#else
target_bank = FMC_SDRAM_CMD_TARGET_BANK2;
#endif
/* Configure a clock configuration enable command */
Command->CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Insert 100 ms delay */
/* interrupt is not enable, just to delay some time. */
for (tmpmrd = 0; tmpmrd < 0xffffff; tmpmrd ++)
;
/* Configure a PALL (precharge all) command */
Command->CommandMode = FMC_SDRAM_CMD_PALL;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Configure a Auto-Refresh command */
Command->CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 8;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Program the external memory mode register */
#if SDRAM_DATA_WIDTH == 8
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |
#elif SDRAM_DATA_WIDTH == 16
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_2 |
#else
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_4 |
#endif
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |
#if SDRAM_CAS_LATENCY == 3
SDRAM_MODEREG_CAS_LATENCY_3 |
#else
SDRAM_MODEREG_CAS_LATENCY_2 |
#endif
SDRAM_MODEREG_OPERATING_MODE_STANDARD |
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
Command->CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = tmpmrd;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Set the device refresh counter */
HAL_SDRAM_ProgramRefreshRate(hsdram, SDRAM_REFRESH_COUNT);
}
static int SDRAM_Init(void)
{
int result = RT_EOK;
FMC_SDRAM_TimingTypeDef SDRAM_Timing;
/* SDRAM device configuration */
hsdram1.Instance = FMC_SDRAM_DEVICE;
SDRAM_Timing.LoadToActiveDelay = LOADTOACTIVEDELAY;
SDRAM_Timing.ExitSelfRefreshDelay = EXITSELFREFRESHDELAY;
SDRAM_Timing.SelfRefreshTime = SELFREFRESHTIME;
SDRAM_Timing.RowCycleDelay = ROWCYCLEDELAY;
SDRAM_Timing.WriteRecoveryTime = WRITERECOVERYTIME;
SDRAM_Timing.RPDelay = RPDELAY;
SDRAM_Timing.RCDDelay = RCDDELAY;
#if SDRAM_TARGET_BANK == 1
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
#else
hsdram1.Init.SDBank = FMC_SDRAM_BANK2;
#endif
#if SDRAM_COLUMN_BITS == 8
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
#elif SDRAM_COLUMN_BITS == 9
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_9;
#elif SDRAM_COLUMN_BITS == 10
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_10;
#else
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_11;
#endif
#if SDRAM_ROW_BITS == 11
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_11;
#elif SDRAM_ROW_BITS == 12
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
#else
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_13;
#endif
#if SDRAM_DATA_WIDTH == 8
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_8;
#elif SDRAM_DATA_WIDTH == 16
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
#else
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_32;
#endif
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
#if SDRAM_CAS_LATENCY == 1
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_1;
#elif SDRAM_CAS_LATENCY == 2
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2;
#else
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
#endif
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
#if SDCLOCK_PERIOD == 2
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
#else
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_3;
#endif
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
#if SDRAM_RPIPE_DELAY == 0
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
#elif SDRAM_RPIPE_DELAY == 1
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_1;
#else
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_2;
#endif
/* Initialize the SDRAM controller */
if (HAL_SDRAM_Init(&hsdram1, &SDRAM_Timing) != HAL_OK)
{
LOG_E("SDRAM init failed!");
result = -RT_ERROR;
}
else
{
/* Program the SDRAM external device */
SDRAM_Initialization_Sequence(&hsdram1, &command);
LOG_D("sdram init success, mapped at 0x%X, size is %d bytes, data width is %d", SDRAM_BANK_ADDR, SDRAM_SIZE, SDRAM_DATA_WIDTH);
#ifdef RT_USING_MEMHEAP_AS_HEAP
/* If RT_USING_MEMHEAP_AS_HEAP is enabled, SDRAM is initialized to the heap */
//rt_memheap_init(&system_heap, "sdram", (void *)SDRAM_BANK_ADDR, SDRAM_SIZE);
#endif
}
return result;
}
INIT_BOARD_EXPORT(SDRAM_Init);
#ifdef DRV_DEBUG
#ifdef FINSH_USING_MSH
int sdram_test(void)
{
int i = 0;
uint32_t start_time = 0, time_cast = 0;
#if SDRAM_DATA_WIDTH == 8
char data_width = 1;
uint8_t data = 0;
#elif SDRAM_DATA_WIDTH == 16
char data_width = 2;
uint16_t data = 0;
#else
char data_width = 4;
uint32_t data = 0;
#endif
/* write data */
LOG_D("Writing the %ld bytes data, waiting....", SDRAM_SIZE);
start_time = rt_tick_get();
for (i = 0; i < SDRAM_SIZE / data_width; i++)
{
#if SDRAM_DATA_WIDTH == 8
*(__IO uint8_t *)(SDRAM_BANK_ADDR + i * data_width) = (uint8_t)0x55;
#elif SDRAM_DATA_WIDTH == 16
*(__IO uint16_t *)(SDRAM_BANK_ADDR + i * data_width) = (uint16_t)0x5555;
#else
*(__IO uint32_t *)(SDRAM_BANK_ADDR + i * data_width) = (uint32_t)0x55555555;
#endif
}
time_cast = rt_tick_get() - start_time;
LOG_D("Write data success, total time: %d.%03dS.", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
/* read data */
LOG_D("start Reading and verifying data, waiting....");
for (i = 0; i < SDRAM_SIZE / data_width; i++)
{
#if SDRAM_DATA_WIDTH == 8
data = *(__IO uint8_t *)(SDRAM_BANK_ADDR + i * data_width);
if (data != 0x55)
{
LOG_E("SDRAM test failed!");
break;
}
#elif SDRAM_DATA_WIDTH == 16
data = *(__IO uint16_t *)(SDRAM_BANK_ADDR + i * data_width);
if (data != 0x5555)
{
LOG_E("SDRAM test failed!");
break;
}
#else
data = *(__IO uint32_t *)(SDRAM_BANK_ADDR + i * data_width);
if (data != 0x55555555)
{
LOG_E("SDRAM test failed!");
break;
}
#endif
}
if (i >= SDRAM_SIZE / data_width)
{
LOG_D("SDRAM test success!");
}
return RT_EOK;
}
MSH_CMD_EXPORT(sdram_test, sdram test)
#endif /* FINSH_USING_MSH */
#endif /* DRV_DEBUG */
#endif /* BSP_USING_SDRAM */

View File

@ -0,0 +1,222 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-08 balanceTWK first version
*/
#include <board.h>
#include "drv_soft_i2c.h"
#include "drv_config.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_I2C
//#define DRV_DEBUG
#define LOG_TAG "drv.i2c"
#include <drv_log.h>
#if !defined(BSP_USING_I2C1) && !defined(BSP_USING_I2C2) && !defined(BSP_USING_I2C3) && !defined(BSP_USING_I2C4)
#error "Please define at least one BSP_USING_I2Cx"
#endif
static const struct stm32_soft_i2c_config soft_i2c_config[] =
{
#ifdef BSP_USING_I2C1
I2C1_BUS_CONFIG,
#endif
#ifdef BSP_USING_I2C2
I2C2_BUS_CONFIG,
#endif
#ifdef BSP_USING_I2C3
I2C3_BUS_CONFIG,
#endif
#ifdef BSP_USING_I2C4
I2C4_BUS_CONFIG,
#endif
};
static struct stm32_i2c i2c_obj[sizeof(soft_i2c_config) / sizeof(soft_i2c_config[0])];
/**
* This function initializes the i2c pin.
*
* @param Stm32 i2c dirver class.
*/
static void stm32_i2c_gpio_init(struct stm32_i2c *i2c)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)i2c->ops.data;
rt_pin_mode(cfg->scl, PIN_MODE_OUTPUT_OD);
rt_pin_mode(cfg->sda, PIN_MODE_OUTPUT_OD);
rt_pin_write(cfg->scl, PIN_HIGH);
rt_pin_write(cfg->sda, PIN_HIGH);
}
/**
* This function sets the sda pin.
*
* @param Stm32 config class.
* @param The sda pin state.
*/
static void stm32_set_sda(void *data, rt_int32_t state)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
if (state)
{
rt_pin_write(cfg->sda, PIN_HIGH);
}
else
{
rt_pin_write(cfg->sda, PIN_LOW);
}
}
/**
* This function sets the scl pin.
*
* @param Stm32 config class.
* @param The scl pin state.
*/
static void stm32_set_scl(void *data, rt_int32_t state)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
if (state)
{
rt_pin_write(cfg->scl, PIN_HIGH);
}
else
{
rt_pin_write(cfg->scl, PIN_LOW);
}
}
/**
* This function gets the sda pin state.
*
* @param The sda pin state.
*/
static rt_int32_t stm32_get_sda(void *data)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
return rt_pin_read(cfg->sda);
}
/**
* This function gets the scl pin state.
*
* @param The scl pin state.
*/
static rt_int32_t stm32_get_scl(void *data)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
return rt_pin_read(cfg->scl);
}
/**
* The time delay function.
*
* @param microseconds.
*/
static void stm32_udelay(rt_uint32_t us)
{
rt_uint32_t ticks;
rt_uint32_t told, tnow, tcnt = 0;
rt_uint32_t reload = SysTick->LOAD;
ticks = us * reload / (1000000 / RT_TICK_PER_SECOND);
told = SysTick->VAL;
while (1)
{
tnow = SysTick->VAL;
if (tnow != told)
{
if (tnow < told)
{
tcnt += told - tnow;
}
else
{
tcnt += reload - tnow + told;
}
told = tnow;
if (tcnt >= ticks)
{
break;
}
}
}
}
static const struct rt_i2c_bit_ops stm32_bit_ops_default =
{
.data = RT_NULL,
.set_sda = stm32_set_sda,
.set_scl = stm32_set_scl,
.get_sda = stm32_get_sda,
.get_scl = stm32_get_scl,
.udelay = stm32_udelay,
.delay_us = 1,
.timeout = 100
};
/**
* if i2c is locked, this function will unlock it
*
* @param stm32 config class
*
* @return RT_EOK indicates successful unlock.
*/
static rt_err_t stm32_i2c_bus_unlock(const struct stm32_soft_i2c_config *cfg)
{
rt_int32_t i = 0;
if (PIN_LOW == rt_pin_read(cfg->sda))
{
while (i++ < 9)
{
rt_pin_write(cfg->scl, PIN_HIGH);
stm32_udelay(100);
rt_pin_write(cfg->scl, PIN_LOW);
stm32_udelay(100);
}
}
if (PIN_LOW == rt_pin_read(cfg->sda))
{
return -RT_ERROR;
}
return RT_EOK;
}
/* I2C initialization function */
int rt_hw_i2c_init(void)
{
rt_size_t obj_num = sizeof(i2c_obj) / sizeof(struct stm32_i2c);
rt_err_t result;
for (int i = 0; i < obj_num; i++)
{
i2c_obj[i].ops = stm32_bit_ops_default;
i2c_obj[i].ops.data = (void*)&soft_i2c_config[i];
i2c_obj[i].i2c2_bus.priv = &i2c_obj[i].ops;
stm32_i2c_gpio_init(&i2c_obj[i]);
result = rt_i2c_bit_add_bus(&i2c_obj[i].i2c2_bus, soft_i2c_config[i].bus_name);
RT_ASSERT(result == RT_EOK);
stm32_i2c_bus_unlock(&soft_i2c_config[i]);
LOG_D("software simulation %s init done, pin scl: %d, pin sda %d",
soft_i2c_config[i].bus_name,
soft_i2c_config[i].scl,
soft_i2c_config[i].sda);
}
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_i2c_init);
#endif /* RT_USING_I2C */

View File

@ -0,0 +1,914 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift first version
* 2018-12-11 greedyhao Porting for stm32f7xx
* 2019-01-03 zylx modify DMA initialization and spixfer function
* 2020-01-15 whj4674672 Porting for stm32h7xx
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
#include "drv_spi.h"
#include "drv_config.h"
#include <string.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
#ifdef BSP_USING_SPI6
SPI6_INDEX,
#endif
};
static struct stm32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI5
SPI5_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI6
SPI6_BUS_CONFIG,
#endif
};
static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.Mode = SPI_MODE_SLAVE;
}
else
{
spi_handle->Init.Mode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
}
else
{
spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
}
if (cfg->data_width == 8)
{
spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
spi_handle->TxXferSize = 8;
spi_handle->RxXferSize = 8;
}
else if (cfg->data_width == 16)
{
spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
}
else
{
return RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
}
else
{
spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
}
else
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
}
if (cfg->mode & RT_SPI_NO_CS)
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
else
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
uint32_t SPI_APB_CLOCK;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
#elif defined(SOC_SERIES_STM32H7)
SPI_APB_CLOCK = HAL_RCC_GetSysClockFreq();
#else
SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
#endif
if (cfg->max_hz >= SPI_APB_CLOCK / 2)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
}
else
{
/* min prescaler 256 */
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
HAL_RCC_GetSysClockFreq(),
SPI_APB_CLOCK,
cfg->max_hz,
spi_handle->Init.BaudRatePrescaler);
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
}
else
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
}
spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_handle->State = HAL_SPI_STATE_RESET;
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
#elif defined(SOC_SERIES_STM32H7)
spi_handle->Init.Mode = SPI_MODE_MASTER;
spi_handle->Init.NSS = SPI_NSS_SOFT;
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
spi_handle->Init.CRCPolynomial = 7;
spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
#endif
if (HAL_SPI_Init(spi_handle) != HAL_OK)
{
return RT_EIO;
}
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
|| defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
/* DMA configuration */
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_rx);
__HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
}
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_tx);
__HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
}
__HAL_SPI_ENABLE(spi_handle);
LOG_D("%s init done", spi_drv->config->bus_name);
return RT_EOK;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
HAL_StatusTypeDef state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
if (state != HAL_OK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
}
if (message->cs_release)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
spi_drv->cfg = configuration;
return stm32_spi_init(spi_drv, configuration);
}
static const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
#endif
spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
#endif
spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct stm32_hw_spi_cs *cs_pin;
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_Initure;
GPIO_Initure.Pin = cs_gpio_pin;
GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
void SPI1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
void SPI2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
void SPI3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
void SPI4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
void SPI5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
static void stm32_get_dma_info(void)
{
#ifdef BSP_SPI1_RX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#ifdef BSP_SPI2_RX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
#ifdef BSP_SPI3_RX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
#endif
#ifdef BSP_SPI3_TX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
#endif
#ifdef BSP_SPI4_RX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
#endif
#ifdef BSP_SPI4_TX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
#endif
#ifdef BSP_SPI5_RX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
#endif
#ifdef BSP_SPI5_TX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
#endif
#ifdef BSP_SPI6_RX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
#endif
#ifdef BSP_SPI6_TX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
#endif
}
#if defined(SOC_SERIES_STM32F0)
void SPI1_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
SPI1_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
SPI1_DMA_RX_IRQHandler();
#endif
}
void SPI2_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
SPI2_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
SPI2_DMA_RX_IRQHandler();
#endif
}
#endif /* SOC_SERIES_STM32F0 */
int rt_hw_spi_init(void)
{
stm32_get_dma_info();
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
#endif /* RT_USING_SPI */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,277 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-04-10 ZYH first version
* 2019-10-27 flybreak Compatible with the HS
*/
#include <rtthread.h>
#include "board.h"
#ifdef BSP_USING_USBDEVICE
#include <rtdevice.h>
#include <string.h>
#include <drv_config.h>
static PCD_HandleTypeDef _stm_pcd;
static struct udcd _stm_udc;
static struct ep_id _ep_pool[] =
{
{0x0, USB_EP_ATTR_CONTROL, USB_DIR_INOUT, 64, ID_ASSIGNED },
{0x1, USB_EP_ATTR_BULK, USB_DIR_IN, 64, ID_UNASSIGNED},
{0x1, USB_EP_ATTR_BULK, USB_DIR_OUT, 64, ID_UNASSIGNED},
{0x2, USB_EP_ATTR_INT, USB_DIR_IN, 64, ID_UNASSIGNED},
{0x2, USB_EP_ATTR_INT, USB_DIR_OUT, 64, ID_UNASSIGNED},
{0x3, USB_EP_ATTR_BULK, USB_DIR_IN, 64, ID_UNASSIGNED},
#if !defined(SOC_SERIES_STM32F1)
{0x3, USB_EP_ATTR_BULK, USB_DIR_OUT, 64, ID_UNASSIGNED},
#endif
{0xFF, USB_EP_ATTR_TYPE_MASK, USB_DIR_MASK, 0, ID_ASSIGNED },
};
void USBD_IRQ_HANDLER(void)
{
rt_interrupt_enter();
HAL_PCD_IRQHandler(&_stm_pcd);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_PCD_ResetCallback(PCD_HandleTypeDef *pcd)
{
/* open ep0 OUT and IN */
HAL_PCD_EP_Open(pcd, 0x00, 0x40, EP_TYPE_CTRL);
HAL_PCD_EP_Open(pcd, 0x80, 0x40, EP_TYPE_CTRL);
rt_usbd_reset_handler(&_stm_udc);
}
void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_ep0_setup_handler(&_stm_udc, (struct urequest *)hpcd->Setup);
}
void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
{
if (epnum == 0)
{
rt_usbd_ep0_in_handler(&_stm_udc);
}
else
{
rt_usbd_ep_in_handler(&_stm_udc, 0x80 | epnum, hpcd->IN_ep[epnum].xfer_count);
}
}
void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_connect_handler(&_stm_udc);
}
void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_sof_handler(&_stm_udc);
}
void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_disconnect_handler(&_stm_udc);
}
void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
{
if (epnum != 0)
{
rt_usbd_ep_out_handler(&_stm_udc, epnum, hpcd->OUT_ep[epnum].xfer_count);
}
else
{
rt_usbd_ep0_out_handler(&_stm_udc, hpcd->OUT_ep[0].xfer_count);
}
}
void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state)
{
if (state == 1)
{
#if defined(SOC_SERIES_STM32F1)
rt_pin_mode(BSP_USB_CONNECT_PIN,PIN_MODE_OUTPUT);
rt_pin_write(BSP_USB_CONNECT_PIN, BSP_USB_PULL_UP_STATUS);
#endif
}
else
{
#if defined(SOC_SERIES_STM32F1)
rt_pin_mode(BSP_USB_CONNECT_PIN,PIN_MODE_OUTPUT);
rt_pin_write(BSP_USB_CONNECT_PIN, !BSP_USB_PULL_UP_STATUS);
#endif
}
}
static rt_err_t _ep_set_stall(rt_uint8_t address)
{
HAL_PCD_EP_SetStall(&_stm_pcd, address);
return RT_EOK;
}
static rt_err_t _ep_clear_stall(rt_uint8_t address)
{
HAL_PCD_EP_ClrStall(&_stm_pcd, address);
return RT_EOK;
}
static rt_err_t _set_address(rt_uint8_t address)
{
HAL_PCD_SetAddress(&_stm_pcd, address);
return RT_EOK;
}
static rt_err_t _set_config(rt_uint8_t address)
{
return RT_EOK;
}
static rt_err_t _ep_enable(uep_t ep)
{
RT_ASSERT(ep != RT_NULL);
RT_ASSERT(ep->ep_desc != RT_NULL);
HAL_PCD_EP_Open(&_stm_pcd, ep->ep_desc->bEndpointAddress,
ep->ep_desc->wMaxPacketSize, ep->ep_desc->bmAttributes);
return RT_EOK;
}
static rt_err_t _ep_disable(uep_t ep)
{
RT_ASSERT(ep != RT_NULL);
RT_ASSERT(ep->ep_desc != RT_NULL);
HAL_PCD_EP_Close(&_stm_pcd, ep->ep_desc->bEndpointAddress);
return RT_EOK;
}
static rt_size_t _ep_read(rt_uint8_t address, void *buffer)
{
rt_size_t size = 0;
RT_ASSERT(buffer != RT_NULL);
return size;
}
static rt_size_t _ep_read_prepare(rt_uint8_t address, void *buffer, rt_size_t size)
{
HAL_PCD_EP_Receive(&_stm_pcd, address, buffer, size);
return size;
}
static rt_size_t _ep_write(rt_uint8_t address, void *buffer, rt_size_t size)
{
HAL_PCD_EP_Transmit(&_stm_pcd, address, buffer, size);
return size;
}
static rt_err_t _ep0_send_status(void)
{
HAL_PCD_EP_Transmit(&_stm_pcd, 0x00, NULL, 0);
return RT_EOK;
}
static rt_err_t _suspend(void)
{
return RT_EOK;
}
static rt_err_t _wakeup(void)
{
return RT_EOK;
}
static rt_err_t _init(rt_device_t device)
{
PCD_HandleTypeDef *pcd;
/* Set LL Driver parameters */
pcd = (PCD_HandleTypeDef *)device->user_data;
pcd->Instance = USBD_INSTANCE;
memset(&pcd->Init, 0, sizeof pcd->Init);
pcd->Init.dev_endpoints = 8;
pcd->Init.speed = USBD_PCD_SPEED;
pcd->Init.ep0_mps = DEP0CTL_MPS_64;
#if !defined(SOC_SERIES_STM32F1)
pcd->Init.phy_itface = USBD_PCD_PHY_MODULE;
#endif
/* Initialize LL Driver */
HAL_PCD_Init(pcd);
/* USB interrupt Init */
HAL_NVIC_SetPriority(USBD_IRQ_TYPE, 2, 0);
HAL_NVIC_EnableIRQ(USBD_IRQ_TYPE);
#if !defined(SOC_SERIES_STM32F1)
HAL_PCDEx_SetRxFiFo(pcd, 0x80);
HAL_PCDEx_SetTxFiFo(pcd, 0, 0x40);
HAL_PCDEx_SetTxFiFo(pcd, 1, 0x40);
HAL_PCDEx_SetTxFiFo(pcd, 2, 0x40);
HAL_PCDEx_SetTxFiFo(pcd, 3, 0x40);
#else
HAL_PCDEx_PMAConfig(pcd, 0x00, PCD_SNG_BUF, 0x18);
HAL_PCDEx_PMAConfig(pcd, 0x80, PCD_SNG_BUF, 0x58);
HAL_PCDEx_PMAConfig(pcd, 0x81, PCD_SNG_BUF, 0x98);
HAL_PCDEx_PMAConfig(pcd, 0x01, PCD_SNG_BUF, 0x118);
HAL_PCDEx_PMAConfig(pcd, 0x82, PCD_SNG_BUF, 0xD8);
HAL_PCDEx_PMAConfig(pcd, 0x02, PCD_SNG_BUF, 0x158);
HAL_PCDEx_PMAConfig(pcd, 0x83, PCD_SNG_BUF, 0x198);
#endif
HAL_PCD_Start(pcd);
return RT_EOK;
}
const static struct udcd_ops _udc_ops =
{
_set_address,
_set_config,
_ep_set_stall,
_ep_clear_stall,
_ep_enable,
_ep_disable,
_ep_read_prepare,
_ep_read,
_ep_write,
_ep0_send_status,
_suspend,
_wakeup,
};
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops _ops =
{
_init,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
};
#endif
int stm_usbd_register(void)
{
rt_memset((void *)&_stm_udc, 0, sizeof(struct udcd));
_stm_udc.parent.type = RT_Device_Class_USBDevice;
#ifdef RT_USING_DEVICE_OPS
_stm_udc.parent.ops = &_ops;
#else
_stm_udc.parent.init = _init;
#endif
_stm_udc.parent.user_data = &_stm_pcd;
_stm_udc.ops = &_udc_ops;
/* Register endpoint infomation */
_stm_udc.ep_pool = _ep_pool;
_stm_udc.ep0.id = &_ep_pool[0];
#ifdef BSP_USBD_SPEED_HS
_stm_udc.device_is_hs = RT_TRUE;
#endif
rt_device_register((rt_device_t)&_stm_udc, "usbd", 0);
rt_usb_device_init();
return RT_EOK;
}
INIT_DEVICE_EXPORT(stm_usbd_register);
#endif

View File

@ -0,0 +1,254 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-30 ZYH the first version
* 2019-12-19 tyustli port to stm32 series
*/
#include "drv_usbh.h"
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_USBHOST
static HCD_HandleTypeDef stm32_hhcd_fs;
static struct rt_completion urb_completion;
static volatile rt_bool_t connect_status = RT_FALSE;
void OTG_FS_IRQHandler(void)
{
rt_interrupt_enter();
HAL_HCD_IRQHandler(&stm32_hhcd_fs);
rt_interrupt_leave();
}
void HAL_HCD_Connect_Callback(HCD_HandleTypeDef *hhcd)
{
uhcd_t hcd = (uhcd_t)hhcd->pData;
if (!connect_status)
{
connect_status = RT_TRUE;
RT_DEBUG_LOG(RT_DEBUG_USB, ("usb connected\n"));
rt_usbh_root_hub_connect_handler(hcd, OTG_FS_PORT, RT_FALSE);
}
}
void HAL_HCD_Disconnect_Callback(HCD_HandleTypeDef *hhcd)
{
uhcd_t hcd = (uhcd_t)hhcd->pData;
if (connect_status)
{
connect_status = RT_FALSE;
RT_DEBUG_LOG(RT_DEBUG_USB, ("usb disconnnect\n"));
rt_usbh_root_hub_disconnect_handler(hcd, OTG_FS_PORT);
}
}
void HAL_HCD_HC_NotifyURBChange_Callback(HCD_HandleTypeDef *hhcd, uint8_t chnum, HCD_URBStateTypeDef urb_state)
{
rt_completion_done(&urb_completion);
}
static rt_err_t drv_reset_port(rt_uint8_t port)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("reset port\n"));
HAL_HCD_ResetPort(&stm32_hhcd_fs);
return RT_EOK;
}
static int drv_pipe_xfer(upipe_t pipe, rt_uint8_t token, void *buffer, int nbytes, int timeouts)
{
int timeout = timeouts;
while (1)
{
if (!connect_status)
{
return -1;
}
rt_completion_init(&urb_completion);
HAL_HCD_HC_SubmitRequest(&stm32_hhcd_fs,
pipe->pipe_index,
(pipe->ep.bEndpointAddress & 0x80) >> 7,
pipe->ep.bmAttributes,
token,
buffer,
nbytes,
0);
rt_completion_wait(&urb_completion, timeout);
rt_thread_mdelay(1);
if (HAL_HCD_HC_GetState(&stm32_hhcd_fs, pipe->pipe_index) == HC_NAK)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("nak\n"));
if (pipe->ep.bmAttributes == USB_EP_ATTR_INT)
{
rt_thread_delay((pipe->ep.bInterval * RT_TICK_PER_SECOND / 1000) > 0 ? (pipe->ep.bInterval * RT_TICK_PER_SECOND / 1000) : 1);
}
HAL_HCD_HC_Halt(&stm32_hhcd_fs, pipe->pipe_index);
HAL_HCD_HC_Init(&stm32_hhcd_fs,
pipe->pipe_index,
pipe->ep.bEndpointAddress,
pipe->inst->address,
USB_OTG_SPEED_FULL,
pipe->ep.bmAttributes,
pipe->ep.wMaxPacketSize);
continue;
}
else if (HAL_HCD_HC_GetState(&stm32_hhcd_fs, pipe->pipe_index) == HC_STALL)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("stall\n"));
pipe->status = UPIPE_STATUS_STALL;
if (pipe->callback != RT_NULL)
{
pipe->callback(pipe);
}
return -1;
}
else if (HAL_HCD_HC_GetState(&stm32_hhcd_fs, pipe->pipe_index) == URB_ERROR)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("error\n"));
pipe->status = UPIPE_STATUS_ERROR;
if (pipe->callback != RT_NULL)
{
pipe->callback(pipe);
}
return -1;
}
else if(URB_DONE == HAL_HCD_HC_GetURBState(&stm32_hhcd_fs, pipe->pipe_index))
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("ok\n"));
pipe->status = UPIPE_STATUS_OK;
if (pipe->callback != RT_NULL)
{
pipe->callback(pipe);
}
size_t size = HAL_HCD_HC_GetXferCount(&stm32_hhcd_fs, pipe->pipe_index);
if (pipe->ep.bEndpointAddress & 0x80)
{
return size;
}
else if (pipe->ep.bEndpointAddress & 0x00)
{
return size;
}
return nbytes;
}
continue;
}
}
static rt_uint16_t pipe_index = 0;
static rt_uint8_t drv_get_free_pipe_index(void)
{
rt_uint8_t idx;
for (idx = 1; idx < 16; idx++)
{
if (!(pipe_index & (0x01 << idx)))
{
pipe_index |= (0x01 << idx);
return idx;
}
}
return 0xff;
}
static void drv_free_pipe_index(rt_uint8_t index)
{
pipe_index &= ~(0x01 << index);
}
static rt_err_t drv_open_pipe(upipe_t pipe)
{
pipe->pipe_index = drv_get_free_pipe_index();
HAL_HCD_HC_Init(&stm32_hhcd_fs,
pipe->pipe_index,
pipe->ep.bEndpointAddress,
pipe->inst->address,
USB_OTG_SPEED_FULL,
pipe->ep.bmAttributes,
pipe->ep.wMaxPacketSize);
/* Set DATA0 PID token*/
if (stm32_hhcd_fs.hc[pipe->pipe_index].ep_is_in)
{
stm32_hhcd_fs.hc[pipe->pipe_index].toggle_in = 0;
}
else
{
stm32_hhcd_fs.hc[pipe->pipe_index].toggle_out = 0;
}
return RT_EOK;
}
static rt_err_t drv_close_pipe(upipe_t pipe)
{
HAL_HCD_HC_Halt(&stm32_hhcd_fs, pipe->pipe_index);
drv_free_pipe_index(pipe->pipe_index);
return RT_EOK;
}
static struct uhcd_ops _uhcd_ops =
{
drv_reset_port,
drv_pipe_xfer,
drv_open_pipe,
drv_close_pipe,
};
static rt_err_t stm32_hcd_init(rt_device_t device)
{
HCD_HandleTypeDef *hhcd = (HCD_HandleTypeDef *)device->user_data;
hhcd->Instance = USB_OTG_FS;
hhcd->Init.Host_channels = 8;
hhcd->Init.speed = HCD_SPEED_FULL;
hhcd->Init.dma_enable = DISABLE;
hhcd->Init.phy_itface = HCD_PHY_EMBEDDED;
hhcd->Init.Sof_enable = DISABLE;
RT_ASSERT(HAL_HCD_Init(hhcd) == HAL_OK);
HAL_HCD_Start(hhcd);
#ifdef USBH_USING_CONTROLLABLE_POWER
rt_pin_mode(USBH_POWER_PIN, PIN_MODE_OUTPUT);
rt_pin_write(USBH_POWER_PIN, PIN_LOW);
#endif
return RT_EOK;
}
int stm_usbh_register(void)
{
rt_err_t res = -RT_ERROR;
uhcd_t uhcd = (uhcd_t)rt_malloc(sizeof(struct uhcd));
if (uhcd == RT_NULL)
{
rt_kprintf("uhcd malloc failed\r\n");
return -RT_ERROR;
}
rt_memset((void *)uhcd, 0, sizeof(struct uhcd));
uhcd->parent.type = RT_Device_Class_USBHost;
uhcd->parent.init = stm32_hcd_init;
uhcd->parent.user_data = &stm32_hhcd_fs;
uhcd->ops = &_uhcd_ops;
uhcd->num_ports = OTG_FS_PORT;
stm32_hhcd_fs.pData = uhcd;
res = rt_device_register(&uhcd->parent, "usbh", RT_DEVICE_FLAG_DEACTIVATE);
if (res != RT_EOK)
{
rt_kprintf("register usb host failed res = %d\r\n", res);
return -RT_ERROR;
}
rt_usb_host_init();
return RT_EOK;
}
INIT_DEVICE_EXPORT(stm_usbh_register);
#endif

View File

@ -0,0 +1,133 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-07 balanceTWK first version
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_WDT
//#define DRV_DEBUG
#define LOG_TAG "drv.wdt"
#include <drv_log.h>
struct stm32_wdt_obj
{
IWDG_HandleTypeDef hiwdg;
rt_uint16_t is_start;
};
static struct stm32_wdt_obj stm32_wdt;
static struct rt_watchdog_ops ops;
static rt_watchdog_t watchdog;
static rt_err_t wdt_init(rt_watchdog_t *wdt)
{
return RT_EOK;
}
static rt_err_t wdt_control(rt_watchdog_t *wdt, int cmd, void *arg)
{
switch (cmd)
{
/* feed the watchdog */
case RT_DEVICE_CTRL_WDT_KEEPALIVE:
if(HAL_IWDG_Refresh(&stm32_wdt.hiwdg) != HAL_OK)
{
LOG_E("watch dog keepalive fail.");
}
break;
/* set watchdog timeout */
case RT_DEVICE_CTRL_WDT_SET_TIMEOUT:
#if defined(LSI_VALUE)
if(LSI_VALUE)
{
stm32_wdt.hiwdg.Init.Reload = (*((rt_uint32_t*)arg)) * LSI_VALUE / 256 ;
}
else
{
LOG_E("Please define the value of LSI_VALUE!");
}
if(stm32_wdt.hiwdg.Init.Reload > 0xFFF)
{
LOG_E("wdg set timeout parameter too large, please less than %ds",0xFFF * 256 / LSI_VALUE);
return -RT_EINVAL;
}
#else
#error "Please define the value of LSI_VALUE!"
#endif
if(stm32_wdt.is_start)
{
if (HAL_IWDG_Init(&stm32_wdt.hiwdg) != HAL_OK)
{
LOG_E("wdg set timeout failed.");
return -RT_ERROR;
}
}
break;
case RT_DEVICE_CTRL_WDT_GET_TIMEOUT:
#if defined(LSI_VALUE)
if(LSI_VALUE)
{
(*((rt_uint32_t*)arg)) = stm32_wdt.hiwdg.Init.Reload * 256 / LSI_VALUE;
}
else
{
LOG_E("Please define the value of LSI_VALUE!");
}
#else
#error "Please define the value of LSI_VALUE!"
#endif
break;
case RT_DEVICE_CTRL_WDT_START:
if (HAL_IWDG_Init(&stm32_wdt.hiwdg) != HAL_OK)
{
LOG_E("wdt start failed.");
return -RT_ERROR;
}
stm32_wdt.is_start = 1;
break;
default:
LOG_W("This command is not supported.");
return -RT_ERROR;
}
return RT_EOK;
}
int rt_wdt_init(void)
{
#if defined(SOC_SERIES_STM32H7)
stm32_wdt.hiwdg.Instance = IWDG1;
#else
stm32_wdt.hiwdg.Instance = IWDG;
#endif
stm32_wdt.hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
stm32_wdt.hiwdg.Init.Reload = 0x00000FFF;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) \
|| defined(SOC_SERIES_STM32H7)
stm32_wdt.hiwdg.Init.Window = 0x00000FFF;
#endif
stm32_wdt.is_start = 0;
ops.init = &wdt_init;
ops.control = &wdt_control;
watchdog.ops = &ops;
/* register watchdog device */
if (rt_hw_watchdog_register(&watchdog, "wdt", RT_DEVICE_FLAG_DEACTIVATE, RT_NULL) != RT_EOK)
{
LOG_E("wdt device register failed.");
return -RT_ERROR;
}
LOG_D("wdt device register success.");
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_wdt_init);
#endif /* RT_USING_WDT */

View File

@ -0,0 +1,87 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-06 zylx first version
*/
#ifndef __ADC_CONFIG_H__
#define __ADC_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_ADC1
#ifndef ADC1_CONFIG
#define ADC1_CONFIG \
{ \
.Instance = ADC1, \
.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4, \
.Init.Resolution = ADC_RESOLUTION_12B, \
.Init.DataAlign = ADC_DATAALIGN_RIGHT, \
.Init.ScanConvMode = DISABLE, \
.Init.EOCSelection = DISABLE, \
.Init.ContinuousConvMode = DISABLE, \
.Init.NbrOfConversion = 1, \
.Init.DiscontinuousConvMode = DISABLE, \
.Init.NbrOfDiscConversion = 0, \
.Init.ExternalTrigConv = ADC_SOFTWARE_START, \
.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE, \
.Init.DMAContinuousRequests = DISABLE, \
}
#endif /* ADC1_CONFIG */
#endif /* BSP_USING_ADC1 */
#ifdef BSP_USING_ADC2
#ifndef ADC2_CONFIG
#define ADC2_CONFIG \
{ \
.Instance = ADC2, \
.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4, \
.Init.Resolution = ADC_RESOLUTION_12B, \
.Init.DataAlign = ADC_DATAALIGN_RIGHT, \
.Init.ScanConvMode = DISABLE, \
.Init.EOCSelection = DISABLE, \
.Init.ContinuousConvMode = DISABLE, \
.Init.NbrOfConversion = 1, \
.Init.DiscontinuousConvMode = DISABLE, \
.Init.NbrOfDiscConversion = 0, \
.Init.ExternalTrigConv = ADC_SOFTWARE_START, \
.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE, \
.Init.DMAContinuousRequests = DISABLE, \
}
#endif /* ADC2_CONFIG */
#endif /* BSP_USING_ADC2 */
#ifdef BSP_USING_ADC3
#ifndef ADC3_CONFIG
#define ADC3_CONFIG \
{ \
.Instance = ADC3, \
.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4, \
.Init.Resolution = ADC_RESOLUTION_12B, \
.Init.DataAlign = ADC_DATAALIGN_RIGHT, \
.Init.ScanConvMode = DISABLE, \
.Init.EOCSelection = DISABLE, \
.Init.ContinuousConvMode = DISABLE, \
.Init.NbrOfConversion = 1, \
.Init.DiscontinuousConvMode = DISABLE, \
.Init.NbrOfDiscConversion = 0, \
.Init.ExternalTrigConv = ADC_SOFTWARE_START, \
.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE, \
.Init.DMAContinuousRequests = DISABLE, \
}
#endif /* ADC3_CONFIG */
#endif /* BSP_USING_ADC3 */
#ifdef __cplusplus
}
#endif
#endif /* __ADC_CONFIG_H__ */

View File

@ -0,0 +1,284 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-02 zylx first version
* 2019-01-08 SummerGift clean up the code
*/
#ifndef __DMA_CONFIG_H__
#define __DMA_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
/* DMA1 stream0 */
#if defined(BSP_SPI3_RX_USING_DMA) && !defined(SPI3_RX_DMA_INSTANCE)
#define SPI3_DMA_RX_IRQHandler DMA1_Stream0_IRQHandler
#define SPI3_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_RX_DMA_INSTANCE DMA1_Stream0
#define SPI3_RX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_RX_DMA_IRQ DMA1_Stream0_IRQn
#elif defined(BSP_UART5_RX_USING_DMA) && !defined(UART5_RX_DMA_INSTANCE)
#define UART5_DMA_RX_IRQHandler DMA1_Stream0_IRQHandler
#define UART5_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART5_RX_DMA_INSTANCE DMA1_Stream0
#define UART5_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART5_RX_DMA_IRQ DMA1_Stream0_IRQn
#elif defined(BSP_UART8_TX_USING_DMA) && !defined(UART8_TX_DMA_INSTANCE)
#define UART8_DMA_TX_IRQHandler DMA1_Stream0_IRQHandler
#define UART8_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART8_TX_DMA_INSTANCE DMA1_Stream0
#define UART8_TX_DMA_CHANNEL DMA_CHANNEL_5
#define UART8_TX_DMA_IRQ DMA1_Stream0_IRQn
#endif
/* DMA1 stream1 */
#if defined(BSP_UART3_RX_USING_DMA) && !defined(UART3_RX_DMA_INSTANCE)
#define UART3_DMA_RX_IRQHandler DMA1_Stream1_IRQHandler
#define UART3_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART3_RX_DMA_INSTANCE DMA1_Stream1
#define UART3_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART3_RX_DMA_IRQ DMA1_Stream1_IRQn
#elif defined(BSP_UART7_RX_USING_DMA) && !defined(UART7_RX_DMA_INSTANCE)
#define UART7_DMA_RX_IRQHandler DMA1_Stream1_IRQHandler
#define UART7_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART7_RX_DMA_INSTANCE DMA1_Stream1
#define UART7_RX_DMA_CHANNEL DMA_CHANNEL_5
#define UART7_RX_DMA_IRQ DMA1_Stream1_IRQn
#endif
/* DMA1 stream2 */
#if defined(BSP_SPI3_RX_USING_DMA) && !defined(SPI3_RX_DMA_INSTANCE)
#define SPI3_DMA_RX_IRQHandler DMA1_Stream2_IRQHandler
#define SPI3_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_RX_DMA_INSTANCE DMA1_Stream2
#define SPI3_RX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_RX_DMA_IRQ DMA1_Stream2_IRQn
#elif defined(BSP_UART4_RX_USING_DMA) && !defined(UART4_RX_DMA_INSTANCE)
#define UART4_DMA_RX_IRQHandler DMA1_Stream2_IRQHandler
#define UART4_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART4_RX_DMA_INSTANCE DMA1_Stream2
#define UART4_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART4_RX_DMA_IRQ DMA1_Stream2_IRQn
#endif
/* DMA1 stream3 */
#if defined(BSP_SPI2_RX_USING_DMA) && !defined(SPI2_RX_DMA_INSTANCE)
#define SPI2_DMA_RX_IRQHandler DMA1_Stream3_IRQHandler
#define SPI2_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI2_RX_DMA_INSTANCE DMA1_Stream3
#define SPI2_RX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI2_RX_DMA_IRQ DMA1_Stream3_IRQn
#elif defined(BSP_UART3_TX_USING_DMA) && !defined(UART3_TX_DMA_INSTANCE)
#define UART3_DMA_TX_IRQHandler DMA1_Stream3_IRQHandler
#define UART3_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART3_TX_DMA_INSTANCE DMA1_Stream3
#define UART3_TX_DMA_CHANNEL DMA_CHANNEL_4
#define UART3_TX_DMA_IRQ DMA1_Stream3_IRQn
#elif defined(BSP_UART7_TX_USING_DMA) && !defined(UART7_TX_DMA_INSTANCE)
#define UART7_DMA_RX_IRQHandler DMA1_Stream3_IRQHandler
#define UART7_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART7_RX_DMA_INSTANCE DMA1_Stream3
#define UART7_RX_DMA_CHANNEL DMA_CHANNEL_5
#define UART7_RX_DMA_IRQ DMA1_Stream3_IRQn
#endif
/* DMA1 stream4 */
#if defined(BSP_SPI2_TX_USING_DMA) && !defined(SPI2_TX_DMA_INSTANCE)
#define SPI2_DMA_TX_IRQHandler DMA1_Stream4_IRQHandler
#define SPI2_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI2_TX_DMA_INSTANCE DMA1_Stream4
#define SPI2_TX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI2_TX_DMA_IRQ DMA1_Stream4_IRQn
#elif defined(BSP_UART4_TX_USING_DMA) && !defined(UART4_TX_DMA_INSTANCE)
#define UART4_DMA_TX_IRQHandler DMA1_Stream4_IRQHandler
#define UART4_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART4_TX_DMA_INSTANCE DMA1_Stream4
#define UART4_TX_DMA_CHANNEL DMA_CHANNEL_4
#define UART4_TX_DMA_IRQ DMA1_Stream4_IRQn
#endif
/* DMA1 stream5 */
#if defined(BSP_SPI3_TX_USING_DMA) && !defined(SPI3_TX_DMA_INSTANCE)
#define SPI3_DMA_TX_IRQHandler DMA1_Stream5_IRQHandler
#define SPI3_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_TX_DMA_INSTANCE DMA1_Stream5
#define SPI3_TX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_TX_DMA_IRQ DMA1_Stream5_IRQn
#elif defined(BSP_UART2_RX_USING_DMA) && !defined(UART2_RX_DMA_INSTANCE)
#define UART2_DMA_RX_IRQHandler DMA1_Stream5_IRQHandler
#define UART2_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART2_RX_DMA_INSTANCE DMA1_Stream5
#define UART2_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART2_RX_DMA_IRQ DMA1_Stream5_IRQn
#endif
/* DMA1 stream6 */
#if defined(BSP_UART2_TX_USING_DMA) && !defined(UART2_TX_DMA_INSTANCE)
#define UART2_DMA_TX_IRQHandler DMA1_Stream6_IRQHandler
#define UART2_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART2_TX_DMA_INSTANCE DMA1_Stream6
#define UART2_TX_DMA_CHANNEL DMA_CHANNEL_4
#define UART2_TX_DMA_IRQ DMA1_Stream6_IRQn
#elif defined(BSP_UART8_RX_USING_DMA) && !defined(UART8_RX_DMA_INSTANCE)
#define UART8_DMA_RX_IRQHandler DMA1_Stream6_IRQHandler
#define UART8_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART8_RX_DMA_INSTANCE DMA1_Stream6
#define UART8_RX_DMA_CHANNEL DMA_CHANNEL_5
#define UART8_RX_DMA_IRQ DMA1_Stream6_IRQn
#endif
/* DMA1 stream7 */
#if defined(BSP_SPI3_TX_USING_DMA) && !defined(SPI3_TX_DMA_INSTANCE)
#define SPI3_DMA_TX_IRQHandler DMA1_Stream7_IRQHandler
#define SPI3_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_TX_DMA_INSTANCE DMA1_Stream7
#define SPI3_TX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_TX_DMA_IRQ DMA1_Stream7_IRQn
#elif defined(BSP_UART5_TX_USING_DMA) && !defined(UART5_TX_DMA_INSTANCE)
#define UART5_DMA_TX_IRQHandler DMA1_Stream7_IRQHandler
#define UART5_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART5_TX_DMA_INSTANCE DMA1_Stream7
#define UART5_TX_DMA_CHANNEL DMA_CHANNEL_4
#define UART5_TX_DMA_IRQ DMA1_Stream7_IRQn
#endif
/* DMA2 stream0 */
#if defined(BSP_SPI1_RX_USING_DMA) && !defined(SPI1_RX_DMA_INSTANCE)
#define SPI1_DMA_RX_IRQHandler DMA2_Stream0_IRQHandler
#define SPI1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_RX_DMA_INSTANCE DMA2_Stream0
#define SPI1_RX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_RX_DMA_IRQ DMA2_Stream0_IRQn
#elif defined(BSP_SPI4_TX_USING_DMA) && !defined(SPI4_TX_DMA_INSTANCE)
#define SPI4_DMA_TX_IRQHandler DMA2_Stream0_IRQHandler
#define SPI4_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_TX_DMA_INSTANCE DMA2_Stream0
#define SPI4_TX_DMA_CHANNEL DMA_CHANNEL_4
#define SPI4_TX_DMA_IRQ DMA2_Stream0_IRQn
#endif
/* DMA2 stream1 */
#if defined(BSP_SPI4_TX_USING_DMA) && !defined(SPI4_TX_DMA_INSTANCE)
#define SPI4_DMA_TX_IRQHandler DMA2_Stream1_IRQHandler
#define SPI4_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_TX_DMA_INSTANCE DMA2_Stream1
#define SPI4_TX_DMA_CHANNEL DMA_CHANNEL_4
#define SPI4_TX_DMA_IRQ DMA2_Stream1_IRQn
#elif defined(BSP_UART6_RX_USING_DMA) && !defined(UART6_RX_DMA_INSTANCE)
#define UART6_DMA_RX_IRQHandler DMA2_Stream1_IRQHandler
#define UART6_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART6_RX_DMA_INSTANCE DMA2_Stream1
#define UART6_RX_DMA_CHANNEL DMA_CHANNEL_5
#define UART6_RX_DMA_IRQ DMA2_Stream1_IRQn
#endif
/* DMA2 stream2 */
#if defined(BSP_SPI1_RX_USING_DMA) && !defined(SPI1_RX_DMA_INSTANCE)
#define SPI1_DMA_RX_IRQHandler DMA2_Stream2_IRQHandler
#define SPI1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_RX_DMA_INSTANCE DMA2_Stream2
#define SPI1_RX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_RX_DMA_IRQ DMA2_Stream2_IRQn
#elif defined(BSP_UART1_RX_USING_DMA) && !defined(UART1_RX_DMA_INSTANCE)
#define UART1_DMA_RX_IRQHandler DMA2_Stream2_IRQHandler
#define UART1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART1_RX_DMA_INSTANCE DMA2_Stream2
#define UART1_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART1_RX_DMA_IRQ DMA2_Stream2_IRQn
#endif
/* DMA2 stream3 */
#if defined(BSP_SPI5_RX_USING_DMA) && !defined(SPI5_RX_DMA_INSTANCE)
#define SPI5_DMA_RX_IRQHandler DMA2_Stream3_IRQHandler
#define SPI5_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_RX_DMA_INSTANCE DMA2_Stream3
#define SPI5_RX_DMA_CHANNEL DMA_CHANNEL_2
#define SPI5_RX_DMA_IRQ DMA2_Stream3_IRQn
#elif defined(BSP_SPI1_TX_USING_DMA) && !defined(SPI1_TX_DMA_INSTANCE)
#define SPI1_DMA_TX_IRQHandler DMA2_Stream3_IRQHandler
#define SPI1_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_TX_DMA_INSTANCE DMA2_Stream3
#define SPI1_TX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_TX_DMA_IRQ DMA2_Stream3_IRQn
#elif defined(BSP_SPI4_TX_USING_DMA) && !defined(SPI4_TX_DMA_INSTANCE)
#define SPI4_DMA_TX_IRQHandler DMA2_Stream3_IRQHandler
#define SPI4_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_TX_DMA_INSTANCE DMA2_Stream3
#define SPI4_TX_DMA_CHANNEL DMA_CHANNEL_5
#define SPI4_TX_DMA_IRQ DMA2_Stream3_IRQn
#endif
/* DMA2 stream4 */
#if defined(BSP_SPI5_TX_USING_DMA) && !defined(SPI5_TX_DMA_INSTANCE)
#define SPI5_DMA_TX_IRQHandler DMA2_Stream4_IRQHandler
#define SPI5_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_TX_DMA_INSTANCE DMA2_Stream4
#define SPI5_TX_DMA_CHANNEL DMA_CHANNEL_2
#define SPI5_TX_DMA_IRQ DMA2_Stream4_IRQn
#elif defined(BSP_SPI4_TX_USING_DMA) && !defined(SPI4_TX_DMA_INSTANCE)
#define SPI4_DMA_TX_IRQHandler DMA2_Stream4_IRQHandler
#define SPI4_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_TX_DMA_INSTANCE DMA2_Stream4
#define SPI4_TX_DMA_CHANNEL DMA_CHANNEL_5
#define SPI4_TX_DMA_IRQ DMA2_Stream4_IRQn
#endif
/* DMA2 stream5 */
#if defined(BSP_SPI1_TX_USING_DMA) && !defined(SPI1_TX_DMA_INSTANCE)
#define SPI1_DMA_TX_IRQHandler DMA2_Stream5_IRQHandler
#define SPI1_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_TX_DMA_INSTANCE DMA2_Stream5
#define SPI1_TX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_TX_DMA_IRQ DMA2_Stream5_IRQn
#elif defined(BSP_UART1_RX_USING_DMA) && !defined(UART1_RX_DMA_INSTANCE)
#define UART1_DMA_RX_IRQHandler DMA2_Stream5_IRQHandler
#define UART1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART1_RX_DMA_INSTANCE DMA2_Stream5
#define UART1_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART1_RX_DMA_IRQ DMA2_Stream5_IRQn
#elif defined(BSP_SPI5_RX_USING_DMA) && !defined(SPI5_RX_DMA_INSTANCE)
#define SPI5_DMA_RX_IRQHandler DMA2_Stream5_IRQHandler
#define SPI5_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_RX_DMA_INSTANCE DMA2_Stream5
#define SPI5_RX_DMA_CHANNEL DMA_CHANNEL_7
#define SPI5_RX_DMA_IRQ DMA2_Stream5_IRQn
#endif
/* DMA2 stream6 */
#if defined(BSP_SPI5_TX_USING_DMA) && !defined(SPI5_TX_DMA_INSTANCE)
#define SPI5_DMA_TX_IRQHandler DMA2_Stream6_IRQHandler
#define SPI5_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_TX_DMA_INSTANCE DMA2_Stream6
#define SPI5_TX_DMA_CHANNEL DMA_CHANNEL_7
#define SPI5_TX_DMA_IRQ DMA2_Stream6_IRQn
#elif defined(BSP_UART6_TX_USING_DMA) && !defined(UART6_TX_DMA_INSTANCE)
#define UART6_DMA_TX_IRQHandler DMA2_Stream6_IRQHandler
#define UART6_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART6_TX_DMA_INSTANCE DMA2_Stream6
#define UART6_TX_DMA_CHANNEL DMA_CHANNEL_5
#define UART6_TX_DMA_IRQ DMA2_Stream6_IRQn
#endif
/* DMA2 stream7 */
#if defined(BSP_UART1_TX_USING_DMA) && !defined(UART1_TX_DMA_INSTANCE)
#define UART1_DMA_TX_IRQHandler DMA2_Stream7_IRQHandler
#define UART1_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART1_TX_DMA_INSTANCE DMA2_Stream7
#define UART1_TX_DMA_CHANNEL DMA_CHANNEL_4
#define UART1_TX_DMA_IRQ DMA2_Stream7_IRQn
#endif
#ifdef __cplusplus
}
#endif
#endif /* __DMA_CONFIG_H__ */

View File

@ -0,0 +1,68 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-08-23 balanceTWK first version
*/
#ifndef __PULSE_ENCODER_CONFIG_H__
#define __PULSE_ENCODER_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_PULSE_ENCODER1
#ifndef PULSE_ENCODER1_CONFIG
#define PULSE_ENCODER1_CONFIG \
{ \
.tim_handler.Instance = TIM1, \
.encoder_irqn = TIM1_UP_TIM10_IRQn, \
.name = "pulse1" \
}
#endif /* PULSE_ENCODER1_CONFIG */
#endif /* BSP_USING_PULSE_ENCODER1 */
#ifdef BSP_USING_PULSE_ENCODER2
#ifndef PULSE_ENCODER2_CONFIG
#define PULSE_ENCODER2_CONFIG \
{ \
.tim_handler.Instance = TIM2, \
.encoder_irqn = TIM2_IRQn, \
.name = "pulse2" \
}
#endif /* PULSE_ENCODER2_CONFIG */
#endif /* BSP_USING_PULSE_ENCODER2 */
#ifdef BSP_USING_PULSE_ENCODER3
#ifndef PULSE_ENCODER3_CONFIG
#define PULSE_ENCODER3_CONFIG \
{ \
.tim_handler.Instance = TIM3, \
.encoder_irqn = TIM3_IRQn, \
.name = "pulse3" \
}
#endif /* PULSE_ENCODER3_CONFIG */
#endif /* BSP_USING_PULSE_ENCODER3 */
#ifdef BSP_USING_PULSE_ENCODER4
#ifndef PULSE_ENCODER4_CONFIG
#define PULSE_ENCODER4_CONFIG \
{ \
.tim_handler.Instance = TIM4, \
.encoder_irqn = TIM4_IRQn, \
.name = "pulse4" \
}
#endif /* PULSE_ENCODER4_CONFIG */
#endif /* BSP_USING_PULSE_ENCODER4 */
#ifdef __cplusplus
}
#endif
#endif /* __PULSE_ENCODER_CONFIG_H__ */

View File

@ -0,0 +1,90 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 zylx first version
*/
#ifndef __PWM_CONFIG_H__
#define __PWM_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_PWM2
#ifndef PWM2_CONFIG
#define PWM2_CONFIG \
{ \
.tim_handle.Instance = TIM2, \
.name = "pwm2", \
.channel = 0 \
}
#endif /* PWM2_CONFIG */
#endif /* BSP_USING_PWM2 */
#ifdef BSP_USING_PWM3
#ifndef PWM3_CONFIG
#define PWM3_CONFIG \
{ \
.tim_handle.Instance = TIM3, \
.name = "pwm3", \
.channel = 0 \
}
#endif /* PWM3_CONFIG */
#endif /* BSP_USING_PWM3 */
#ifdef BSP_USING_PWM4
#ifndef PWM4_CONFIG
#define PWM4_CONFIG \
{ \
.tim_handle.Instance = TIM4, \
.name = "pwm4", \
.channel = 0 \
}
#endif /* PWM4_CONFIG */
#endif /* BSP_USING_PWM4 */
#ifdef BSP_USING_PWM5
#ifndef PWM5_CONFIG
#define PWM5_CONFIG \
{ \
.tim_handle.Instance = TIM5, \
.name = "pwm5", \
.channel = 0 \
}
#endif /* PWM5_CONFIG */
#endif /* BSP_USING_PWM5 */
#ifdef BSP_USING_PWM9
#ifndef PWM9_CONFIG
#define PWM9_CONFIG \
{ \
.tim_handle.Instance = TIM9, \
.name = "pwm9", \
.channel = 0 \
}
#endif /* PWM9_CONFIG */
#endif /* BSP_USING_PWM9 */
#ifdef BSP_USING_PWM12
#ifndef PWM12_CONFIG
#define PWM12_CONFIG \
{ \
.tim_handle.Instance = TIM12, \
.name = "pwm12", \
.channel = 0 \
}
#endif /* PWM12_CONFIG */
#endif /* BSP_USING_PWM12 */
#ifdef __cplusplus
}
#endif
#endif /* __PWM_CONFIG_H__ */

View File

@ -0,0 +1,56 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-22 zylx first version
*/
#ifndef __QSPI_CONFIG_H__
#define __QSPI_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_QSPI
#ifndef QSPI_BUS_CONFIG
#define QSPI_BUS_CONFIG \
{ \
.Instance = QUADSPI, \
.Init.FifoThreshold = 4, \
.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE, \
.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_5_CYCLE, \
}
#endif /* QSPI_BUS_CONFIG */
#endif /* BSP_USING_QSPI */
#ifdef BSP_QSPI_USING_DMA
#ifndef QSPI_DMA_CONFIG
#define QSPI_DMA_CONFIG \
{ \
.Instance = QSPI_DMA_INSTANCE, \
.Init.Channel = QSPI_DMA_CHANNEL, \
.Init.Direction = DMA_PERIPH_TO_MEMORY, \
.Init.PeriphInc = DMA_PINC_DISABLE, \
.Init.MemInc = DMA_MINC_ENABLE, \
.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE, \
.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE, \
.Init.Mode = DMA_NORMAL, \
.Init.Priority = DMA_PRIORITY_LOW \
}
#endif /* QSPI_DMA_CONFIG */
#endif /* BSP_QSPI_USING_DMA */
#define QSPI_IRQn QUADSPI_IRQn
#define QSPI_IRQHandler QUADSPI_IRQHandler
#ifdef __cplusplus
}
#endif
#endif /* __QSPI_CONFIG_H__ */

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 BalanceTWK first version
*/
#ifndef __SDIO_CONFIG_H__
#define __SDIO_CONFIG_H__
#include <rtthread.h>
#include "stm32f4xx_hal.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_SDIO
#define SDIO_BUS_CONFIG \
{ \
.Instance = SDIO, \
.dma_rx.dma_rcc = RCC_AHB1ENR_DMA2EN, \
.dma_tx.dma_rcc = RCC_AHB1ENR_DMA2EN, \
.dma_rx.Instance = DMA2_Stream3, \
.dma_rx.channel = DMA_CHANNEL_4, \
.dma_rx.dma_irq = DMA2_Stream3_IRQn, \
.dma_tx.Instance = DMA2_Stream6, \
.dma_tx.channel = DMA_CHANNEL_4, \
.dma_tx.dma_irq = DMA2_Stream6_IRQn, \
}
#endif
#ifdef __cplusplus
}
#endif
#endif /*__SDIO_CONFIG_H__ */

View File

@ -0,0 +1,195 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-06 SummerGift first version
* 2019-01-03 zylx modify DMA support
*/
#ifndef __SPI_CONFIG_H__
#define __SPI_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_SPI1
#ifndef SPI1_BUS_CONFIG
#define SPI1_BUS_CONFIG \
{ \
.Instance = SPI1, \
.bus_name = "spi1", \
}
#endif /* SPI1_BUS_CONFIG */
#endif /* BSP_USING_SPI1 */
#ifdef BSP_SPI1_TX_USING_DMA
#ifndef SPI1_TX_DMA_CONFIG
#define SPI1_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI1_TX_DMA_RCC, \
.Instance = SPI1_TX_DMA_INSTANCE, \
.channel = SPI1_TX_DMA_CHANNEL, \
.dma_irq = SPI1_TX_DMA_IRQ, \
}
#endif /* SPI1_TX_DMA_CONFIG */
#endif /* BSP_SPI1_TX_USING_DMA */
#ifdef BSP_SPI1_RX_USING_DMA
#ifndef SPI1_RX_DMA_CONFIG
#define SPI1_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI1_RX_DMA_RCC, \
.Instance = SPI1_RX_DMA_INSTANCE, \
.channel = SPI1_RX_DMA_CHANNEL, \
.dma_irq = SPI1_RX_DMA_IRQ, \
}
#endif /* SPI1_RX_DMA_CONFIG */
#endif /* BSP_SPI1_RX_USING_DMA */
#ifdef BSP_USING_SPI2
#ifndef SPI2_BUS_CONFIG
#define SPI2_BUS_CONFIG \
{ \
.Instance = SPI2, \
.bus_name = "spi2", \
}
#endif /* SPI2_BUS_CONFIG */
#endif /* BSP_USING_SPI2 */
#ifdef BSP_SPI2_TX_USING_DMA
#ifndef SPI2_TX_DMA_CONFIG
#define SPI2_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI2_TX_DMA_RCC, \
.Instance = SPI2_TX_DMA_INSTANCE, \
.channel = SPI2_TX_DMA_CHANNEL, \
.dma_irq = SPI2_TX_DMA_IRQ, \
}
#endif /* SPI2_TX_DMA_CONFIG */
#endif /* BSP_SPI2_TX_USING_DMA */
#ifdef BSP_SPI2_RX_USING_DMA
#ifndef SPI2_RX_DMA_CONFIG
#define SPI2_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI2_RX_DMA_RCC, \
.Instance = SPI2_RX_DMA_INSTANCE, \
.channel = SPI2_RX_DMA_CHANNEL, \
.dma_irq = SPI2_RX_DMA_IRQ, \
}
#endif /* SPI2_RX_DMA_CONFIG */
#endif /* BSP_SPI2_RX_USING_DMA */
#ifdef BSP_USING_SPI3
#ifndef SPI3_BUS_CONFIG
#define SPI3_BUS_CONFIG \
{ \
.Instance = SPI3, \
.bus_name = "spi3", \
}
#endif /* SPI3_BUS_CONFIG */
#endif /* BSP_USING_SPI3 */
#ifdef BSP_SPI3_TX_USING_DMA
#ifndef SPI3_TX_DMA_CONFIG
#define SPI3_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI3_TX_DMA_RCC, \
.Instance = SPI3_TX_DMA_INSTANCE, \
.channel = SPI3_TX_DMA_CHANNEL, \
.dma_irq = SPI3_TX_DMA_IRQ, \
}
#endif /* SPI3_TX_DMA_CONFIG */
#endif /* BSP_SPI3_TX_USING_DMA */
#ifdef BSP_SPI3_RX_USING_DMA
#ifndef SPI3_RX_DMA_CONFIG
#define SPI3_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI3_RX_DMA_RCC, \
.Instance = SPI3_RX_DMA_INSTANCE, \
.channel = SPI3_RX_DMA_CHANNEL, \
.dma_irq = SPI3_RX_DMA_IRQ, \
}
#endif /* SPI3_RX_DMA_CONFIG */
#endif /* BSP_SPI3_RX_USING_DMA */
#ifdef BSP_USING_SPI4
#ifndef SPI4_BUS_CONFIG
#define SPI4_BUS_CONFIG \
{ \
.Instance = SPI4, \
.bus_name = "spi4", \
}
#endif /* SPI4_BUS_CONFIG */
#endif /* BSP_USING_SPI4 */
#ifdef BSP_SPI4_TX_USING_DMA
#ifndef SPI4_TX_DMA_CONFIG
#define SPI4_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI4_TX_DMA_RCC, \
.Instance = SPI4_TX_DMA_INSTANCE, \
.channel = SPI4_TX_DMA_CHANNEL, \
.dma_irq = SPI4_TX_DMA_IRQ, \
}
#endif /* SPI4_TX_DMA_CONFIG */
#endif /* BSP_SPI4_TX_USING_DMA */
#ifdef BSP_SPI4_RX_USING_DMA
#ifndef SPI4_RX_DMA_CONFIG
#define SPI4_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI4_RX_DMA_RCC, \
.Instance = SPI4_RX_DMA_INSTANCE, \
.channel = SPI4_RX_DMA_CHANNEL, \
.dma_irq = SPI4_RX_DMA_IRQ, \
}
#endif /* SPI4_RX_DMA_CONFIG */
#endif /* BSP_SPI4_RX_USING_DMA */
#ifdef BSP_USING_SPI5
#ifndef SPI5_BUS_CONFIG
#define SPI5_BUS_CONFIG \
{ \
.Instance = SPI5, \
.bus_name = "spi5", \
}
#endif /* SPI5_BUS_CONFIG */
#endif /* BSP_USING_SPI5 */
#ifdef BSP_SPI5_TX_USING_DMA
#ifndef SPI5_TX_DMA_CONFIG
#define SPI5_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI5_TX_DMA_RCC, \
.Instance = SPI5_TX_DMA_INSTANCE, \
.channel = SPI5_TX_DMA_CHANNEL, \
.dma_irq = SPI5_TX_DMA_IRQ, \
}
#endif /* SPI5_TX_DMA_CONFIG */
#endif /* BSP_SPI5_TX_USING_DMA */
#ifdef BSP_SPI5_RX_USING_DMA
#ifndef SPI5_RX_DMA_CONFIG
#define SPI5_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI5_RX_DMA_RCC, \
.Instance = SPI5_RX_DMA_INSTANCE, \
.channel = SPI5_RX_DMA_CHANNEL, \
.dma_irq = SPI5_RX_DMA_IRQ, \
}
#endif /* SPI5_RX_DMA_CONFIG */
#endif /* BSP_SPI5_RX_USING_DMA */
#ifdef __cplusplus
}
#endif
#endif /*__SPI_CONFIG_H__ */

View File

@ -0,0 +1,78 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-11 zylx first version
*/
#ifndef __TIM_CONFIG_H__
#define __TIM_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef TIM_DEV_INFO_CONFIG
#define TIM_DEV_INFO_CONFIG \
{ \
.maxfreq = 1000000, \
.minfreq = 3000, \
.maxcnt = 0xFFFF, \
.cntmode = HWTIMER_CNTMODE_UP, \
}
#endif /* TIM_DEV_INFO_CONFIG */
#ifdef BSP_USING_TIM3
#ifndef TIM3_CONFIG
#define TIM3_CONFIG \
{ \
.tim_handle.Instance = TIM3, \
.tim_irqn = TIM3_IRQn, \
.name = "timer3", \
}
#endif /* TIM3_CONFIG */
#endif /* BSP_USING_TIM3 */
#ifdef BSP_USING_TIM11
#ifndef TIM11_CONFIG
#define TIM11_CONFIG \
{ \
.tim_handle.Instance = TIM11, \
.tim_irqn = TIM1_TRG_COM_TIM11_IRQn, \
.name = "timer11", \
}
#endif /* TIM11_CONFIG */
#endif /* BSP_USING_TIM11 */
#ifdef BSP_USING_TIM13
#ifndef TIM13_CONFIG
#define TIM13_CONFIG \
{ \
.tim_handle.Instance = TIM13, \
.tim_irqn = TIM8_UP_TIM13_IRQn, \
.name = "timer13", \
}
#endif /* TIM13_CONFIG */
#endif /* BSP_USING_TIM13 */
#ifdef BSP_USING_TIM14
#ifndef TIM14_CONFIG
#define TIM14_CONFIG \
{ \
.tim_handle.Instance = TIM14, \
.tim_irqn = TIM8_TRG_COM_TIM14_IRQn, \
.name = "timer14", \
}
#endif /* TIM14_CONFIG */
#endif /* BSP_USING_TIM14 */
#ifdef __cplusplus
}
#endif
#endif /* __TIM_CONFIG_H__ */

View File

@ -0,0 +1,322 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-10-30 SummerGift first version
* 2019-01-03 zylx modify dma support
*/
#ifndef __UART_CONFIG_H__
#define __UART_CONFIG_H__
#include <rtthread.h>
#include <board.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(BSP_USING_UART1)
#ifndef UART1_CONFIG
#define UART1_CONFIG \
{ \
.name = "uart1", \
.Instance = USART1, \
.irq_type = USART1_IRQn, \
.tx_pin_name = BSP_UART1_TX_PIN, \
.rx_pin_name = BSP_UART1_RX_PIN, \
}
#endif /* UART1_CONFIG */
#if defined(BSP_UART1_RX_USING_DMA)
#ifndef UART1_DMA_RX_CONFIG
#define UART1_DMA_RX_CONFIG \
{ \
.Instance = UART1_RX_DMA_INSTANCE, \
.channel = UART1_RX_DMA_CHANNEL, \
.dma_rcc = UART1_RX_DMA_RCC, \
.dma_irq = UART1_RX_DMA_IRQ, \
}
#endif /* UART1_DMA_RX_CONFIG */
#endif /* BSP_UART1_RX_USING_DMA */
#if defined(BSP_UART1_TX_USING_DMA)
#ifndef UART1_DMA_TX_CONFIG
#define UART1_DMA_TX_CONFIG \
{ \
.Instance = UART1_TX_DMA_INSTANCE, \
.channel = UART1_TX_DMA_CHANNEL, \
.dma_rcc = UART1_TX_DMA_RCC, \
.dma_irq = UART1_TX_DMA_IRQ, \
}
#endif /* UART1_DMA_TX_CONFIG */
#endif /* BSP_UART1_TX_USING_DMA */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
#ifndef UART2_CONFIG
#define UART2_CONFIG \
{ \
.name = "uart2", \
.Instance = USART2, \
.irq_type = USART2_IRQn, \
.tx_pin_name = BSP_UART2_TX_PIN, \
.rx_pin_name = BSP_UART2_RX_PIN, \
}
#endif /* UART2_CONFIG */
#if defined(BSP_UART2_RX_USING_DMA)
#ifndef UART2_DMA_RX_CONFIG
#define UART2_DMA_RX_CONFIG \
{ \
.Instance = UART2_RX_DMA_INSTANCE, \
.channel = UART2_RX_DMA_CHANNEL, \
.dma_rcc = UART2_RX_DMA_RCC, \
.dma_irq = UART2_RX_DMA_IRQ, \
}
#endif /* UART2_DMA_RX_CONFIG */
#endif /* BSP_UART2_RX_USING_DMA */
#if defined(BSP_UART2_TX_USING_DMA)
#ifndef UART2_DMA_TX_CONFIG
#define UART2_DMA_TX_CONFIG \
{ \
.Instance = UART2_TX_DMA_INSTANCE, \
.channel = UART2_TX_DMA_CHANNEL, \
.dma_rcc = UART2_TX_DMA_RCC, \
.dma_irq = UART2_TX_DMA_IRQ, \
}
#endif /* UART2_DMA_TX_CONFIG */
#endif /* BSP_UART2_TX_USING_DMA */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
#ifndef UART3_CONFIG
#define UART3_CONFIG \
{ \
.name = "uart3", \
.Instance = USART3, \
.irq_type = USART3_IRQn, \
.tx_pin_name = BSP_UART3_TX_PIN, \
.rx_pin_name = BSP_UART3_RX_PIN, \
}
#endif /* UART3_CONFIG */
#if defined(BSP_UART3_RX_USING_DMA)
#ifndef UART3_DMA_RX_CONFIG
#define UART3_DMA_RX_CONFIG \
{ \
.Instance = UART3_RX_DMA_INSTANCE, \
.channel = UART3_RX_DMA_CHANNEL, \
.dma_rcc = UART3_RX_DMA_RCC, \
.dma_irq = UART3_RX_DMA_IRQ, \
}
#endif /* UART3_DMA_RX_CONFIG */
#endif /* BSP_UART3_RX_USING_DMA */
#if defined(BSP_UART3_TX_USING_DMA)
#ifndef UART3_DMA_TX_CONFIG
#define UART3_DMA_TX_CONFIG \
{ \
.Instance = UART3_TX_DMA_INSTANCE, \
.channel = UART3_TX_DMA_CHANNEL, \
.dma_rcc = UART3_TX_DMA_RCC, \
.dma_irq = UART3_TX_DMA_IRQ, \
}
#endif /* UART3_DMA_TX_CONFIG */
#endif /* BSP_UART3_TX_USING_DMA */
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
#ifndef UART4_CONFIG
#define UART4_CONFIG \
{ \
.name = "uart4", \
.Instance = UART4, \
.irq_type = UART4_IRQn, \
.tx_pin_name = BSP_UART4_TX_PIN, \
.rx_pin_name = BSP_UART4_RX_PIN, \
}
#endif /* UART4_CONFIG */
#if defined(BSP_UART4_RX_USING_DMA)
#ifndef UART4_DMA_RX_CONFIG
#define UART4_DMA_RX_CONFIG \
{ \
.Instance = UART4_RX_DMA_INSTANCE, \
.channel = UART4_RX_DMA_CHANNEL, \
.dma_rcc = UART4_RX_DMA_RCC, \
.dma_irq = UART4_RX_DMA_IRQ, \
}
#endif /* UART4_DMA_RX_CONFIG */
#endif /* BSP_UART4_RX_USING_DMA */
#if defined(BSP_UART4_TX_USING_DMA)
#ifndef UART4_DMA_TX_CONFIG
#define UART4_DMA_TX_CONFIG \
{ \
.Instance = UART4_TX_DMA_INSTANCE, \
.channel = UART4_TX_DMA_CHANNEL, \
.dma_rcc = UART4_TX_DMA_RCC, \
.dma_irq = UART4_TX_DMA_IRQ, \
}
#endif /* UART4_DMA_TX_CONFIG */
#endif /* BSP_UART4_RX_USING_DMA */
#endif /* BSP_USING_UART4 */
#if defined(BSP_USING_UART5)
#ifndef UART5_CONFIG
#define UART5_CONFIG \
{ \
.name = "uart5", \
.Instance = UART5, \
.irq_type = UART5_IRQn, \
.tx_pin_name = BSP_UART5_TX_PIN, \
.rx_pin_name = BSP_UART5_RX_PIN, \
}
#endif /* UART5_CONFIG */
#if defined(BSP_UART5_RX_USING_DMA)
#ifndef UART5_DMA_RX_CONFIG
#define UART5_DMA_RX_CONFIG \
{ \
.Instance = UART5_RX_DMA_INSTANCE, \
.channel = UART5_RX_DMA_CHANNEL, \
.dma_rcc = UART5_RX_DMA_RCC, \
.dma_irq = UART5_RX_DMA_IRQ, \
}
#endif /* UART5_DMA_RX_CONFIG */
#endif /* BSP_UART5_RX_USING_DMA */
#if defined(BSP_UART5_TX_USING_DMA)
#ifndef UART5_DMA_TX_CONFIG
#define UART5_DMA_TX_CONFIG \
{ \
.Instance = UART5_TX_DMA_INSTANCE, \
.channel = UART5_TX_DMA_CHANNEL, \
.dma_rcc = UART5_TX_DMA_RCC, \
.dma_irq = UART5_TX_DMA_IRQ, \
}
#endif /* UART5_DMA_TX_CONFIG */
#endif /* BSP_UART5_TX_USING_DMA */
#endif /* BSP_USING_UART5 */
#if defined(BSP_USING_UART6)
#ifndef UART6_CONFIG
#define UART6_CONFIG \
{ \
.name = "uart6", \
.Instance = USART6, \
.irq_type = USART6_IRQn, \
.tx_pin_name = BSP_UART6_TX_PIN, \
.rx_pin_name = BSP_UART6_RX_PIN, \
}
#endif /* UART6_CONFIG */
#if defined(BSP_UART6_RX_USING_DMA)
#ifndef UART6_DMA_RX_CONFIG
#define UART6_DMA_RX_CONFIG \
{ \
.Instance = UART6_RX_DMA_INSTANCE, \
.channel = UART6_RX_DMA_CHANNEL, \
.dma_rcc = UART6_RX_DMA_RCC, \
.dma_irq = UART6_RX_DMA_IRQ, \
}
#endif /* UART6_DMA_RX_CONFIG */
#endif /* BSP_UART6_RX_USING_DMA */
#if defined(BSP_UART6_TX_USING_DMA)
#ifndef UART6_DMA_TX_CONFIG
#define UART6_DMA_TX_CONFIG \
{ \
.Instance = UART6_TX_DMA_INSTANCE, \
.channel = UART6_TX_DMA_CHANNEL, \
.dma_rcc = UART6_TX_DMA_RCC, \
.dma_irq = UART6_TX_DMA_IRQ, \
}
#endif /* UART6_DMA_TX_CONFIG */
#endif /* BSP_UART6_TX_USING_DMA */
#endif /* BSP_USING_UART6 */
#if defined(BSP_USING_UART7)
#ifndef UART7_CONFIG
#define UART7_CONFIG \
{ \
.name = "uart7", \
.Instance = UART7, \
.irq_type = UART7_IRQn, \
.tx_pin_name = BSP_UART7_TX_PIN, \
.rx_pin_name = BSP_UART7_RX_PIN, \
}
#endif /* UART7_CONFIG */
#if defined(BSP_UART7_RX_USING_DMA)
#ifndef UART7_DMA_RX_CONFIG
#define UART7_DMA_RX_CONFIG \
{ \
.Instance = UART7_RX_DMA_INSTANCE, \
.channel = UART7_RX_DMA_CHANNEL, \
.dma_rcc = UART7_RX_DMA_RCC, \
.dma_irq = UART7_RX_DMA_IRQ, \
}
#endif /* UART7_DMA_RX_CONFIG */
#endif /* BSP_UART7_RX_USING_DMA */
#if defined(BSP_UART7_TX_USING_DMA)
#ifndef UART7_DMA_TX_CONFIG
#define UART7_DMA_TX_CONFIG \
{ \
.Instance = UART7_TX_DMA_INSTANCE, \
.channel = UART7_TX_DMA_CHANNEL, \
.dma_rcc = UART7_TX_DMA_RCC, \
.dma_irq = UART7_TX_DMA_IRQ, \
}
#endif /* UART7_DMA_TX_CONFIG */
#endif /* BSP_UART7_TX_USING_DMA */
#endif /* BSP_USING_UART7 */
#if defined(BSP_USING_UART8)
#ifndef UART8_CONFIG
#define UART8_CONFIG \
{ \
.name = "uart8", \
.Instance = UART8, \
.irq_type = UART8_IRQn, \
.tx_pin_name = BSP_UART8_TX_PIN, \
.rx_pin_name = BSP_UART8_RX_PIN, \
}
#endif /* UART8_CONFIG */
#if defined(BSP_UART8_RX_USING_DMA)
#ifndef UART8_DMA_RX_CONFIG
#define UART8_DMA_RX_CONFIG \
{ \
.Instance = UART8_RX_DMA_INSTANCE, \
.channel = UART8_RX_DMA_CHANNEL, \
.dma_rcc = UART8_RX_DMA_RCC, \
.dma_irq = UART8_RX_DMA_IRQ, \
}
#endif /* UART8_DMA_RX_CONFIG */
#endif /* BSP_UART8_RX_USING_DMA */
#if defined(BSP_UART8_TX_USING_DMA)
#ifndef UART8_DMA_TX_CONFIG
#define UART8_DMA_TX_CONFIG \
{ \
.Instance = UART8_TX_DMA_INSTANCE, \
.channel = UART8_TX_DMA_CHANNEL, \
.dma_rcc = UART8_TX_DMA_RCC, \
.dma_irq = UART8_TX_DMA_IRQ, \
}
#endif /* UART8_DMA_TX_CONFIG */
#endif /* BSP_UART8_TX_USING_DMA */
#endif /* BSP_USING_UART8 */
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,42 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-04-10 ZYH first version
* 2019-10-27 flybreak Compatible with the HS
*/
#ifndef __USBD_CONFIG_H__
#define __USBD_CONFIG_H__
#include <rtconfig.h>
#ifdef BSP_USBD_TYPE_HS
#define USBD_IRQ_TYPE OTG_HS_IRQn
#define USBD_IRQ_HANDLER OTG_HS_IRQHandler
#define USBD_INSTANCE USB_OTG_HS
#else
#define USBD_IRQ_TYPE OTG_FS_IRQn
#define USBD_IRQ_HANDLER OTG_FS_IRQHandler
#define USBD_INSTANCE USB_OTG_FS
#endif
#ifdef BSP_USBD_SPEED_HS
#define USBD_PCD_SPEED PCD_SPEED_HIGH
#elif BSP_USBD_SPEED_HSINFS
#define USBD_PCD_SPEED PCD_SPEED_HIGH_IN_FULL
#else
#define USBD_PCD_SPEED PCD_SPEED_FULL
#endif
#ifdef BSP_USBD_PHY_ULPI
#define USBD_PCD_PHY_MODULE PCD_PHY_ULPI
#elif BSP_USBD_PHY_UTMI
#define USBD_PCD_PHY_MODULE PCD_PHY_UTMI
#else
#define USBD_PCD_PHY_MODULE PCD_PHY_EMBEDDED
#endif
#endif

View File

@ -0,0 +1,58 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-7 SummerGift first version
*/
#ifndef __DRV_COMMON_H__
#define __DRV_COMMON_H__
#include <rtthread.h>
#include <rthw.h>
#include <board.h>
#include <stm32f4xx.h>
#ifdef __cplusplus
extern "C"
{
#endif
void _Error_Handler(char *s, int num);
#ifndef Error_Handler
#define Error_Handler() _Error_Handler(__FILE__, __LINE__)
#endif
#define DMA_NOT_AVAILABLE ((DMA_INSTANCE_TYPE *)0xFFFFFFFFU)
#define __STM32_PORT(port) GPIO##port##_BASE
#define GET_PIN(PORTx,PIN) (rt_base_t)((16 * ( ((rt_base_t)__STM32_PORT(PORTx) - (rt_base_t)GPIOA_BASE)/(0x0400UL) )) + PIN)
#define STM32_FLASH_START_ADRESS ROM_START
#define STM32_FLASH_SIZE ROM_SIZE
#define STM32_FLASH_END_ADDRESS ROM_END
#define STM32_SRAM1_SIZE RAM_SIZE
#define STM32_SRAM1_START RAM_START
#define STM32_SRAM1_END RAM_END
#if defined(__CC_ARM) || defined(__CLANG_ARM)
extern int Image$RW_IRAM1$ZI$Limit;
#define HEAP_BEGIN ((void *)&Image$RW_IRAM1$ZI$Limit)
#elif __ICCARM__
#pragma section="CSTACK"
#define HEAP_BEGIN (__segment_end("CSTACK"))
#else
extern int __bss_end;
#define HEAP_BEGIN ((void *)&__bss_end)
#endif
#define HEAP_END STM32_SRAM1_END
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,122 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-10-30 SummerGift first version
*/
#ifndef __DRV_CONFIG_H__
#define __DRV_CONFIG_H__
#include <board.h>
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(SOC_SERIES_STM32F0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/tim_config.h"
#include "config/pwm_config.h"
#include "config/adc_config.h"
#elif defined(SOC_SERIES_STM32F1)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#include "config/pulse_encoder_config.h"
#elif defined(SOC_SERIES_STM32F2)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#elif defined(SOC_SERIES_STM32F4)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/usbd_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/pulse_encoder_config.h"
#elif defined(SOC_SERIES_STM32F7)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#elif defined(SOC_SERIES_STM32L0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#elif defined(SOC_SERIES_STM32L1)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#elif defined(SOC_SERIES_STM32L4)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#elif defined(SOC_SERIES_STM32G0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/pwm_config.h"
#elif defined(SOC_SERIES_STM32G4)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/usbd_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/pulse_encoder_config.h"
#elif defined(SOC_SERIES_STM32H7)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#endif
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-10 SummerGift first version
*/
#ifndef __DRV_DMA_H_
#define __DRV_DMA_H_
#include <rtthread.h>
#include <board.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L0) \
||defined(SOC_SERIES_STM32L1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4)
#define DMA_INSTANCE_TYPE DMA_Channel_TypeDef
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)\
|| defined(SOC_SERIES_STM32H7)
#define DMA_INSTANCE_TYPE DMA_Stream_TypeDef
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) */
struct dma_config {
DMA_INSTANCE_TYPE *Instance;
rt_uint32_t dma_rcc;
IRQn_Type dma_irq;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
rt_uint32_t channel;
#endif
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4)
rt_uint32_t request;
#endif
};
#ifdef __cplusplus
}
#endif
#endif /*__DRV_DMA_H_ */

View File

@ -0,0 +1,92 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-25 zylx first version
*/
#ifndef __DRV_ETH_H__
#define __DRV_ETH_H__
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#include <board.h>
/* The PHY basic control register */
#define PHY_BASIC_CONTROL_REG 0x00U
#define PHY_RESET_MASK (1<<15)
#define PHY_AUTO_NEGOTIATION_MASK (1<<12)
/* The PHY basic status register */
#define PHY_BASIC_STATUS_REG 0x01U
#define PHY_LINKED_STATUS_MASK (1<<2)
#define PHY_AUTONEGO_COMPLETE_MASK (1<<5)
/* The PHY ID one register */
#define PHY_ID1_REG 0x02U
/* The PHY ID two register */
#define PHY_ID2_REG 0x03U
/* The PHY auto-negotiate advertise register */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U
#ifdef PHY_USING_LAN8720A
/* The PHY interrupt source flag register. */
#define PHY_INTERRUPT_FLAG_REG 0x1DU
/* The PHY interrupt mask register. */
#define PHY_INTERRUPT_MASK_REG 0x1EU
#define PHY_LINK_DOWN_MASK (1<<4)
#define PHY_AUTO_NEGO_COMPLETE_MASK (1<<6)
/* The PHY status register. */
#define PHY_Status_REG 0x1FU
#define PHY_10M_MASK (1<<2)
#define PHY_100M_MASK (1<<3)
#define PHY_FULL_DUPLEX_MASK (1<<4)
#define PHY_Status_SPEED_10M(sr) ((sr) & PHY_10M_MASK)
#define PHY_Status_SPEED_100M(sr) ((sr) & PHY_100M_MASK)
#define PHY_Status_FULL_DUPLEX(sr) ((sr) & PHY_FULL_DUPLEX_MASK)
#endif /* PHY_USING_LAN8720A */
#ifdef PHY_USING_DM9161CEP
#define PHY_Status_REG 0x11U
#define PHY_10M_MASK ((1<<12) || (1<<13))
#define PHY_100M_MASK ((1<<14) || (1<<15))
#define PHY_FULL_DUPLEX_MASK ((1<<15) || (1<<13))
#define PHY_Status_SPEED_10M(sr) ((sr) & PHY_10M_MASK)
#define PHY_Status_SPEED_100M(sr) ((sr) & PHY_100M_MASK)
#define PHY_Status_FULL_DUPLEX(sr) ((sr) & PHY_FULL_DUPLEX_MASK)
/* The PHY interrupt source flag register. */
#define PHY_INTERRUPT_FLAG_REG 0x15U
/* The PHY interrupt mask register. */
#define PHY_INTERRUPT_MASK_REG 0x15U
#define PHY_LINK_CHANGE_FLAG (1<<2)
#define PHY_LINK_CHANGE_MASK (1<<9)
#define PHY_INT_MASK 0
#endif /* PHY_USING_DM9161CEP */
#ifdef PHY_USING_DP83848C
#define PHY_Status_REG 0x10U
#define PHY_10M_MASK (1<<1)
#define PHY_FULL_DUPLEX_MASK (1<<2)
#define PHY_Status_SPEED_10M(sr) ((sr) & PHY_10M_MASK)
#define PHY_Status_SPEED_100M(sr) (!PHY_Status_SPEED_10M(sr))
#define PHY_Status_FULL_DUPLEX(sr) ((sr) & PHY_FULL_DUPLEX_MASK)
/* The PHY interrupt source flag register. */
#define PHY_INTERRUPT_FLAG_REG 0x12U
#define PHY_LINK_CHANGE_FLAG (1<<13)
/* The PHY interrupt control register. */
#define PHY_INTERRUPT_CTRL_REG 0x11U
#define PHY_INTERRUPT_EN ((1<<0)|(1<<1))
/* The PHY interrupt mask register. */
#define PHY_INTERRUPT_MASK_REG 0x12U
#define PHY_INT_MASK (1<<5)
#endif /* PHY_USING_DP83848C */
#endif /* __DRV_ETH_H__ */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-5 SummerGift first version
*/
#ifndef __DRV_FLASH_H__
#define __DRV_FLASH_H__
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#ifdef __cplusplus
extern "C" {
#endif
int stm32_flash_read(rt_uint32_t addr, rt_uint8_t *buf, size_t size);
int stm32_flash_write(rt_uint32_t addr, const rt_uint8_t *buf, size_t size);
int stm32_flash_erase(rt_uint32_t addr, size_t size);
#ifdef __cplusplus
}
#endif
#endif /* __DRV_FLASH_H__ */

View File

@ -0,0 +1,27 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-15 SummerGift first version
*/
/*
* NOTE: DO NOT include this file on the header file.
*/
#ifndef LOG_TAG
#define DBG_TAG "drv"
#else
#define DBG_TAG LOG_TAG
#endif /* LOG_TAG */
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>

View File

@ -0,0 +1,17 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-27 zylx first version
*/
#ifndef __DRV_QSPI_H_
#define __DRV_QSPI_H_
#include <rtthread.h>
rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)());
#endif

View File

@ -0,0 +1,200 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 BalanceTWK first version
* 2019-06-11 WillianChan Add SD card hot plug detection
*/
#ifndef _DRV_SDIO_H
#define _DRV_SDIO_H
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include "drv_dma.h"
#include <string.h>
#include <drivers/mmcsd_core.h>
#include <drivers/sdio.h>
#ifdef BSP_USING_SDIO
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4)
#define SDCARD_INSTANCE_TYPE SDIO_TypeDef
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7)
#define SDCARD_INSTANCE_TYPE SDMMC_TypeDef
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) */
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4)
#define SDCARD_INSTANCE SDIO
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7)
#define SDCARD_INSTANCE SDMMC1
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) */
#define SDIO_BUFF_SIZE 4096
#define SDIO_ALIGN_LEN 32
#ifndef SDIO_MAX_FREQ
#define SDIO_MAX_FREQ (1000000)
#endif
#ifndef SDIO_BASE_ADDRESS
#define SDIO_BASE_ADDRESS (0x40012800U)
#endif
#ifndef SDIO_CLOCK_FREQ
#define SDIO_CLOCK_FREQ (48U * 1000 * 1000)
#endif
#ifndef SDIO_BUFF_SIZE
#define SDIO_BUFF_SIZE (4096)
#endif
#ifndef SDIO_ALIGN_LEN
#define SDIO_ALIGN_LEN (32)
#endif
#ifndef SDIO_MAX_FREQ
#define SDIO_MAX_FREQ (24 * 1000 * 1000)
#endif
#define HW_SDIO_IT_CCRCFAIL (0x01U << 0)
#define HW_SDIO_IT_DCRCFAIL (0x01U << 1)
#define HW_SDIO_IT_CTIMEOUT (0x01U << 2)
#define HW_SDIO_IT_DTIMEOUT (0x01U << 3)
#define HW_SDIO_IT_TXUNDERR (0x01U << 4)
#define HW_SDIO_IT_RXOVERR (0x01U << 5)
#define HW_SDIO_IT_CMDREND (0x01U << 6)
#define HW_SDIO_IT_CMDSENT (0x01U << 7)
#define HW_SDIO_IT_DATAEND (0x01U << 8)
#define HW_SDIO_IT_STBITERR (0x01U << 9)
#define HW_SDIO_IT_DBCKEND (0x01U << 10)
#define HW_SDIO_IT_CMDACT (0x01U << 11)
#define HW_SDIO_IT_TXACT (0x01U << 12)
#define HW_SDIO_IT_RXACT (0x01U << 13)
#define HW_SDIO_IT_TXFIFOHE (0x01U << 14)
#define HW_SDIO_IT_RXFIFOHF (0x01U << 15)
#define HW_SDIO_IT_TXFIFOF (0x01U << 16)
#define HW_SDIO_IT_RXFIFOF (0x01U << 17)
#define HW_SDIO_IT_TXFIFOE (0x01U << 18)
#define HW_SDIO_IT_RXFIFOE (0x01U << 19)
#define HW_SDIO_IT_TXDAVL (0x01U << 20)
#define HW_SDIO_IT_RXDAVL (0x01U << 21)
#define HW_SDIO_IT_SDIOIT (0x01U << 22)
#define HW_SDIO_ERRORS \
(HW_SDIO_IT_CCRCFAIL | HW_SDIO_IT_CTIMEOUT | \
HW_SDIO_IT_DCRCFAIL | HW_SDIO_IT_DTIMEOUT | \
HW_SDIO_IT_RXOVERR | HW_SDIO_IT_TXUNDERR)
#define HW_SDIO_POWER_OFF (0x00U)
#define HW_SDIO_POWER_UP (0x02U)
#define HW_SDIO_POWER_ON (0x03U)
#define HW_SDIO_FLOW_ENABLE (0x01U << 14)
#define HW_SDIO_BUSWIDE_1B (0x00U << 11)
#define HW_SDIO_BUSWIDE_4B (0x01U << 11)
#define HW_SDIO_BUSWIDE_8B (0x02U << 11)
#define HW_SDIO_BYPASS_ENABLE (0x01U << 10)
#define HW_SDIO_IDLE_ENABLE (0x01U << 9)
#define HW_SDIO_CLK_ENABLE (0x01U << 8)
#define HW_SDIO_SUSPEND_CMD (0x01U << 11)
#define HW_SDIO_CPSM_ENABLE (0x01U << 10)
#define HW_SDIO_WAIT_END (0x01U << 9)
#define HW_SDIO_WAIT_INT (0x01U << 8)
#define HW_SDIO_RESPONSE_NO (0x00U << 6)
#define HW_SDIO_RESPONSE_SHORT (0x01U << 6)
#define HW_SDIO_RESPONSE_LONG (0x03U << 6)
#define HW_SDIO_DATA_LEN_MASK (0x01FFFFFFU)
#define HW_SDIO_IO_ENABLE (0x01U << 11)
#define HW_SDIO_RWMOD_CK (0x01U << 10)
#define HW_SDIO_RWSTOP_ENABLE (0x01U << 9)
#define HW_SDIO_RWSTART_ENABLE (0x01U << 8)
#define HW_SDIO_DBLOCKSIZE_1 (0x00U << 4)
#define HW_SDIO_DBLOCKSIZE_2 (0x01U << 4)
#define HW_SDIO_DBLOCKSIZE_4 (0x02U << 4)
#define HW_SDIO_DBLOCKSIZE_8 (0x03U << 4)
#define HW_SDIO_DBLOCKSIZE_16 (0x04U << 4)
#define HW_SDIO_DBLOCKSIZE_32 (0x05U << 4)
#define HW_SDIO_DBLOCKSIZE_64 (0x06U << 4)
#define HW_SDIO_DBLOCKSIZE_128 (0x07U << 4)
#define HW_SDIO_DBLOCKSIZE_256 (0x08U << 4)
#define HW_SDIO_DBLOCKSIZE_512 (0x09U << 4)
#define HW_SDIO_DBLOCKSIZE_1024 (0x0AU << 4)
#define HW_SDIO_DBLOCKSIZE_2048 (0x0BU << 4)
#define HW_SDIO_DBLOCKSIZE_4096 (0x0CU << 4)
#define HW_SDIO_DBLOCKSIZE_8192 (0x0DU << 4)
#define HW_SDIO_DBLOCKSIZE_16384 (0x0EU << 4)
#define HW_SDIO_DMA_ENABLE (0x01U << 3)
#define HW_SDIO_STREAM_ENABLE (0x01U << 2)
#define HW_SDIO_TO_HOST (0x01U << 1)
#define HW_SDIO_DPSM_ENABLE (0x01U << 0)
#define HW_SDIO_DATATIMEOUT (0xF0000000U)
struct stm32_sdio
{
volatile rt_uint32_t power;
volatile rt_uint32_t clkcr;
volatile rt_uint32_t arg;
volatile rt_uint32_t cmd;
volatile rt_uint32_t respcmd;
volatile rt_uint32_t resp1;
volatile rt_uint32_t resp2;
volatile rt_uint32_t resp3;
volatile rt_uint32_t resp4;
volatile rt_uint32_t dtimer;
volatile rt_uint32_t dlen;
volatile rt_uint32_t dctrl;
volatile rt_uint32_t dcount;
volatile rt_uint32_t sta;
volatile rt_uint32_t icr;
volatile rt_uint32_t mask;
volatile rt_uint32_t reserved0[2];
volatile rt_uint32_t fifocnt;
volatile rt_uint32_t reserved1[13];
volatile rt_uint32_t fifo;
};
typedef rt_err_t (*dma_txconfig)(rt_uint32_t *src, rt_uint32_t *dst, int size);
typedef rt_err_t (*dma_rxconfig)(rt_uint32_t *src, rt_uint32_t *dst, int size);
typedef rt_uint32_t (*sdio_clk_get)(struct stm32_sdio *hw_sdio);
struct stm32_sdio_des
{
struct stm32_sdio *hw_sdio;
dma_txconfig txconfig;
dma_rxconfig rxconfig;
sdio_clk_get clk_get;
};
struct stm32_sdio_config
{
SDCARD_INSTANCE_TYPE *Instance;
struct dma_config dma_rx, dma_tx;
};
/* stm32 sdio dirver class */
struct stm32_sdio_class
{
struct stm32_sdio_des *des;
const struct stm32_sdio_config *cfg;
struct rt_mmcsd_host host;
struct
{
DMA_HandleTypeDef handle_rx;
DMA_HandleTypeDef handle_tx;
} dma;
};
extern void stm32_mmcsd_change(void);
#endif
#endif /* BSP_USING_SDIO */

View File

@ -0,0 +1,73 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-08 balanceTWK first version
*/
#ifndef __DRV_I2C__
#define __DRV_I2C__
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#ifdef RT_USING_I2C
/* stm32 config class */
struct stm32_soft_i2c_config
{
rt_uint8_t scl;
rt_uint8_t sda;
const char *bus_name;
};
/* stm32 i2c dirver class */
struct stm32_i2c
{
struct rt_i2c_bit_ops ops;
struct rt_i2c_bus_device i2c2_bus;
};
#ifdef BSP_USING_I2C1
#define I2C1_BUS_CONFIG \
{ \
.scl = BSP_I2C1_SCL_PIN, \
.sda = BSP_I2C1_SDA_PIN, \
.bus_name = "i2c1", \
}
#endif
#ifdef BSP_USING_I2C2
#define I2C2_BUS_CONFIG \
{ \
.scl = BSP_I2C2_SCL_PIN, \
.sda = BSP_I2C2_SDA_PIN, \
.bus_name = "i2c2", \
}
#endif
#ifdef BSP_USING_I2C3
#define I2C3_BUS_CONFIG \
{ \
.scl = BSP_I2C3_SCL_PIN, \
.sda = BSP_I2C3_SDA_PIN, \
.bus_name = "i2c3", \
}
#endif
#ifdef BSP_USING_I2C4
#define I2C4_BUS_CONFIG \
{ \
.scl = BSP_I2C4_SCL_PIN, \
.sda = BSP_I2C4_SDA_PIN, \
.bus_name = "i2c4", \
}
#endif
int rt_hw_i2c_init(void);
#endif
#endif /* RT_USING_I2C */

View File

@ -0,0 +1,62 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift first version
*/
#ifndef __DRV_SPI_H_
#define __DRV_SPI_H_
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include "drv_dma.h"
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef* cs_gpiox, uint16_t cs_gpio_pin);
struct stm32_hw_spi_cs
{
GPIO_TypeDef* GPIOx;
uint16_t GPIO_Pin;
};
struct stm32_spi_config
{
SPI_TypeDef *Instance;
char *bus_name;
struct dma_config *dma_rx, *dma_tx;
};
struct stm32_spi_device
{
rt_uint32_t pin;
char *bus_name;
char *device_name;
};
#define SPI_USING_RX_DMA_FLAG (1<<0)
#define SPI_USING_TX_DMA_FLAG (1<<1)
/* stm32 spi dirver class */
struct stm32_spi
{
SPI_HandleTypeDef handle;
struct stm32_spi_config *config;
struct rt_spi_configuration *cfg;
struct
{
DMA_HandleTypeDef handle_rx;
DMA_HandleTypeDef handle_tx;
} dma;
rt_uint8_t spi_dma_flag;
struct rt_spi_bus spi_bus;
};
#endif /*__DRV_SPI_H_ */

View File

@ -0,0 +1,21 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-12-12 ZYH the first version
* 2019-12-19 tyustli port to stm32 series
*/
#ifndef __DRV_USBH_H__
#define __DRV_USBH_H__
#include <rtthread.h>
#define OTG_FS_PORT 1
int stm_usbh_register(void);
#endif
/************* end of file ************/

View File

@ -0,0 +1,451 @@
/**
******************************************************************************
* @file stm32f4xx_hal_conf.h
* @brief HAL configuration file.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2018 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_HAL_CONF_H
#define __STM32F4xx_HAL_CONF_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* ########################## Module Selection ############################## */
/**
* @brief This is the list of modules to be used in the HAL driver
*/
#define HAL_MODULE_ENABLED
/* #define HAL_ADC_MODULE_ENABLED */
/* #define HAL_CRYP_MODULE_ENABLED */
/* #define HAL_CAN_MODULE_ENABLED */
/* #define HAL_CRC_MODULE_ENABLED */
/* #define HAL_CRYP_MODULE_ENABLED */
/* #define HAL_DAC_MODULE_ENABLED */
/* #define HAL_DCMI_MODULE_ENABLED */
/* #define HAL_DMA2D_MODULE_ENABLED */
/* #define HAL_ETH_MODULE_ENABLED */
/* #define HAL_NAND_MODULE_ENABLED */
/* #define HAL_NOR_MODULE_ENABLED */
/* #define HAL_PCCARD_MODULE_ENABLED */
/* #define HAL_SRAM_MODULE_ENABLED */
#define HAL_SDRAM_MODULE_ENABLED
/* #define HAL_HASH_MODULE_ENABLED */
/* #define HAL_I2C_MODULE_ENABLED */
/* #define HAL_I2S_MODULE_ENABLED */
/* #define HAL_IWDG_MODULE_ENABLED */
#define HAL_LTDC_MODULE_ENABLED
/* #define HAL_RNG_MODULE_ENABLED */
/* #define HAL_RTC_MODULE_ENABLED */
/* #define HAL_SAI_MODULE_ENABLED */
/* #define HAL_SD_MODULE_ENABLED */
/* #define HAL_MMC_MODULE_ENABLED */
/* #define HAL_SPI_MODULE_ENABLED */
/* #define HAL_TIM_MODULE_ENABLED */
#define HAL_UART_MODULE_ENABLED
/* #define HAL_USART_MODULE_ENABLED */
/* #define HAL_IRDA_MODULE_ENABLED */
/* #define HAL_SMARTCARD_MODULE_ENABLED */
/* #define HAL_WWDG_MODULE_ENABLED */
/* #define HAL_PCD_MODULE_ENABLED */
/* #define HAL_HCD_MODULE_ENABLED */
/* #define HAL_DSI_MODULE_ENABLED */
/* #define HAL_QSPI_MODULE_ENABLED */
/* #define HAL_QSPI_MODULE_ENABLED */
/* #define HAL_CEC_MODULE_ENABLED */
/* #define HAL_FMPI2C_MODULE_ENABLED */
/* #define HAL_SPDIFRX_MODULE_ENABLED */
/* #define HAL_DFSDM_MODULE_ENABLED */
/* #define HAL_LPTIM_MODULE_ENABLED */
/* #define HAL_EXTI_MODULE_ENABLED */
#define HAL_GPIO_MODULE_ENABLED
#define HAL_DMA_MODULE_ENABLED
#define HAL_RCC_MODULE_ENABLED
#define HAL_FLASH_MODULE_ENABLED
#define HAL_PWR_MODULE_ENABLED
#define HAL_CORTEX_MODULE_ENABLED
/* ########################## HSE/HSI Values adaptation ##################### */
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000U) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSE_STARTUP_TIMEOUT)
#define HSE_STARTUP_TIMEOUT ((uint32_t)100U) /*!< Time out for HSE start up, in ms */
#endif /* HSE_STARTUP_TIMEOUT */
/**
* @brief Internal High Speed oscillator (HSI) value.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSI is used as system clock source, directly or through the PLL).
*/
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @brief Internal Low Speed oscillator (LSI) value.
*/
#if !defined (LSI_VALUE)
#define LSI_VALUE ((uint32_t)32000U) /*!< LSI Typical Value in Hz*/
#endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz
The real value may vary depending on the variations
in voltage and temperature.*/
/**
* @brief External Low Speed oscillator (LSE) value.
*/
#if !defined (LSE_VALUE)
#define LSE_VALUE ((uint32_t)32768U) /*!< Value of the External Low Speed oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSE_STARTUP_TIMEOUT)
#define LSE_STARTUP_TIMEOUT ((uint32_t)5000U) /*!< Time out for LSE start up, in ms */
#endif /* LSE_STARTUP_TIMEOUT */
/**
* @brief External clock source for I2S peripheral
* This value is used by the I2S HAL module to compute the I2S clock source
* frequency, this source is inserted directly through I2S_CKIN pad.
*/
#if !defined (EXTERNAL_CLOCK_VALUE)
#define EXTERNAL_CLOCK_VALUE ((uint32_t)12288000U) /*!< Value of the External audio frequency in Hz*/
#endif /* EXTERNAL_CLOCK_VALUE */
/* Tip: To avoid modifying this file each time you need to use different HSE,
=== you can define the HSE value in your toolchain compiler preprocessor. */
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
#define VDD_VALUE ((uint32_t)3300U) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)0U) /*!< tick interrupt priority */
#define USE_RTOS 0U
#define PREFETCH_ENABLE 1U
#define INSTRUCTION_CACHE_ENABLE 1U
#define DATA_CACHE_ENABLE 1U
/* ########################## Assert Selection ############################## */
/**
* @brief Uncomment the line below to expanse the "assert_param" macro in the
* HAL drivers code
*/
/* #define USE_FULL_ASSERT 1U */
/* ################## Ethernet peripheral configuration ##################### */
/* Section 1 : Ethernet peripheral configuration */
/* MAC ADDRESS: MAC_ADDR0:MAC_ADDR1:MAC_ADDR2:MAC_ADDR3:MAC_ADDR4:MAC_ADDR5 */
#define MAC_ADDR0 2U
#define MAC_ADDR1 0U
#define MAC_ADDR2 0U
#define MAC_ADDR3 0U
#define MAC_ADDR4 0U
#define MAC_ADDR5 0U
/* Definition of the Ethernet driver buffers size and count */
#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
#define ETH_RXBUFNB ((uint32_t)4U) /* 4 Rx buffers of size ETH_RX_BUF_SIZE */
#define ETH_TXBUFNB ((uint32_t)4U) /* 4 Tx buffers of size ETH_TX_BUF_SIZE */
/* Section 2: PHY configuration section */
/* DP83848_PHY_ADDRESS Address*/
#define DP83848_PHY_ADDRESS 0x01U
/* PHY Reset delay these values are based on a 1 ms Systick interrupt*/
#define PHY_RESET_DELAY ((uint32_t)0x000000FFU)
/* PHY Configuration delay */
#define PHY_CONFIG_DELAY ((uint32_t)0x00000FFFU)
#define PHY_READ_TO ((uint32_t)0x0000FFFFU)
#define PHY_WRITE_TO ((uint32_t)0x0000FFFFU)
/* Section 3: Common PHY Registers */
#define PHY_BCR ((uint16_t)0x0000U) /*!< Transceiver Basic Control Register */
#define PHY_BSR ((uint16_t)0x0001U) /*!< Transceiver Basic Status Register */
#define PHY_RESET ((uint16_t)0x8000U) /*!< PHY Reset */
#define PHY_LOOPBACK ((uint16_t)0x4000U) /*!< Select loop-back mode */
#define PHY_FULLDUPLEX_100M ((uint16_t)0x2100U) /*!< Set the full-duplex mode at 100 Mb/s */
#define PHY_HALFDUPLEX_100M ((uint16_t)0x2000U) /*!< Set the half-duplex mode at 100 Mb/s */
#define PHY_FULLDUPLEX_10M ((uint16_t)0x0100U) /*!< Set the full-duplex mode at 10 Mb/s */
#define PHY_HALFDUPLEX_10M ((uint16_t)0x0000U) /*!< Set the half-duplex mode at 10 Mb/s */
#define PHY_AUTONEGOTIATION ((uint16_t)0x1000U) /*!< Enable auto-negotiation function */
#define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200U) /*!< Restart auto-negotiation function */
#define PHY_POWERDOWN ((uint16_t)0x0800U) /*!< Select the power down mode */
#define PHY_ISOLATE ((uint16_t)0x0400U) /*!< Isolate PHY from MII */
#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020U) /*!< Auto-Negotiation process completed */
#define PHY_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
#define PHY_JABBER_DETECTION ((uint16_t)0x0002U) /*!< Jabber condition detected */
/* Section 4: Extended PHY Registers */
#define PHY_SR ((uint16_t)0x10U) /*!< PHY status register Offset */
#define PHY_SPEED_STATUS ((uint16_t)0x0002U) /*!< PHY Speed mask */
#define PHY_DUPLEX_STATUS ((uint16_t)0x0004U) /*!< PHY Duplex mask */
/* ################## SPI peripheral configuration ########################## */
/* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver
* Activated: CRC code is present inside driver
* Deactivated: CRC code cleaned from driver
*/
#define USE_SPI_CRC 0U
/* Includes ------------------------------------------------------------------*/
/**
* @brief Include module's header file
*/
#ifdef HAL_RCC_MODULE_ENABLED
#include "stm32f4xx_hal_rcc.h"
#endif /* HAL_RCC_MODULE_ENABLED */
#ifdef HAL_EXTI_MODULE_ENABLED
#include "stm32f4xx_hal_exti.h"
#endif /* HAL_EXTI_MODULE_ENABLED */
#ifdef HAL_GPIO_MODULE_ENABLED
#include "stm32f4xx_hal_gpio.h"
#endif /* HAL_GPIO_MODULE_ENABLED */
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f4xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32f4xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
#include "stm32f4xx_hal_adc.h"
#endif /* HAL_ADC_MODULE_ENABLED */
#ifdef HAL_CAN_MODULE_ENABLED
#include "stm32f4xx_hal_can.h"
#endif /* HAL_CAN_MODULE_ENABLED */
#ifdef HAL_CRC_MODULE_ENABLED
#include "stm32f4xx_hal_crc.h"
#endif /* HAL_CRC_MODULE_ENABLED */
#ifdef HAL_CRYP_MODULE_ENABLED
#include "stm32f4xx_hal_cryp.h"
#endif /* HAL_CRYP_MODULE_ENABLED */
#ifdef HAL_DMA2D_MODULE_ENABLED
#include "stm32f4xx_hal_dma2d.h"
#endif /* HAL_DMA2D_MODULE_ENABLED */
#ifdef HAL_DAC_MODULE_ENABLED
#include "stm32f4xx_hal_dac.h"
#endif /* HAL_DAC_MODULE_ENABLED */
#ifdef HAL_DCMI_MODULE_ENABLED
#include "stm32f4xx_hal_dcmi.h"
#endif /* HAL_DCMI_MODULE_ENABLED */
#ifdef HAL_ETH_MODULE_ENABLED
#include "stm32f4xx_hal_eth.h"
#endif /* HAL_ETH_MODULE_ENABLED */
#ifdef HAL_FLASH_MODULE_ENABLED
#include "stm32f4xx_hal_flash.h"
#endif /* HAL_FLASH_MODULE_ENABLED */
#ifdef HAL_SRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sram.h"
#endif /* HAL_SRAM_MODULE_ENABLED */
#ifdef HAL_NOR_MODULE_ENABLED
#include "stm32f4xx_hal_nor.h"
#endif /* HAL_NOR_MODULE_ENABLED */
#ifdef HAL_NAND_MODULE_ENABLED
#include "stm32f4xx_hal_nand.h"
#endif /* HAL_NAND_MODULE_ENABLED */
#ifdef HAL_PCCARD_MODULE_ENABLED
#include "stm32f4xx_hal_pccard.h"
#endif /* HAL_PCCARD_MODULE_ENABLED */
#ifdef HAL_SDRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sdram.h"
#endif /* HAL_SDRAM_MODULE_ENABLED */
#ifdef HAL_HASH_MODULE_ENABLED
#include "stm32f4xx_hal_hash.h"
#endif /* HAL_HASH_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
#include "stm32f4xx_hal_i2c.h"
#endif /* HAL_I2C_MODULE_ENABLED */
#ifdef HAL_I2S_MODULE_ENABLED
#include "stm32f4xx_hal_i2s.h"
#endif /* HAL_I2S_MODULE_ENABLED */
#ifdef HAL_IWDG_MODULE_ENABLED
#include "stm32f4xx_hal_iwdg.h"
#endif /* HAL_IWDG_MODULE_ENABLED */
#ifdef HAL_LTDC_MODULE_ENABLED
#include "stm32f4xx_hal_ltdc.h"
#endif /* HAL_LTDC_MODULE_ENABLED */
#ifdef HAL_PWR_MODULE_ENABLED
#include "stm32f4xx_hal_pwr.h"
#endif /* HAL_PWR_MODULE_ENABLED */
#ifdef HAL_RNG_MODULE_ENABLED
#include "stm32f4xx_hal_rng.h"
#endif /* HAL_RNG_MODULE_ENABLED */
#ifdef HAL_RTC_MODULE_ENABLED
#include "stm32f4xx_hal_rtc.h"
#endif /* HAL_RTC_MODULE_ENABLED */
#ifdef HAL_SAI_MODULE_ENABLED
#include "stm32f4xx_hal_sai.h"
#endif /* HAL_SAI_MODULE_ENABLED */
#ifdef HAL_SD_MODULE_ENABLED
#include "stm32f4xx_hal_sd.h"
#endif /* HAL_SD_MODULE_ENABLED */
#ifdef HAL_MMC_MODULE_ENABLED
#include "stm32f4xx_hal_mmc.h"
#endif /* HAL_MMC_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
#include "stm32f4xx_hal_spi.h"
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_TIM_MODULE_ENABLED
#include "stm32f4xx_hal_tim.h"
#endif /* HAL_TIM_MODULE_ENABLED */
#ifdef HAL_UART_MODULE_ENABLED
#include "stm32f4xx_hal_uart.h"
#endif /* HAL_UART_MODULE_ENABLED */
#ifdef HAL_USART_MODULE_ENABLED
#include "stm32f4xx_hal_usart.h"
#endif /* HAL_USART_MODULE_ENABLED */
#ifdef HAL_IRDA_MODULE_ENABLED
#include "stm32f4xx_hal_irda.h"
#endif /* HAL_IRDA_MODULE_ENABLED */
#ifdef HAL_SMARTCARD_MODULE_ENABLED
#include "stm32f4xx_hal_smartcard.h"
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
#ifdef HAL_WWDG_MODULE_ENABLED
#include "stm32f4xx_hal_wwdg.h"
#endif /* HAL_WWDG_MODULE_ENABLED */
#ifdef HAL_PCD_MODULE_ENABLED
#include "stm32f4xx_hal_pcd.h"
#endif /* HAL_PCD_MODULE_ENABLED */
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32f4xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#ifdef HAL_DSI_MODULE_ENABLED
#include "stm32f4xx_hal_dsi.h"
#endif /* HAL_DSI_MODULE_ENABLED */
#ifdef HAL_QSPI_MODULE_ENABLED
#include "stm32f4xx_hal_qspi.h"
#endif /* HAL_QSPI_MODULE_ENABLED */
#ifdef HAL_CEC_MODULE_ENABLED
#include "stm32f4xx_hal_cec.h"
#endif /* HAL_CEC_MODULE_ENABLED */
#ifdef HAL_FMPI2C_MODULE_ENABLED
#include "stm32f4xx_hal_fmpi2c.h"
#endif /* HAL_FMPI2C_MODULE_ENABLED */
#ifdef HAL_SPDIFRX_MODULE_ENABLED
#include "stm32f4xx_hal_spdifrx.h"
#endif /* HAL_SPDIFRX_MODULE_ENABLED */
#ifdef HAL_DFSDM_MODULE_ENABLED
#include "stm32f4xx_hal_dfsdm.h"
#endif /* HAL_DFSDM_MODULE_ENABLED */
#ifdef HAL_LPTIM_MODULE_ENABLED
#include "stm32f4xx_hal_lptim.h"
#endif /* HAL_LPTIM_MODULE_ENABLED */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr: If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32F4xx_HAL_CONF_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,411 @@
/******************************************************************************
* @file cachel1_armv7.h
* @brief CMSIS Level 1 Cache API for Armv7-M and later
* @version V1.0.1
* @date 19. April 2021
******************************************************************************/
/*
* Copyright (c) 2020-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_CACHEL1_ARMV7_H
#define ARM_CACHEL1_ARMV7_H
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_CacheFunctions Cache Functions
\brief Functions that configure Instruction and Data cache.
@{
*/
/* Cache Size ID Register Macros */
#define CCSIDR_WAYS(x) (((x) & SCB_CCSIDR_ASSOCIATIVITY_Msk) >> SCB_CCSIDR_ASSOCIATIVITY_Pos)
#define CCSIDR_SETS(x) (((x) & SCB_CCSIDR_NUMSETS_Msk ) >> SCB_CCSIDR_NUMSETS_Pos )
#ifndef __SCB_DCACHE_LINE_SIZE
#define __SCB_DCACHE_LINE_SIZE 32U /*!< Cortex-M7 cache line size is fixed to 32 bytes (8 words). See also register SCB_CCSIDR */
#endif
#ifndef __SCB_ICACHE_LINE_SIZE
#define __SCB_ICACHE_LINE_SIZE 32U /*!< Cortex-M7 cache line size is fixed to 32 bytes (8 words). See also register SCB_CCSIDR */
#endif
/**
\brief Enable I-Cache
\details Turns on I-Cache
*/
__STATIC_FORCEINLINE void SCB_EnableICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
if (SCB->CCR & SCB_CCR_IC_Msk) return; /* return if ICache is already enabled */
__DSB();
__ISB();
SCB->ICIALLU = 0UL; /* invalidate I-Cache */
__DSB();
__ISB();
SCB->CCR |= (uint32_t)SCB_CCR_IC_Msk; /* enable I-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Disable I-Cache
\details Turns off I-Cache
*/
__STATIC_FORCEINLINE void SCB_DisableICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
__DSB();
__ISB();
SCB->CCR &= ~(uint32_t)SCB_CCR_IC_Msk; /* disable I-Cache */
SCB->ICIALLU = 0UL; /* invalidate I-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Invalidate I-Cache
\details Invalidates I-Cache
*/
__STATIC_FORCEINLINE void SCB_InvalidateICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
__DSB();
__ISB();
SCB->ICIALLU = 0UL;
__DSB();
__ISB();
#endif
}
/**
\brief I-Cache Invalidate by address
\details Invalidates I-Cache for the given address.
I-Cache is invalidated starting from a 32 byte aligned address in 32 byte granularity.
I-Cache memory blocks which are part of given address + given size are invalidated.
\param[in] addr address
\param[in] isize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_InvalidateICache_by_Addr (volatile void *addr, int32_t isize)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
if ( isize > 0 ) {
int32_t op_size = isize + (((uint32_t)addr) & (__SCB_ICACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_ICACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->ICIMVAU = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_ICACHE_LINE_SIZE;
op_size -= __SCB_ICACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief Enable D-Cache
\details Turns on D-Cache
*/
__STATIC_FORCEINLINE void SCB_EnableDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
if (SCB->CCR & SCB_CCR_DC_Msk) return; /* return if DCache is already enabled */
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) |
((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
SCB->CCR |= (uint32_t)SCB_CCR_DC_Msk; /* enable D-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Disable D-Cache
\details Turns off D-Cache
*/
__STATIC_FORCEINLINE void SCB_DisableDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
SCB->CCR &= ~(uint32_t)SCB_CCR_DC_Msk; /* disable D-Cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean & invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) |
((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Invalidate D-Cache
\details Invalidates D-Cache
*/
__STATIC_FORCEINLINE void SCB_InvalidateDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) |
((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Clean D-Cache
\details Cleans D-Cache
*/
__STATIC_FORCEINLINE void SCB_CleanDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCSW = (((sets << SCB_DCCSW_SET_Pos) & SCB_DCCSW_SET_Msk) |
((ways << SCB_DCCSW_WAY_Pos) & SCB_DCCSW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Clean & Invalidate D-Cache
\details Cleans and Invalidates D-Cache
*/
__STATIC_FORCEINLINE void SCB_CleanInvalidateDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean & invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) |
((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief D-Cache Invalidate by address
\details Invalidates D-Cache for the given address.
D-Cache is invalidated starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are invalidated.
\param[in] addr address
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_InvalidateDCache_by_Addr (volatile void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCIMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief D-Cache Clean by address
\details Cleans D-Cache for the given address
D-Cache is cleaned starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are cleaned.
\param[in] addr address
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_CleanDCache_by_Addr (volatile void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCCMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief D-Cache Clean and Invalidate by address
\details Cleans and invalidates D_Cache for the given address
D-Cache is cleaned and invalidated starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are cleaned and invalidated.
\param[in] addr address (aligned to 32-byte boundary)
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_CleanInvalidateDCache_by_Addr (volatile void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCCIMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/*@} end of CMSIS_Core_CacheFunctions */
#endif /* ARM_CACHEL1_ARMV7_H */

View File

@ -0,0 +1,888 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
* @version V5.3.2
* @date 27. May 2021
******************************************************************************/
/*
* Copyright (c) 2009-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
(defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
#define __ARM_ARCH_6M__ 1
#endif
#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
#define __ARM_ARCH_7M__ 1
#endif
#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
#define __ARM_ARCH_7EM__ 1
#endif
/* __ARM_ARCH_8M_BASE__ not applicable */
/* __ARM_ARCH_8M_MAIN__ not applicable */
/* __ARM_ARCH_8_1M_MAIN__ not applicable */
/* CMSIS compiler control DSP macros */
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __ARM_FEATURE_DSP 1
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION __packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __memory_changed()
#endif
/* ######################### Startup and Lowlevel Init ######################## */
#ifndef __PROGRAM_START
#define __PROGRAM_START __main
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __Vectors
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section("RESET")))
#endif
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
return result;
}
#endif
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting special-purpose register PRIMASK.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(); */
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
__ISB();
}
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xFFU);
}
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
register uint32_t __regBasePriMax __ASM("basepri_max");
__regBasePriMax = (basePri & 0xFFU);
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1U);
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32U) ) >> 32U))
#define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2))
#define __SXTAB16_RORn(ARG1, ARG2, ARG3) __SXTAB16(ARG1, __ROR(ARG2, ARG3))
#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CMSIS_ARMCC_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,283 @@
/**************************************************************************//**
* @file cmsis_compiler.h
* @brief CMSIS compiler generic header file
* @version V5.1.0
* @date 09. October 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_COMPILER_H
#define __CMSIS_COMPILER_H
#include <stdint.h>
/*
* Arm Compiler 4/5
*/
#if defined ( __CC_ARM )
#include "cmsis_armcc.h"
/*
* Arm Compiler 6.6 LTM (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
#include "cmsis_armclang_ltm.h"
/*
* Arm Compiler above 6.10.1 (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
#include "cmsis_armclang.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#include <cmsis_iccarm.h>
/*
* TI Arm Compiler
*/
#elif defined ( __TI_ARM__ )
#include <cmsis_ccs.h>
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* TASKING Compiler
*/
#elif defined ( __TASKING__ )
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __packed__
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __packed__
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __packed__
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __packed__ T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __align(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* COSMIC Compiler
*/
#elif defined ( __CSMC__ )
#include <cmsis_csm.h>
#ifndef __ASM
#define __ASM _asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
// NO RETURN is automatically detected hence no warning here
#define __NO_RETURN
#endif
#ifndef __USED
#warning No compiler specific solution for __USED. __USED is ignored.
#define __USED
#endif
#ifndef __WEAK
#define __WEAK __weak
#endif
#ifndef __PACKED
#define __PACKED @packed
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT @packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION @packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
@packed struct T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
#else
#error Unknown compiler.
#endif
#endif /* __CMSIS_COMPILER_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,39 @@
/**************************************************************************//**
* @file cmsis_version.h
* @brief CMSIS Core(M) Version definitions
* @version V5.0.4
* @date 23. July 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CMSIS_VERSION_H
#define __CMSIS_VERSION_H
/* CMSIS Version definitions */
#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
#define __CM_CMSIS_VERSION_SUB ( 5U) /*!< [15:0] CMSIS Core(M) sub version */
#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
__CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,952 @@
/**************************************************************************//**
* @file core_cm0.h
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
* @version V5.0.8
* @date 21. August 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM0_H_GENERIC
#define __CORE_CM0_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M0
@{
*/
#include "cmsis_version.h"
/* CMSIS CM0 definitions */
#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
__CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (0U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM0_H_DEPENDANT
#define __CORE_CM0_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM0_REV
#define __CM0_REV 0x0000U
#warning "__CM0_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M0 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RESERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M0 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)(NVIC_USER_IRQ_OFFSET << 2); /* point to 1st user interrupt */
*(vectors + (int32_t)IRQn) = vector; /* use pointer arithmetic to access vector */
/* ARM Application Note 321 states that the M0 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)(NVIC_USER_IRQ_OFFSET << 2); /* point to 1st user interrupt */
return *(vectors + (int32_t)IRQn); /* use pointer arithmetic to access vector */
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,979 @@
/**************************************************************************//**
* @file core_cm1.h
* @brief CMSIS Cortex-M1 Core Peripheral Access Layer Header File
* @version V1.0.1
* @date 12. November 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM1_H_GENERIC
#define __CORE_CM1_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M1
@{
*/
#include "cmsis_version.h"
/* CMSIS CM1 definitions */
#define __CM1_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM1_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM1_CMSIS_VERSION ((__CM1_CMSIS_VERSION_MAIN << 16U) | \
__CM1_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (1U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM1_H_DEPENDANT
#define __CORE_CM1_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM1_REV
#define __CM1_REV 0x0100U
#warning "__CM1_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M1 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
\brief Type definitions for the System Control and ID Register not in the SCB
@{
*/
/**
\brief Structure type to access the System Control and ID Register not in the SCB.
*/
typedef struct
{
uint32_t RESERVED0[2U];
__IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
} SCnSCB_Type;
/* Auxiliary Control Register Definitions */
#define SCnSCB_ACTLR_ITCMUAEN_Pos 4U /*!< ACTLR: Instruction TCM Upper Alias Enable Position */
#define SCnSCB_ACTLR_ITCMUAEN_Msk (1UL << SCnSCB_ACTLR_ITCMUAEN_Pos) /*!< ACTLR: Instruction TCM Upper Alias Enable Mask */
#define SCnSCB_ACTLR_ITCMLAEN_Pos 3U /*!< ACTLR: Instruction TCM Lower Alias Enable Position */
#define SCnSCB_ACTLR_ITCMLAEN_Msk (1UL << SCnSCB_ACTLR_ITCMLAEN_Pos) /*!< ACTLR: Instruction TCM Lower Alias Enable Mask */
/*@} end of group CMSIS_SCnotSCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M1 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M1 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M1 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)0x0U;
vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
/* ARM Application Note 321 states that the M1 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)0x0U;
return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,275 @@
/******************************************************************************
* @file mpu_armv7.h
* @brief CMSIS MPU API for Armv7-M MPU
* @version V5.1.2
* @date 25. May 2020
******************************************************************************/
/*
* Copyright (c) 2017-2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV7_H
#define ARM_MPU_ARMV7_H
#define ARM_MPU_REGION_SIZE_32B ((uint8_t)0x04U) ///!< MPU Region Size 32 Bytes
#define ARM_MPU_REGION_SIZE_64B ((uint8_t)0x05U) ///!< MPU Region Size 64 Bytes
#define ARM_MPU_REGION_SIZE_128B ((uint8_t)0x06U) ///!< MPU Region Size 128 Bytes
#define ARM_MPU_REGION_SIZE_256B ((uint8_t)0x07U) ///!< MPU Region Size 256 Bytes
#define ARM_MPU_REGION_SIZE_512B ((uint8_t)0x08U) ///!< MPU Region Size 512 Bytes
#define ARM_MPU_REGION_SIZE_1KB ((uint8_t)0x09U) ///!< MPU Region Size 1 KByte
#define ARM_MPU_REGION_SIZE_2KB ((uint8_t)0x0AU) ///!< MPU Region Size 2 KBytes
#define ARM_MPU_REGION_SIZE_4KB ((uint8_t)0x0BU) ///!< MPU Region Size 4 KBytes
#define ARM_MPU_REGION_SIZE_8KB ((uint8_t)0x0CU) ///!< MPU Region Size 8 KBytes
#define ARM_MPU_REGION_SIZE_16KB ((uint8_t)0x0DU) ///!< MPU Region Size 16 KBytes
#define ARM_MPU_REGION_SIZE_32KB ((uint8_t)0x0EU) ///!< MPU Region Size 32 KBytes
#define ARM_MPU_REGION_SIZE_64KB ((uint8_t)0x0FU) ///!< MPU Region Size 64 KBytes
#define ARM_MPU_REGION_SIZE_128KB ((uint8_t)0x10U) ///!< MPU Region Size 128 KBytes
#define ARM_MPU_REGION_SIZE_256KB ((uint8_t)0x11U) ///!< MPU Region Size 256 KBytes
#define ARM_MPU_REGION_SIZE_512KB ((uint8_t)0x12U) ///!< MPU Region Size 512 KBytes
#define ARM_MPU_REGION_SIZE_1MB ((uint8_t)0x13U) ///!< MPU Region Size 1 MByte
#define ARM_MPU_REGION_SIZE_2MB ((uint8_t)0x14U) ///!< MPU Region Size 2 MBytes
#define ARM_MPU_REGION_SIZE_4MB ((uint8_t)0x15U) ///!< MPU Region Size 4 MBytes
#define ARM_MPU_REGION_SIZE_8MB ((uint8_t)0x16U) ///!< MPU Region Size 8 MBytes
#define ARM_MPU_REGION_SIZE_16MB ((uint8_t)0x17U) ///!< MPU Region Size 16 MBytes
#define ARM_MPU_REGION_SIZE_32MB ((uint8_t)0x18U) ///!< MPU Region Size 32 MBytes
#define ARM_MPU_REGION_SIZE_64MB ((uint8_t)0x19U) ///!< MPU Region Size 64 MBytes
#define ARM_MPU_REGION_SIZE_128MB ((uint8_t)0x1AU) ///!< MPU Region Size 128 MBytes
#define ARM_MPU_REGION_SIZE_256MB ((uint8_t)0x1BU) ///!< MPU Region Size 256 MBytes
#define ARM_MPU_REGION_SIZE_512MB ((uint8_t)0x1CU) ///!< MPU Region Size 512 MBytes
#define ARM_MPU_REGION_SIZE_1GB ((uint8_t)0x1DU) ///!< MPU Region Size 1 GByte
#define ARM_MPU_REGION_SIZE_2GB ((uint8_t)0x1EU) ///!< MPU Region Size 2 GBytes
#define ARM_MPU_REGION_SIZE_4GB ((uint8_t)0x1FU) ///!< MPU Region Size 4 GBytes
#define ARM_MPU_AP_NONE 0U ///!< MPU Access Permission no access
#define ARM_MPU_AP_PRIV 1U ///!< MPU Access Permission privileged access only
#define ARM_MPU_AP_URO 2U ///!< MPU Access Permission unprivileged access read-only
#define ARM_MPU_AP_FULL 3U ///!< MPU Access Permission full access
#define ARM_MPU_AP_PRO 5U ///!< MPU Access Permission privileged access read-only
#define ARM_MPU_AP_RO 6U ///!< MPU Access Permission read-only access
/** MPU Region Base Address Register Value
*
* \param Region The region to be configured, number 0 to 15.
* \param BaseAddress The base address for the region.
*/
#define ARM_MPU_RBAR(Region, BaseAddress) \
(((BaseAddress) & MPU_RBAR_ADDR_Msk) | \
((Region) & MPU_RBAR_REGION_Msk) | \
(MPU_RBAR_VALID_Msk))
/**
* MPU Memory Access Attributes
*
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
*/
#define ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable) \
((((TypeExtField) << MPU_RASR_TEX_Pos) & MPU_RASR_TEX_Msk) | \
(((IsShareable) << MPU_RASR_S_Pos) & MPU_RASR_S_Msk) | \
(((IsCacheable) << MPU_RASR_C_Pos) & MPU_RASR_C_Msk) | \
(((IsBufferable) << MPU_RASR_B_Pos) & MPU_RASR_B_Msk))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param AccessAttributes Memory access attribution, see \ref ARM_MPU_ACCESS_.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR_EX(DisableExec, AccessPermission, AccessAttributes, SubRegionDisable, Size) \
((((DisableExec) << MPU_RASR_XN_Pos) & MPU_RASR_XN_Msk) | \
(((AccessPermission) << MPU_RASR_AP_Pos) & MPU_RASR_AP_Msk) | \
(((AccessAttributes) & (MPU_RASR_TEX_Msk | MPU_RASR_S_Msk | MPU_RASR_C_Msk | MPU_RASR_B_Msk))) | \
(((SubRegionDisable) << MPU_RASR_SRD_Pos) & MPU_RASR_SRD_Msk) | \
(((Size) << MPU_RASR_SIZE_Pos) & MPU_RASR_SIZE_Msk) | \
(((MPU_RASR_ENABLE_Msk))))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR(DisableExec, AccessPermission, TypeExtField, IsShareable, IsCacheable, IsBufferable, SubRegionDisable, Size) \
ARM_MPU_RASR_EX(DisableExec, AccessPermission, ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable), SubRegionDisable, Size)
/**
* MPU Memory Access Attribute for strongly ordered memory.
* - TEX: 000b
* - Shareable
* - Non-cacheable
* - Non-bufferable
*/
#define ARM_MPU_ACCESS_ORDERED ARM_MPU_ACCESS_(0U, 1U, 0U, 0U)
/**
* MPU Memory Access Attribute for device memory.
* - TEX: 000b (if shareable) or 010b (if non-shareable)
* - Shareable or non-shareable
* - Non-cacheable
* - Bufferable (if shareable) or non-bufferable (if non-shareable)
*
* \param IsShareable Configures the device memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_DEVICE(IsShareable) ((IsShareable) ? ARM_MPU_ACCESS_(0U, 1U, 0U, 1U) : ARM_MPU_ACCESS_(2U, 0U, 0U, 0U))
/**
* MPU Memory Access Attribute for normal memory.
* - TEX: 1BBb (reflecting outer cacheability rules)
* - Shareable or non-shareable
* - Cacheable or non-cacheable (reflecting inner cacheability rules)
* - Bufferable or non-bufferable (reflecting inner cacheability rules)
*
* \param OuterCp Configures the outer cache policy.
* \param InnerCp Configures the inner cache policy.
* \param IsShareable Configures the memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_NORMAL(OuterCp, InnerCp, IsShareable) ARM_MPU_ACCESS_((4U | (OuterCp)), IsShareable, ((InnerCp) >> 1U), ((InnerCp) & 1U))
/**
* MPU Memory Access Attribute non-cacheable policy.
*/
#define ARM_MPU_CACHEP_NOCACHE 0U
/**
* MPU Memory Access Attribute write-back, write and read allocate policy.
*/
#define ARM_MPU_CACHEP_WB_WRA 1U
/**
* MPU Memory Access Attribute write-through, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WT_NWA 2U
/**
* MPU Memory Access Attribute write-back, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WB_NWA 3U
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; //!< The region base address register value (RBAR)
uint32_t RASR; //!< The region attribute and size register value (RASR) \ref MPU_RASR
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DMB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
MPU->RNR = rnr;
MPU->RASR = 0U;
}
/** Configure an MPU region.
* \param rbar Value for RBAR register.
* \param rasr Value for RASR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rbar, uint32_t rasr)
{
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rasr Value for RASR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(uint32_t rnr, uint32_t rbar, uint32_t rasr)
{
MPU->RNR = rnr;
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Memcpy with strictly ordered memory access, e.g. used by code in ARM_MPU_Load().
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
while (cnt > MPU_TYPE_RALIASES) {
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), MPU_TYPE_RALIASES*rowWordSize);
table += MPU_TYPE_RALIASES;
cnt -= MPU_TYPE_RALIASES;
}
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), cnt*rowWordSize);
}
#endif

View File

@ -0,0 +1,352 @@
/******************************************************************************
* @file mpu_armv8.h
* @brief CMSIS MPU API for Armv8-M and Armv8.1-M MPU
* @version V5.1.3
* @date 03. February 2021
******************************************************************************/
/*
* Copyright (c) 2017-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV8_H
#define ARM_MPU_ARMV8_H
/** \brief Attribute for device memory (outer only) */
#define ARM_MPU_ATTR_DEVICE ( 0U )
/** \brief Attribute for non-cacheable, normal memory */
#define ARM_MPU_ATTR_NON_CACHEABLE ( 4U )
/** \brief Attribute for normal memory (outer and inner)
* \param NT Non-Transient: Set to 1 for non-transient data.
* \param WB Write-Back: Set to 1 to use write-back update policy.
* \param RA Read Allocation: Set to 1 to use cache allocation on read miss.
* \param WA Write Allocation: Set to 1 to use cache allocation on write miss.
*/
#define ARM_MPU_ATTR_MEMORY_(NT, WB, RA, WA) \
((((NT) & 1U) << 3U) | (((WB) & 1U) << 2U) | (((RA) & 1U) << 1U) | ((WA) & 1U))
/** \brief Device memory type non Gathering, non Re-ordering, non Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRnE (0U)
/** \brief Device memory type non Gathering, non Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRE (1U)
/** \brief Device memory type non Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGRE (2U)
/** \brief Device memory type Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_GRE (3U)
/** \brief Memory Attribute
* \param O Outer memory attributes
* \param I O == ARM_MPU_ATTR_DEVICE: Device memory attributes, else: Inner memory attributes
*/
#define ARM_MPU_ATTR(O, I) ((((O) & 0xFU) << 4U) | ((((O) & 0xFU) != 0U) ? ((I) & 0xFU) : (((I) & 0x3U) << 2U)))
/** \brief Normal memory non-shareable */
#define ARM_MPU_SH_NON (0U)
/** \brief Normal memory outer shareable */
#define ARM_MPU_SH_OUTER (2U)
/** \brief Normal memory inner shareable */
#define ARM_MPU_SH_INNER (3U)
/** \brief Memory access permissions
* \param RO Read-Only: Set to 1 for read-only memory.
* \param NP Non-Privileged: Set to 1 for non-privileged memory.
*/
#define ARM_MPU_AP_(RO, NP) ((((RO) & 1U) << 1U) | ((NP) & 1U))
/** \brief Region Base Address Register value
* \param BASE The base address bits [31:5] of a memory region. The value is zero extended. Effective address gets 32 byte aligned.
* \param SH Defines the Shareability domain for this memory region.
* \param RO Read-Only: Set to 1 for a read-only memory region.
* \param NP Non-Privileged: Set to 1 for a non-privileged memory region.
* \oaram XN eXecute Never: Set to 1 for a non-executable memory region.
*/
#define ARM_MPU_RBAR(BASE, SH, RO, NP, XN) \
(((BASE) & MPU_RBAR_BASE_Msk) | \
(((SH) << MPU_RBAR_SH_Pos) & MPU_RBAR_SH_Msk) | \
((ARM_MPU_AP_(RO, NP) << MPU_RBAR_AP_Pos) & MPU_RBAR_AP_Msk) | \
(((XN) << MPU_RBAR_XN_Pos) & MPU_RBAR_XN_Msk))
/** \brief Region Limit Address Register value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR(LIMIT, IDX) \
(((LIMIT) & MPU_RLAR_LIMIT_Msk) | \
(((IDX) << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#if defined(MPU_RLAR_PXN_Pos)
/** \brief Region Limit Address Register with PXN value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param PXN Privileged execute never. Defines whether code can be executed from this privileged region.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR_PXN(LIMIT, PXN, IDX) \
(((LIMIT) & MPU_RLAR_LIMIT_Msk) | \
(((PXN) << MPU_RLAR_PXN_Pos) & MPU_RLAR_PXN_Msk) | \
(((IDX) << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#endif
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; /*!< Region Base Address Register value */
uint32_t RLAR; /*!< Region Limit Address Register value */
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DMB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
#ifdef MPU_NS
/** Enable the Non-secure MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable_NS(uint32_t MPU_Control)
{
__DMB();
MPU_NS->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the Non-secure MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable_NS(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU_NS->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
#endif
/** Set the memory attribute encoding to the given MPU.
* \param mpu Pointer to the MPU to be configured.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttrEx(MPU_Type* mpu, uint8_t idx, uint8_t attr)
{
const uint8_t reg = idx / 4U;
const uint32_t pos = ((idx % 4U) * 8U);
const uint32_t mask = 0xFFU << pos;
if (reg >= (sizeof(mpu->MAIR) / sizeof(mpu->MAIR[0]))) {
return; // invalid index
}
mpu->MAIR[reg] = ((mpu->MAIR[reg] & ~mask) | ((attr << pos) & mask));
}
/** Set the memory attribute encoding.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU, idx, attr);
}
#ifdef MPU_NS
/** Set the memory attribute encoding to the Non-secure MPU.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr_NS(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU_NS, idx, attr);
}
#endif
/** Clear and disable the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegionEx(MPU_Type* mpu, uint32_t rnr)
{
mpu->RNR = rnr;
mpu->RLAR = 0U;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU, rnr);
}
#ifdef MPU_NS
/** Clear and disable the given Non-secure MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion_NS(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU_NS, rnr);
}
#endif
/** Configure the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(MPU_Type* mpu, uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
mpu->RNR = rnr;
mpu->RBAR = rbar;
mpu->RLAR = rlar;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU, rnr, rbar, rlar);
}
#ifdef MPU_NS
/** Configure the given Non-secure MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion_NS(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU_NS, rnr, rbar, rlar);
}
#endif
/** Memcpy with strictly ordered memory access, e.g. used by code in ARM_MPU_LoadEx()
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table to the given MPU.
* \param mpu Pointer to the MPU registers to be used.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_LoadEx(MPU_Type* mpu, uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
if (cnt == 1U) {
mpu->RNR = rnr;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR), &(table->RBAR), rowWordSize);
} else {
uint32_t rnrBase = rnr & ~(MPU_TYPE_RALIASES-1U);
uint32_t rnrOffset = rnr % MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
while ((rnrOffset + cnt) > MPU_TYPE_RALIASES) {
uint32_t c = MPU_TYPE_RALIASES - rnrOffset;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), c*rowWordSize);
table += c;
cnt -= c;
rnrOffset = 0U;
rnrBase += MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
}
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), cnt*rowWordSize);
}
}
/** Load the given number of MPU regions from a table.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU, rnr, table, cnt);
}
#ifdef MPU_NS
/** Load the given number of MPU regions from a table to the Non-secure MPU.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load_NS(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU_NS, rnr, table, cnt);
}
#endif
#endif

View File

@ -0,0 +1,337 @@
/******************************************************************************
* @file pmu_armv8.h
* @brief CMSIS PMU API for Armv8.1-M PMU
* @version V1.0.1
* @date 15. April 2020
******************************************************************************/
/*
* Copyright (c) 2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_PMU_ARMV8_H
#define ARM_PMU_ARMV8_H
/**
* \brief PMU Events
* \note See the Armv8.1-M Architecture Reference Manual for full details on these PMU events.
* */
#define ARM_PMU_SW_INCR 0x0000 /*!< Software update to the PMU_SWINC register, architecturally executed and condition code check pass */
#define ARM_PMU_L1I_CACHE_REFILL 0x0001 /*!< L1 I-Cache refill */
#define ARM_PMU_L1D_CACHE_REFILL 0x0003 /*!< L1 D-Cache refill */
#define ARM_PMU_L1D_CACHE 0x0004 /*!< L1 D-Cache access */
#define ARM_PMU_LD_RETIRED 0x0006 /*!< Memory-reading instruction architecturally executed and condition code check pass */
#define ARM_PMU_ST_RETIRED 0x0007 /*!< Memory-writing instruction architecturally executed and condition code check pass */
#define ARM_PMU_INST_RETIRED 0x0008 /*!< Instruction architecturally executed */
#define ARM_PMU_EXC_TAKEN 0x0009 /*!< Exception entry */
#define ARM_PMU_EXC_RETURN 0x000A /*!< Exception return instruction architecturally executed and the condition code check pass */
#define ARM_PMU_PC_WRITE_RETIRED 0x000C /*!< Software change to the Program Counter (PC). Instruction is architecturally executed and condition code check pass */
#define ARM_PMU_BR_IMMED_RETIRED 0x000D /*!< Immediate branch architecturally executed */
#define ARM_PMU_BR_RETURN_RETIRED 0x000E /*!< Function return instruction architecturally executed and the condition code check pass */
#define ARM_PMU_UNALIGNED_LDST_RETIRED 0x000F /*!< Unaligned memory memory-reading or memory-writing instruction architecturally executed and condition code check pass */
#define ARM_PMU_BR_MIS_PRED 0x0010 /*!< Mispredicted or not predicted branch speculatively executed */
#define ARM_PMU_CPU_CYCLES 0x0011 /*!< Cycle */
#define ARM_PMU_BR_PRED 0x0012 /*!< Predictable branch speculatively executed */
#define ARM_PMU_MEM_ACCESS 0x0013 /*!< Data memory access */
#define ARM_PMU_L1I_CACHE 0x0014 /*!< Level 1 instruction cache access */
#define ARM_PMU_L1D_CACHE_WB 0x0015 /*!< Level 1 data cache write-back */
#define ARM_PMU_L2D_CACHE 0x0016 /*!< Level 2 data cache access */
#define ARM_PMU_L2D_CACHE_REFILL 0x0017 /*!< Level 2 data cache refill */
#define ARM_PMU_L2D_CACHE_WB 0x0018 /*!< Level 2 data cache write-back */
#define ARM_PMU_BUS_ACCESS 0x0019 /*!< Bus access */
#define ARM_PMU_MEMORY_ERROR 0x001A /*!< Local memory error */
#define ARM_PMU_INST_SPEC 0x001B /*!< Instruction speculatively executed */
#define ARM_PMU_BUS_CYCLES 0x001D /*!< Bus cycles */
#define ARM_PMU_CHAIN 0x001E /*!< For an odd numbered counter, increment when an overflow occurs on the preceding even-numbered counter on the same PE */
#define ARM_PMU_L1D_CACHE_ALLOCATE 0x001F /*!< Level 1 data cache allocation without refill */
#define ARM_PMU_L2D_CACHE_ALLOCATE 0x0020 /*!< Level 2 data cache allocation without refill */
#define ARM_PMU_BR_RETIRED 0x0021 /*!< Branch instruction architecturally executed */
#define ARM_PMU_BR_MIS_PRED_RETIRED 0x0022 /*!< Mispredicted branch instruction architecturally executed */
#define ARM_PMU_STALL_FRONTEND 0x0023 /*!< No operation issued because of the frontend */
#define ARM_PMU_STALL_BACKEND 0x0024 /*!< No operation issued because of the backend */
#define ARM_PMU_L2I_CACHE 0x0027 /*!< Level 2 instruction cache access */
#define ARM_PMU_L2I_CACHE_REFILL 0x0028 /*!< Level 2 instruction cache refill */
#define ARM_PMU_L3D_CACHE_ALLOCATE 0x0029 /*!< Level 3 data cache allocation without refill */
#define ARM_PMU_L3D_CACHE_REFILL 0x002A /*!< Level 3 data cache refill */
#define ARM_PMU_L3D_CACHE 0x002B /*!< Level 3 data cache access */
#define ARM_PMU_L3D_CACHE_WB 0x002C /*!< Level 3 data cache write-back */
#define ARM_PMU_LL_CACHE_RD 0x0036 /*!< Last level data cache read */
#define ARM_PMU_LL_CACHE_MISS_RD 0x0037 /*!< Last level data cache read miss */
#define ARM_PMU_L1D_CACHE_MISS_RD 0x0039 /*!< Level 1 data cache read miss */
#define ARM_PMU_OP_COMPLETE 0x003A /*!< Operation retired */
#define ARM_PMU_OP_SPEC 0x003B /*!< Operation speculatively executed */
#define ARM_PMU_STALL 0x003C /*!< Stall cycle for instruction or operation not sent for execution */
#define ARM_PMU_STALL_OP_BACKEND 0x003D /*!< Stall cycle for instruction or operation not sent for execution due to pipeline backend */
#define ARM_PMU_STALL_OP_FRONTEND 0x003E /*!< Stall cycle for instruction or operation not sent for execution due to pipeline frontend */
#define ARM_PMU_STALL_OP 0x003F /*!< Instruction or operation slots not occupied each cycle */
#define ARM_PMU_L1D_CACHE_RD 0x0040 /*!< Level 1 data cache read */
#define ARM_PMU_LE_RETIRED 0x0100 /*!< Loop end instruction executed */
#define ARM_PMU_LE_SPEC 0x0101 /*!< Loop end instruction speculatively executed */
#define ARM_PMU_BF_RETIRED 0x0104 /*!< Branch future instruction architecturally executed and condition code check pass */
#define ARM_PMU_BF_SPEC 0x0105 /*!< Branch future instruction speculatively executed and condition code check pass */
#define ARM_PMU_LE_CANCEL 0x0108 /*!< Loop end instruction not taken */
#define ARM_PMU_BF_CANCEL 0x0109 /*!< Branch future instruction not taken */
#define ARM_PMU_SE_CALL_S 0x0114 /*!< Call to secure function, resulting in Security state change */
#define ARM_PMU_SE_CALL_NS 0x0115 /*!< Call to non-secure function, resulting in Security state change */
#define ARM_PMU_DWT_CMPMATCH0 0x0118 /*!< DWT comparator 0 match */
#define ARM_PMU_DWT_CMPMATCH1 0x0119 /*!< DWT comparator 1 match */
#define ARM_PMU_DWT_CMPMATCH2 0x011A /*!< DWT comparator 2 match */
#define ARM_PMU_DWT_CMPMATCH3 0x011B /*!< DWT comparator 3 match */
#define ARM_PMU_MVE_INST_RETIRED 0x0200 /*!< MVE instruction architecturally executed */
#define ARM_PMU_MVE_INST_SPEC 0x0201 /*!< MVE instruction speculatively executed */
#define ARM_PMU_MVE_FP_RETIRED 0x0204 /*!< MVE floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_SPEC 0x0205 /*!< MVE floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_HP_RETIRED 0x0208 /*!< MVE half-precision floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_HP_SPEC 0x0209 /*!< MVE half-precision floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_SP_RETIRED 0x020C /*!< MVE single-precision floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_SP_SPEC 0x020D /*!< MVE single-precision floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_MAC_RETIRED 0x0214 /*!< MVE floating-point multiply or multiply-accumulate instruction architecturally executed */
#define ARM_PMU_MVE_FP_MAC_SPEC 0x0215 /*!< MVE floating-point multiply or multiply-accumulate instruction speculatively executed */
#define ARM_PMU_MVE_INT_RETIRED 0x0224 /*!< MVE integer instruction architecturally executed */
#define ARM_PMU_MVE_INT_SPEC 0x0225 /*!< MVE integer instruction speculatively executed */
#define ARM_PMU_MVE_INT_MAC_RETIRED 0x0228 /*!< MVE multiply or multiply-accumulate instruction architecturally executed */
#define ARM_PMU_MVE_INT_MAC_SPEC 0x0229 /*!< MVE multiply or multiply-accumulate instruction speculatively executed */
#define ARM_PMU_MVE_LDST_RETIRED 0x0238 /*!< MVE load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_SPEC 0x0239 /*!< MVE load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_RETIRED 0x023C /*!< MVE load instruction architecturally executed */
#define ARM_PMU_MVE_LD_SPEC 0x023D /*!< MVE load instruction speculatively executed */
#define ARM_PMU_MVE_ST_RETIRED 0x0240 /*!< MVE store instruction architecturally executed */
#define ARM_PMU_MVE_ST_SPEC 0x0241 /*!< MVE store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_CONTIG_RETIRED 0x0244 /*!< MVE contiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_CONTIG_SPEC 0x0245 /*!< MVE contiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_CONTIG_RETIRED 0x0248 /*!< MVE contiguous load instruction architecturally executed */
#define ARM_PMU_MVE_LD_CONTIG_SPEC 0x0249 /*!< MVE contiguous load instruction speculatively executed */
#define ARM_PMU_MVE_ST_CONTIG_RETIRED 0x024C /*!< MVE contiguous store instruction architecturally executed */
#define ARM_PMU_MVE_ST_CONTIG_SPEC 0x024D /*!< MVE contiguous store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_NONCONTIG_RETIRED 0x0250 /*!< MVE non-contiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_NONCONTIG_SPEC 0x0251 /*!< MVE non-contiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_NONCONTIG_RETIRED 0x0254 /*!< MVE non-contiguous load instruction architecturally executed */
#define ARM_PMU_MVE_LD_NONCONTIG_SPEC 0x0255 /*!< MVE non-contiguous load instruction speculatively executed */
#define ARM_PMU_MVE_ST_NONCONTIG_RETIRED 0x0258 /*!< MVE non-contiguous store instruction architecturally executed */
#define ARM_PMU_MVE_ST_NONCONTIG_SPEC 0x0259 /*!< MVE non-contiguous store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_MULTI_RETIRED 0x025C /*!< MVE memory instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_LDST_MULTI_SPEC 0x025D /*!< MVE memory instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_LD_MULTI_RETIRED 0x0260 /*!< MVE memory load instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_LD_MULTI_SPEC 0x0261 /*!< MVE memory load instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_ST_MULTI_RETIRED 0x0261 /*!< MVE memory store instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_ST_MULTI_SPEC 0x0265 /*!< MVE memory store instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_RETIRED 0x028C /*!< MVE unaligned memory load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_SPEC 0x028D /*!< MVE unaligned memory load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_UNALIGNED_RETIRED 0x0290 /*!< MVE unaligned load instruction architecturally executed */
#define ARM_PMU_MVE_LD_UNALIGNED_SPEC 0x0291 /*!< MVE unaligned load instruction speculatively executed */
#define ARM_PMU_MVE_ST_UNALIGNED_RETIRED 0x0294 /*!< MVE unaligned store instruction architecturally executed */
#define ARM_PMU_MVE_ST_UNALIGNED_SPEC 0x0295 /*!< MVE unaligned store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_NONCONTIG_RETIRED 0x0298 /*!< MVE unaligned noncontiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_NONCONTIG_SPEC 0x0299 /*!< MVE unaligned noncontiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_RETIRED 0x02A0 /*!< MVE vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_SPEC 0x02A1 /*!< MVE vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_FP_RETIRED 0x02A4 /*!< MVE floating-point vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_FP_SPEC 0x02A5 /*!< MVE floating-point vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_INT_RETIRED 0x02A8 /*!< MVE integer vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_INT_SPEC 0x02A9 /*!< MVE integer vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_PRED 0x02B8 /*!< Cycles where one or more predicated beats architecturally executed */
#define ARM_PMU_MVE_STALL 0x02CC /*!< Stall cycles caused by an MVE instruction */
#define ARM_PMU_MVE_STALL_RESOURCE 0x02CD /*!< Stall cycles caused by an MVE instruction because of resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_MEM 0x02CE /*!< Stall cycles caused by an MVE instruction because of memory resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_FP 0x02CF /*!< Stall cycles caused by an MVE instruction because of floating-point resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_INT 0x02D0 /*!< Stall cycles caused by an MVE instruction because of integer resource conflicts */
#define ARM_PMU_MVE_STALL_BREAK 0x02D3 /*!< Stall cycles caused by an MVE chain break */
#define ARM_PMU_MVE_STALL_DEPENDENCY 0x02D4 /*!< Stall cycles caused by MVE register dependency */
#define ARM_PMU_ITCM_ACCESS 0x4007 /*!< Instruction TCM access */
#define ARM_PMU_DTCM_ACCESS 0x4008 /*!< Data TCM access */
#define ARM_PMU_TRCEXTOUT0 0x4010 /*!< ETM external output 0 */
#define ARM_PMU_TRCEXTOUT1 0x4011 /*!< ETM external output 1 */
#define ARM_PMU_TRCEXTOUT2 0x4012 /*!< ETM external output 2 */
#define ARM_PMU_TRCEXTOUT3 0x4013 /*!< ETM external output 3 */
#define ARM_PMU_CTI_TRIGOUT4 0x4018 /*!< Cross-trigger Interface output trigger 4 */
#define ARM_PMU_CTI_TRIGOUT5 0x4019 /*!< Cross-trigger Interface output trigger 5 */
#define ARM_PMU_CTI_TRIGOUT6 0x401A /*!< Cross-trigger Interface output trigger 6 */
#define ARM_PMU_CTI_TRIGOUT7 0x401B /*!< Cross-trigger Interface output trigger 7 */
/** \brief PMU Functions */
__STATIC_INLINE void ARM_PMU_Enable(void);
__STATIC_INLINE void ARM_PMU_Disable(void);
__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type);
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void);
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void);
__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask);
__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void);
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num);
__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void);
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask);
/**
\brief Enable the PMU
*/
__STATIC_INLINE void ARM_PMU_Enable(void)
{
PMU->CTRL |= PMU_CTRL_ENABLE_Msk;
}
/**
\brief Disable the PMU
*/
__STATIC_INLINE void ARM_PMU_Disable(void)
{
PMU->CTRL &= ~PMU_CTRL_ENABLE_Msk;
}
/**
\brief Set event to count for PMU eventer counter
\param [in] num Event counter (0-30) to configure
\param [in] type Event to count
*/
__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type)
{
PMU->EVTYPER[num] = type;
}
/**
\brief Reset cycle counter
*/
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void)
{
PMU->CTRL |= PMU_CTRL_CYCCNT_RESET_Msk;
}
/**
\brief Reset all event counters
*/
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void)
{
PMU->CTRL |= PMU_CTRL_EVENTCNT_RESET_Msk;
}
/**
\brief Enable counters
\param [in] mask Counters to enable
\note Enables one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask)
{
PMU->CNTENSET = mask;
}
/**
\brief Disable counters
\param [in] mask Counters to enable
\note Disables one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask)
{
PMU->CNTENCLR = mask;
}
/**
\brief Read cycle counter
\return Cycle count
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void)
{
return PMU->CCNTR;
}
/**
\brief Read event counter
\param [in] num Event counter (0-30) to read
\return Event count
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num)
{
return PMU_EVCNTR_CNT_Msk & PMU->EVCNTR[num];
}
/**
\brief Read counter overflow status
\return Counter overflow status bits for the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void)
{
return PMU->OVSSET;
}
/**
\brief Clear counter overflow status
\param [in] mask Counter overflow status bits to clear
\note Clears overflow status bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask)
{
PMU->OVSCLR = mask;
}
/**
\brief Enable counter overflow interrupt request
\param [in] mask Counter overflow interrupt request bits to set
\note Sets overflow interrupt request bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask)
{
PMU->INTENSET = mask;
}
/**
\brief Disable counter overflow interrupt request
\param [in] mask Counter overflow interrupt request bits to clear
\note Clears overflow interrupt request bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask)
{
PMU->INTENCLR = mask;
}
/**
\brief Software increment event counter
\param [in] mask Counters to increment
\note Software increment bits for one or more event counters (0-30)
*/
__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask)
{
PMU->SWINC = mask;
}
#endif

View File

@ -0,0 +1,70 @@
/******************************************************************************
* @file tz_context.h
* @brief Context Management for Armv8-M TrustZone
* @version V1.0.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef TZ_CONTEXT_H
#define TZ_CONTEXT_H
#include <stdint.h>
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// \details TZ Memory ID identifies an allocated memory slot.
typedef uint32_t TZ_MemoryId_t;
/// Initialize secure context memory system
/// \return execution status (1: success, 0: error)
uint32_t TZ_InitContextSystem_S (void);
/// Allocate context memory for calling secure software modules in TrustZone
/// \param[in] module identifies software modules called from non-secure mode
/// \return value != 0 id TrustZone memory slot identifier
/// \return value 0 no memory available or internal error
TZ_MemoryId_t TZ_AllocModuleContext_S (TZ_ModuleId_t module);
/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_FreeModuleContext_S (TZ_MemoryId_t id);
/// Load secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_LoadContext_S (TZ_MemoryId_t id);
/// Store secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_StoreContext_S (TZ_MemoryId_t id);
#endif // TZ_CONTEXT_H

View File

@ -0,0 +1,529 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_common_tables.h
* Description: Extern declaration for common tables
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_COMMON_TABLES_H
#define _ARM_COMMON_TABLES_H
#include "arm_math_types.h"
#include "dsp/fast_math_functions.h"
#ifdef __cplusplus
extern "C"
{
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
/* Double Precision Float CFFT twiddles */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREV_1024)
extern const uint16_t armBitRevTable[1024];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_16)
extern const uint64_t twiddleCoefF64_16[32];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_32)
extern const uint64_t twiddleCoefF64_32[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_64)
extern const uint64_t twiddleCoefF64_64[128];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_128)
extern const uint64_t twiddleCoefF64_128[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_256)
extern const uint64_t twiddleCoefF64_256[512];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_512)
extern const uint64_t twiddleCoefF64_512[1024];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_1024)
extern const uint64_t twiddleCoefF64_1024[2048];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_2048)
extern const uint64_t twiddleCoefF64_2048[4096];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_4096)
extern const uint64_t twiddleCoefF64_4096[8192];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16)
extern const float32_t twiddleCoef_16[32];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_32)
extern const float32_t twiddleCoef_32[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64)
extern const float32_t twiddleCoef_64[128];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_128)
extern const float32_t twiddleCoef_128[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256)
extern const float32_t twiddleCoef_256[512];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_512)
extern const float32_t twiddleCoef_512[1024];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024)
extern const float32_t twiddleCoef_1024[2048];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048)
extern const float32_t twiddleCoef_2048[4096];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096)
extern const float32_t twiddleCoef_4096[8192];
#define twiddleCoef twiddleCoef_4096
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
/* Q31 */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16)
extern const q31_t twiddleCoef_16_q31[24];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32)
extern const q31_t twiddleCoef_32_q31[48];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64)
extern const q31_t twiddleCoef_64_q31[96];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128)
extern const q31_t twiddleCoef_128_q31[192];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256)
extern const q31_t twiddleCoef_256_q31[384];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512)
extern const q31_t twiddleCoef_512_q31[768];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024)
extern const q31_t twiddleCoef_1024_q31[1536];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048)
extern const q31_t twiddleCoef_2048_q31[3072];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096)
extern const q31_t twiddleCoef_4096_q31[6144];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16)
extern const q15_t twiddleCoef_16_q15[24];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32)
extern const q15_t twiddleCoef_32_q15[48];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64)
extern const q15_t twiddleCoef_64_q15[96];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128)
extern const q15_t twiddleCoef_128_q15[192];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256)
extern const q15_t twiddleCoef_256_q15[384];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512)
extern const q15_t twiddleCoef_512_q15[768];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024)
extern const q15_t twiddleCoef_1024_q15[1536];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048)
extern const q15_t twiddleCoef_2048_q15[3072];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096)
extern const q15_t twiddleCoef_4096_q15[6144];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
/* Double Precision Float RFFT twiddles */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32)
extern const uint64_t twiddleCoefF64_rfft_32[32];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64)
extern const uint64_t twiddleCoefF64_rfft_64[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128)
extern const uint64_t twiddleCoefF64_rfft_128[128];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256)
extern const uint64_t twiddleCoefF64_rfft_256[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512)
extern const uint64_t twiddleCoefF64_rfft_512[512];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024)
extern const uint64_t twiddleCoefF64_rfft_1024[1024];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048)
extern const uint64_t twiddleCoefF64_rfft_2048[2048];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096)
extern const uint64_t twiddleCoefF64_rfft_4096[4096];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_32)
extern const float32_t twiddleCoef_rfft_32[32];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_64)
extern const float32_t twiddleCoef_rfft_64[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_128)
extern const float32_t twiddleCoef_rfft_128[128];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_256)
extern const float32_t twiddleCoef_rfft_256[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_512)
extern const float32_t twiddleCoef_rfft_512[512];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_1024)
extern const float32_t twiddleCoef_rfft_1024[1024];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_2048)
extern const float32_t twiddleCoef_rfft_2048[2048];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_4096)
extern const float32_t twiddleCoef_rfft_4096[4096];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
/* Double precision floating-point bit reversal tables */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_16)
#define ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH ((uint16_t)12)
extern const uint16_t armBitRevIndexTableF64_16[ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_32)
#define ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH ((uint16_t)24)
extern const uint16_t armBitRevIndexTableF64_32[ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_64)
#define ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH ((uint16_t)56)
extern const uint16_t armBitRevIndexTableF64_64[ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_128)
#define ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH ((uint16_t)112)
extern const uint16_t armBitRevIndexTableF64_128[ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_256)
#define ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH ((uint16_t)240)
extern const uint16_t armBitRevIndexTableF64_256[ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_512)
#define ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH ((uint16_t)480)
extern const uint16_t armBitRevIndexTableF64_512[ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_1024)
#define ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH ((uint16_t)992)
extern const uint16_t armBitRevIndexTableF64_1024[ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_2048)
#define ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH ((uint16_t)1984)
extern const uint16_t armBitRevIndexTableF64_2048[ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_4096)
#define ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH ((uint16_t)4032)
extern const uint16_t armBitRevIndexTableF64_4096[ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
/* floating-point bit reversal tables */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_16)
#define ARMBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20)
extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_32)
#define ARMBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48)
extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_64)
#define ARMBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56)
extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_128)
#define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208)
extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_256)
#define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440)
extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_512)
#define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448)
extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_1024)
#define ARMBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800)
extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_2048)
#define ARMBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808)
extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE_2048_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_4096)
#define ARMBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032)
extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE_4096_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
/* fixed-point bit reversal tables */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_16)
#define ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12)
extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_32)
#define ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24)
extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_64)
#define ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56)
extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_128)
#define ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112)
extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_256)
#define ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240)
extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_512)
#define ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480)
extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_1024)
#define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992)
extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_2048)
#define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984)
extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_4096)
#define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032)
extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_F32)
extern const float32_t realCoefA[8192];
extern const float32_t realCoefB[8192];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q31)
extern const q31_t realCoefAQ31[8192];
extern const q31_t realCoefBQ31[8192];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q15)
extern const q15_t realCoefAQ15[8192];
extern const q15_t realCoefBQ15[8192];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_128)
extern const float32_t Weights_128[256];
extern const float32_t cos_factors_128[128];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_512)
extern const float32_t Weights_512[1024];
extern const float32_t cos_factors_512[512];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_2048)
extern const float32_t Weights_2048[4096];
extern const float32_t cos_factors_2048[2048];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_8192)
extern const float32_t Weights_8192[16384];
extern const float32_t cos_factors_8192[8192];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_128)
extern const q15_t WeightsQ15_128[256];
extern const q15_t cos_factorsQ15_128[128];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_512)
extern const q15_t WeightsQ15_512[1024];
extern const q15_t cos_factorsQ15_512[512];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_2048)
extern const q15_t WeightsQ15_2048[4096];
extern const q15_t cos_factorsQ15_2048[2048];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_8192)
extern const q15_t WeightsQ15_8192[16384];
extern const q15_t cos_factorsQ15_8192[8192];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_128)
extern const q31_t WeightsQ31_128[256];
extern const q31_t cos_factorsQ31_128[128];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_512)
extern const q31_t WeightsQ31_512[1024];
extern const q31_t cos_factorsQ31_512[512];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_2048)
extern const q31_t WeightsQ31_2048[4096];
extern const q31_t cos_factorsQ31_2048[2048];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_8192)
extern const q31_t WeightsQ31_8192[16384];
extern const q31_t cos_factorsQ31_8192[8192];
#endif
#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_ALLOW_TABLES)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q15)
extern const q15_t armRecipTableQ15[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q31)
extern const q31_t armRecipTableQ31[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
/* Tables for Fast Math Sine and Cosine */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_F32)
extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q31)
extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q15)
extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
extern const q31_t sqrtTable_Q31[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
#endif
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
extern const q15_t sqrtTable_Q15[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */
#endif
#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_TABLES) */
#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
extern const float32_t exp_tab[8];
extern const float32_t __logf_lut_f32[8];
#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */
#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
extern const unsigned char hwLUT[256];
#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */
#ifdef __cplusplus
}
#endif
#endif /* ARM_COMMON_TABLES_H */

View File

@ -0,0 +1,132 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_common_tables_f16.h
* Description: Extern declaration for common tables
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_COMMON_TABLES_F16_H
#define _ARM_COMMON_TABLES_F16_H
#include "arm_math_types_f16.h"
#ifdef __cplusplus
extern "C"
{
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
/* F16 */
#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_16)
extern const float16_t twiddleCoefF16_16[32];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_32)
extern const float16_t twiddleCoefF16_32[64];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_64)
extern const float16_t twiddleCoefF16_64[128];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_128)
extern const float16_t twiddleCoefF16_128[256];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_256)
extern const float16_t twiddleCoefF16_256[512];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_512)
extern const float16_t twiddleCoefF16_512[1024];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_1024)
extern const float16_t twiddleCoefF16_1024[2048];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_2048)
extern const float16_t twiddleCoefF16_2048[4096];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096)
extern const float16_t twiddleCoefF16_4096[8192];
#define twiddleCoefF16 twiddleCoefF16_4096
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_32)
extern const float16_t twiddleCoefF16_rfft_32[32];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_64)
extern const float16_t twiddleCoefF16_rfft_64[64];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_128)
extern const float16_t twiddleCoefF16_rfft_128[128];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_256)
extern const float16_t twiddleCoefF16_rfft_256[256];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_512)
extern const float16_t twiddleCoefF16_rfft_512[512];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024)
extern const float16_t twiddleCoefF16_rfft_1024[1024];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048)
extern const float16_t twiddleCoefF16_rfft_2048[2048];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096)
extern const float16_t twiddleCoefF16_rfft_4096[4096];
#endif
#endif /* ARMAC5 */
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED)
#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)
extern const float16_t exp_tab_f16[8];
extern const float16_t __logf_lut_f16[8];
#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */
#endif
#ifdef __cplusplus
}
#endif
#endif /* _ARM_COMMON_TABLES_F16_H */

View File

@ -0,0 +1,86 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_const_structs.h
* Description: Constant structs that are initialized for user convenience.
* For example, some can be given as arguments to the arm_cfft_f32() function.
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_CONST_STRUCTS_H
#define _ARM_CONST_STRUCTS_H
#include "arm_math_types.h"
#include "arm_common_tables.h"
#include "dsp/transform_functions.h"
#ifdef __cplusplus
extern "C"
{
#endif
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len16;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len32;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len64;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len128;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len256;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len512;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len1024;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len2048;
extern const arm_cfft_instance_f64 arm_cfft_sR_f64_len4096;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len16;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len32;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len64;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len128;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len256;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len512;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048;
extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len16;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len32;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len64;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len128;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len256;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len512;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048;
extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len16;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len32;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len64;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len128;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len256;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len512;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048;
extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,77 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_const_structs_f16.h
* Description: Constant structs that are initialized for user convenience.
* For example, some can be given as arguments to the arm_cfft_f16() function.
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_CONST_STRUCTS_F16_H
#define _ARM_CONST_STRUCTS_F16_H
#include "arm_math_types_f16.h"
#include "arm_common_tables.h"
#include "arm_common_tables_f16.h"
#include "dsp/transform_functions_f16.h"
#ifdef __cplusplus
extern "C"
{
#endif
#if !defined(__CC_ARM) && defined(ARM_FLOAT16_SUPPORTED)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_16) && defined(ARM_TABLE_BITREVIDX_FLT_16))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len16;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_32) && defined(ARM_TABLE_BITREVIDX_FLT_32))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len32;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_64) && defined(ARM_TABLE_BITREVIDX_FLT_64))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len64;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_128) && defined(ARM_TABLE_BITREVIDX_FLT_128))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len128;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_256) && defined(ARM_TABLE_BITREVIDX_FLT_256))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len256;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_512) && defined(ARM_TABLE_BITREVIDX_FLT_512))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len512;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_1024) && defined(ARM_TABLE_BITREVIDX_FLT_1024))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len1024;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_2048) && defined(ARM_TABLE_BITREVIDX_FLT_2048))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len2048;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_4096) && defined(ARM_TABLE_BITREVIDX_FLT_4096))
extern const arm_cfft_instance_f16 arm_cfft_sR_f16_len4096;
#endif
#endif
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,753 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_helium_utils.h
* Description: Utility functions for Helium development
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_UTILS_HELIUM_H_
#define _ARM_UTILS_HELIUM_H_
#ifdef __cplusplus
extern "C"
{
#endif
/***************************************
Definitions available for MVEF and MVEI
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
#define INACTIVELANE 0 /* inactive lane content */
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */
/***************************************
Definitions available for MVEF only
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF)) && !defined(ARM_MATH_AUTOVECTORIZE)
__STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in)
{
float32_t acc;
acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) +
vgetq_lane(in, 2) + vgetq_lane(in, 3);
return acc;
}
/* newton initial guess */
#define INVSQRT_MAGIC_F32 0x5f3759df
#define INV_NEWTON_INIT_F32 0x7EF127EA
#define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\
{ \
float32x4_t tmp; \
\
/* tmp = xhalf * x * x */ \
tmp = vmulq(xStart, xStart); \
tmp = vmulq(tmp, xHalf); \
/* (1.5f - xhalf * x * x) */ \
tmp = vsubq(vdupq_n_f32(1.5f), tmp); \
/* x = x*(1.5f-xhalf*x*x); */ \
invSqrt = vmulq(tmp, xStart); \
}
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */
/***************************************
Definitions available for f16 datatype with HW acceleration only
***************************************/
#if defined(ARM_FLOAT16_SUPPORTED)
#if defined (ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
__STATIC_FORCEINLINE float16_t vecAddAcrossF16Mve(float16x8_t in)
{
float16x8_t tmpVec;
_Float16 acc;
tmpVec = (float16x8_t) vrev32q_s16((int16x8_t) in);
in = vaddq_f16(tmpVec, in);
tmpVec = (float16x8_t) vrev64q_s32((int32x4_t) in);
in = vaddq_f16(tmpVec, in);
acc = (_Float16)vgetq_lane_f16(in, 0) + (_Float16)vgetq_lane_f16(in, 4);
return acc;
}
__STATIC_FORCEINLINE float16x8_t __mve_cmplx_sum_intra_vec_f16(
float16x8_t vecIn)
{
float16x8_t vecTmp, vecOut;
uint32_t tmp;
vecTmp = (float16x8_t) vrev64q_s32((int32x4_t) vecIn);
// TO TRACK : using canonical addition leads to unefficient code generation for f16
// vecTmp = vecTmp + vecAccCpx0;
/*
* Compute
* re0+re1 | im0+im1 | re0+re1 | im0+im1
* re2+re3 | im2+im3 | re2+re3 | im2+im3
*/
vecTmp = vaddq_f16(vecTmp, vecIn);
vecOut = vecTmp;
/*
* shift left, random tmp insertion in bottom
*/
vecOut = vreinterpretq_f16_s32(vshlcq_s32(vreinterpretq_s32_f16(vecOut) , &tmp, 32));
/*
* Compute:
* DONTCARE | DONTCARE | re0+re1+re0+re1 |im0+im1+im0+im1
* re0+re1+re2+re3 | im0+im1+im2+im3 | re2+re3+re2+re3 |im2+im3+im2+im3
*/
vecOut = vaddq_f16(vecOut, vecTmp);
/*
* Cmplx sum is in 4rd & 5th f16 elt
* return full vector
*/
return vecOut;
}
#define mve_cmplx_sum_intra_r_i_f16(vec, Re, Im) \
{ \
float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vec); \
Re = vgetq_lane(vecOut, 4); \
Im = vgetq_lane(vecOut, 5); \
}
__STATIC_FORCEINLINE void mve_cmplx_sum_intra_vec_f16(
float16x8_t vecIn,
float16_t *pOut)
{
float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vecIn);
/*
* Cmplx sum is in 4rd & 5th f16 elt
* use 32-bit extraction
*/
*(float32_t *) pOut = ((float32x4_t) vecOut)[2];
}
#define INVSQRT_MAGIC_F16 0x59ba /* ( 0x1ba = 0x3759df >> 13) */
/* canonical version of INVSQRT_NEWTON_MVE_F16 leads to bad performance */
#define INVSQRT_NEWTON_MVE_F16(invSqrt, xHalf, xStart) \
{ \
float16x8_t tmp; \
\
/* tmp = xhalf * x * x */ \
tmp = vmulq(xStart, xStart); \
tmp = vmulq(tmp, xHalf); \
/* (1.5f - xhalf * x * x) */ \
tmp = vsubq(vdupq_n_f16((float16_t)1.5), tmp); \
/* x = x*(1.5f-xhalf*x*x); */ \
invSqrt = vmulq(tmp, xStart); \
}
#endif
#endif
/***************************************
Definitions available for MVEI and MVEF only
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Following functions are used to transpose matrix in f32 and q31 cases */
__STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve(
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
static const uint32x4_t vecOffs = { 0, 2, 1, 3 };
/*
*
* | 0 1 | => | 0 2 |
* | 2 3 | | 1 3 |
*
*/
uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve(
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
const uint32x4_t vecOffs1 = { 0, 3, 6, 1};
const uint32x4_t vecOffs2 = { 4, 7, 2, 5};
/*
*
* | 0 1 2 | | 0 3 6 | 4 x 32 flattened version | 0 3 6 1 |
* | 3 4 5 | => | 1 4 7 | => | 4 7 2 5 |
* | 6 7 8 | | 2 5 8 | (row major) | 8 . . . |
*
*/
uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc);
uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2);
pDataDest[8] = pDataSrc[8];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest)
{
/*
* 4x4 Matrix transposition
* is 4 x de-interleave operation
*
* 0 1 2 3 0 4 8 12
* 4 5 6 7 1 5 9 13
* 8 9 10 11 2 6 10 14
* 12 13 14 15 3 7 11 15
*/
uint32x4x4_t vecIn;
vecIn = vld4q((uint32_t const *) pDataSrc);
vstrwq(pDataDest, vecIn.val[0]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[1]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[2]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[3]);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve(
uint16_t srcRows,
uint16_t srcCols,
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
uint32x4_t vecOffs;
uint32_t i;
uint32_t blkCnt;
uint32_t const *pDataC;
uint32_t *pDataDestR;
uint32x4_t vecIn;
vecOffs = vidupq_u32((uint32_t)0, 1);
vecOffs = vecOffs * srcCols;
i = srcCols;
do
{
pDataC = (uint32_t const *) pDataSrc;
pDataDestR = pDataDest;
blkCnt = srcRows >> 2;
while (blkCnt > 0U)
{
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
vstrwq(pDataDestR, vecIn);
pDataDestR += 4;
pDataC = pDataC + srcCols * 4;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
*/
blkCnt = srcRows & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
vstrwq_p(pDataDestR, vecIn, p0);
}
pDataSrc += 1;
pDataDest += srcRows;
}
while (--i);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_cmplx_trans_32bit(
uint16_t srcRows,
uint16_t srcCols,
uint32_t *pDataSrc,
uint16_t dstRows,
uint16_t dstCols,
uint32_t *pDataDest)
{
uint32_t i;
uint32_t const *pDataC;
uint32_t *pDataRow;
uint32_t *pDataDestR, *pDataDestRow;
uint32x4_t vecOffsRef, vecOffsCur;
uint32_t blkCnt;
uint32x4_t vecIn;
#ifdef ARM_MATH_MATRIX_CHECK
/*
* Check for matrix mismatch condition
*/
if ((srcRows != dstCols) || (srcCols != dstRows))
{
/*
* Set status as ARM_MATH_SIZE_MISMATCH
*/
return ARM_MATH_SIZE_MISMATCH;
}
#else
(void)dstRows;
(void)dstCols;
#endif
/* 2x2, 3x3 and 4x4 specialization to be added */
vecOffsRef[0] = 0;
vecOffsRef[1] = 1;
vecOffsRef[2] = srcCols << 1;
vecOffsRef[3] = (srcCols << 1) + 1;
pDataRow = pDataSrc;
pDataDestRow = pDataDest;
i = srcCols;
do
{
pDataC = (uint32_t const *) pDataRow;
pDataDestR = pDataDestRow;
vecOffsCur = vecOffsRef;
blkCnt = (srcRows * CMPLX_DIM) >> 2;
while (blkCnt > 0U)
{
vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
vstrwq(pDataDestR, vecIn);
pDataDestR += 4;
vecOffsCur = vaddq(vecOffsCur, (srcCols << 2));
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (srcRows * CMPLX_DIM) & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
vstrwq_p(pDataDestR, vecIn, p0);
}
pDataRow += CMPLX_DIM;
pDataDestRow += (srcRows * CMPLX_DIM);
}
while (--i);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_2x2(uint16_t * pDataSrc, uint16_t * pDataDest)
{
pDataDest[0] = pDataSrc[0];
pDataDest[3] = pDataSrc[3];
pDataDest[2] = pDataSrc[1];
pDataDest[1] = pDataSrc[2];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
{
static const uint16_t stridesTr33[8] = { 0, 3, 6, 1, 4, 7, 2, 5 };
uint16x8_t vecOffs1;
uint16x8_t vecIn1;
/*
*
* | 0 1 2 | | 0 3 6 | 8 x 16 flattened version | 0 3 6 1 4 7 2 5 |
* | 3 4 5 | => | 1 4 7 | => | 8 . . . . . . . |
* | 6 7 8 | | 2 5 8 | (row major)
*
*/
vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr33);
vecIn1 = vldrhq_u16((uint16_t const *) pDataSrc);
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
pDataDest[8] = pDataSrc[8];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
{
static const uint16_t stridesTr44_1[8] = { 0, 4, 8, 12, 1, 5, 9, 13 };
static const uint16_t stridesTr44_2[8] = { 2, 6, 10, 14, 3, 7, 11, 15 };
uint16x8_t vecOffs1, vecOffs2;
uint16x8_t vecIn1, vecIn2;
uint16_t const * pDataSrcVec = (uint16_t const *) pDataSrc;
/*
* 4x4 Matrix transposition
*
* | 0 1 2 3 | | 0 4 8 12 | 8 x 16 flattened version
* | 4 5 6 7 | => | 1 5 9 13 | => [0 4 8 12 1 5 9 13]
* | 8 9 10 11 | | 2 6 10 14 | [2 6 10 14 3 7 11 15]
* | 12 13 14 15 | | 3 7 11 15 |
*/
vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr44_1);
vecOffs2 = vldrhq_u16((uint16_t const *) stridesTr44_2);
vecIn1 = vldrhq_u16(pDataSrcVec);
pDataSrcVec += 8;
vecIn2 = vldrhq_u16(pDataSrcVec);
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs2, vecIn2);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_generic(
uint16_t srcRows,
uint16_t srcCols,
uint16_t * pDataSrc,
uint16_t * pDataDest)
{
uint16x8_t vecOffs;
uint32_t i;
uint32_t blkCnt;
uint16_t const *pDataC;
uint16_t *pDataDestR;
uint16x8_t vecIn;
vecOffs = vidupq_u16((uint32_t)0, 1);
vecOffs = vecOffs * srcCols;
i = srcCols;
while(i > 0U)
{
pDataC = (uint16_t const *) pDataSrc;
pDataDestR = pDataDest;
blkCnt = srcRows >> 3;
while (blkCnt > 0U)
{
vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
vstrhq_u16(pDataDestR, vecIn);
pDataDestR += 8;
pDataC = pDataC + srcCols * 8;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
*/
blkCnt = srcRows & 7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
vstrhq_p_u16(pDataDestR, vecIn, p0);
}
pDataSrc += 1;
pDataDest += srcRows;
i--;
}
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_cmplx_trans_16bit(
uint16_t srcRows,
uint16_t srcCols,
uint16_t *pDataSrc,
uint16_t dstRows,
uint16_t dstCols,
uint16_t *pDataDest)
{
static const uint16_t loadCmplxCol[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
int i;
uint16x8_t vecOffsRef, vecOffsCur;
uint16_t const *pDataC;
uint16_t *pDataRow;
uint16_t *pDataDestR, *pDataDestRow;
uint32_t blkCnt;
uint16x8_t vecIn;
#ifdef ARM_MATH_MATRIX_CHECK
/*
* Check for matrix mismatch condition
*/
if ((srcRows != dstCols) || (srcCols != dstRows))
{
/*
* Set status as ARM_MATH_SIZE_MISMATCH
*/
return ARM_MATH_SIZE_MISMATCH;
}
#else
(void)dstRows;
(void)dstCols;
#endif
/*
* 2x2, 3x3 and 4x4 specialization to be added
*/
/*
* build [0, 1, 2xcol, 2xcol+1, 4xcol, 4xcol+1, 6xcol, 6xcol+1]
*/
vecOffsRef = vldrhq_u16((uint16_t const *) loadCmplxCol);
vecOffsRef = vmulq(vecOffsRef, (uint16_t) (srcCols * CMPLX_DIM))
+ viwdupq_u16((uint32_t)0, (uint16_t) 2, 1);
pDataRow = pDataSrc;
pDataDestRow = pDataDest;
i = srcCols;
do
{
pDataC = (uint16_t const *) pDataRow;
pDataDestR = pDataDestRow;
vecOffsCur = vecOffsRef;
blkCnt = (srcRows * CMPLX_DIM) >> 3;
while (blkCnt > 0U)
{
vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
vstrhq(pDataDestR, vecIn);
pDataDestR+= 8; // VEC_LANES_U16
vecOffsCur = vaddq(vecOffsCur, (srcCols << 3));
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (srcRows * CMPLX_DIM) & 0x7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
vstrhq_p(pDataDestR, vecIn, p0);
}
pDataRow += CMPLX_DIM;
pDataDestRow += (srcRows * CMPLX_DIM);
}
while (--i);
return (ARM_MATH_SUCCESS);
}
#endif /* MVEF and MVEI */
/***************************************
Definitions available for MVEI only
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_common_tables.h"
#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
#define MVE_ASRL_SAT32(acc, shift) ((sqrshrl(acc, -(32-shift)) >> 32) & 0xffffffff)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
__STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn)
{
q63x2_t vecTmpLL;
q31x4_t vecTmp0, vecTmp1;
q31_t scale;
q63_t tmp64;
q31x4_t vecNrm, vecDst, vecIdx, vecSignBits;
vecSignBits = vclsq(vecIn);
vecSignBits = vbicq_n_s32(vecSignBits, 1);
/*
* in = in << no_of_sign_bits;
*/
vecNrm = vshlq(vecIn, vecSignBits);
/*
* index = in >> 24;
*/
vecIdx = vecNrm >> 24;
vecIdx = vecIdx << 1;
vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
vecIdx = vecIdx + 1;
vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
vecTmp0 = vecTmp0 - vecTmp1;
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1;
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
vecTmpLL = vmullbq_int(vecNrm, vecTmp0);
/*
* scale elements 0, 2
*/
scale = 26 + (vecSignBits[0] >> 1);
tmp64 = asrl(vecTmpLL[0], scale);
vecDst[0] = (q31_t) tmp64;
scale = 26 + (vecSignBits[2] >> 1);
tmp64 = asrl(vecTmpLL[1], scale);
vecDst[2] = (q31_t) tmp64;
vecTmpLL = vmulltq_int(vecNrm, vecTmp0);
/*
* scale elements 1, 3
*/
scale = 26 + (vecSignBits[1] >> 1);
tmp64 = asrl(vecTmpLL[0], scale);
vecDst[1] = (q31_t) tmp64;
scale = 26 + (vecSignBits[3] >> 1);
tmp64 = asrl(vecTmpLL[1], scale);
vecDst[3] = (q31_t) tmp64;
/*
* set negative values to 0
*/
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0));
return vecDst;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
__STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn)
{
q31x4_t vecTmpLev, vecTmpLodd, vecSignL;
q15x8_t vecTmp0, vecTmp1;
q15x8_t vecNrm, vecDst, vecIdx, vecSignBits;
vecDst = vuninitializedq_s16();
vecSignBits = vclsq(vecIn);
vecSignBits = vbicq_n_s16(vecSignBits, 1);
/*
* in = in << no_of_sign_bits;
*/
vecNrm = vshlq(vecIn, vecSignBits);
vecIdx = vecNrm >> 8;
vecIdx = vecIdx << 1;
vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
vecIdx = vecIdx + 1;
vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
vecTmp0 = vecTmp0 - vecTmp1;
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1;
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
vecSignBits = vecSignBits >> 1;
vecTmpLev = vmullbq_int(vecNrm, vecTmp0);
vecTmpLodd = vmulltq_int(vecNrm, vecTmp0);
vecTmp0 = vecSignBits + 10;
/*
* negate sign to apply register based vshl
*/
vecTmp0 = -vecTmp0;
/*
* shift even elements
*/
vecSignL = vmovlbq(vecTmp0);
vecTmpLev = vshlq(vecTmpLev, vecSignL);
/*
* shift odd elements
*/
vecSignL = vmovltq(vecTmp0);
vecTmpLodd = vshlq(vecTmpLodd, vecSignL);
/*
* merge and narrow odd and even parts
*/
vecDst = vmovnbq_s32(vecDst, vecTmpLev);
vecDst = vmovntq_s32(vecDst, vecTmpLodd);
/*
* set negative values to 0
*/
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0));
return vecDst;
}
#endif
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,236 @@
/******************************************************************************
* @file arm_math.h
* @brief Public header file for CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
\mainpage CMSIS DSP Software Library
*
* \section intro Introduction
*
* This user manual describes the CMSIS DSP software library,
* a suite of common signal processing functions for use on Cortex-M and Cortex-A processor
* based devices.
*
* The library is divided into a number of functions each covering a specific category:
* - Basic math functions
* - Fast math functions
* - Complex math functions
* - Filtering functions
* - Matrix functions
* - Transform functions
* - Motor control functions
* - Statistical functions
* - Support functions
* - Interpolation functions
* - Support Vector Machine functions (SVM)
* - Bayes classifier functions
* - Distance functions
* - Quaternion functions
*
* The library has generally separate functions for operating on 8-bit integers, 16-bit integers,
* 32-bit integer and 32-bit floating-point values.
*
* The library is providing vectorized versions of most algorthms for Helium
* and of most f32 algorithms for Neon.
*
* When using a vectorized version, provide a little bit of padding after the end of
* a buffer (3 words) because the vectorized code may read a little bit after the end
* of a buffer. You don't have to modify your buffers but just ensure that the
* end of buffer + padding is not outside of a memory region.
*
* \section using Using the Library
*
* The library is released in source form. It is strongly advised to compile the library using -Ofast to
* have the best performances.
*
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
* Simply include this file. If you don't want to include everything, you can also rely
* on headers in Include/dsp folder and use only what you need.
*
* \section example Examples
*
* The library ships with a number of examples which demonstrate how to use the library functions.
*
* \section toolchain Toolchain Support
*
* The library is now tested on Fast Models building with cmake.
* Core M0, M4, M7, M33, M55, A32 are tested.
*
*
* \section preprocessor Preprocessor Macros
*
* Each library project have different preprocessor macros.
*
* - ARM_MATH_BIG_ENDIAN:
*
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
*
* - ARM_MATH_MATRIX_CHECK:
*
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
*
* - ARM_MATH_ROUNDING:
*
* Define macro ARM_MATH_ROUNDING for rounding on support functions
*
* - ARM_MATH_LOOPUNROLL:
*
* Define macro ARM_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions
*
* - ARM_MATH_NEON:
*
* Define macro ARM_MATH_NEON to enable Neon versions of the DSP functions.
* It is not enabled by default when Neon is available because performances are
* dependent on the compiler and target architecture.
*
* - ARM_MATH_NEON_EXPERIMENTAL:
*
* Define macro ARM_MATH_NEON_EXPERIMENTAL to enable experimental Neon versions of
* of some DSP functions. Experimental Neon versions currently do not have better
* performances than the scalar versions.
*
* - ARM_MATH_HELIUM:
*
* It implies the flags ARM_MATH_MVEF and ARM_MATH_MVEI and ARM_MATH_MVE_FLOAT16.
*
* - ARM_MATH_HELIUM_EXPERIMENTAL:
*
* Only taken into account when ARM_MATH_MVEF, ARM_MATH_MVEI or ARM_MATH_MVE_FLOAT16 are defined.
* Enable some vector versions which may have worse performance than scalar
* depending on the core / compiler configuration.
*
* - ARM_MATH_MVEF:
*
* Select Helium versions of the f32 algorithms.
* It implies ARM_MATH_FLOAT16 and ARM_MATH_MVEI.
*
* - ARM_MATH_MVEI:
*
* Select Helium versions of the int and fixed point algorithms.
*
* - ARM_MATH_MVE_FLOAT16:
*
* MVE Float16 implementations of some algorithms (Requires MVE extension).
*
* - DISABLEFLOAT16:
*
* Disable float16 algorithms when __fp16 is not supported for a
* specific compiler / core configuration.
* This is only valid for scalar. When vector architecture is
* supporting f16 then it can't be disabled.
*
* - ARM_MATH_AUTOVECTORIZE:
*
* With Helium or Neon, disable the use of vectorized code with C intrinsics
* and use pure C instead. The vectorization is then done by the compiler.
*
* <hr>
* \section pack CMSIS-DSP in ARM::CMSIS Pack
*
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
* |File/Folder |Content |
* |---------------------------------|------------------------------------------------------------------------|
* |\b CMSIS\\Documentation\\DSP | This documentation |
* |\b CMSIS\\DSP\\Examples | Example projects demonstrating the usage of the library functions |
* |\b CMSIS\\DSP\\Include | DSP_Lib include files for using and building the lib
* |\b CMSIS\\DSP\\PrivateInclude | DSP_Lib private include files for building the lib |
* |\b CMSIS\\DSP\\Lib | DSP_Lib binaries |
* |\b CMSIS\\DSP\\Source | DSP_Lib source files |
*
* <hr>
* \section rev Revision History of CMSIS-DSP
* Please refer to \ref ChangeLog_pg.
*/
/**
* @defgroup groupExamples Examples
*/
#ifndef _ARM_MATH_H
#define _ARM_MATH_H
#include "arm_math_types.h"
#include "arm_math_memory.h"
#include "dsp/none.h"
#include "dsp/utils.h"
#include "dsp/basic_math_functions.h"
#include "dsp/interpolation_functions.h"
#include "dsp/bayes_functions.h"
#include "dsp/matrix_functions.h"
#include "dsp/complex_math_functions.h"
#include "dsp/statistics_functions.h"
#include "dsp/controller_functions.h"
#include "dsp/support_functions.h"
#include "dsp/distance_functions.h"
#include "dsp/svm_functions.h"
#include "dsp/fast_math_functions.h"
#include "dsp/transform_functions.h"
#include "dsp/filtering_functions.h"
#include "dsp/quaternion_math_functions.h"
#ifdef __cplusplus
extern "C"
{
#endif
//#define TABLE_SPACING_Q31 0x400000
//#define TABLE_SPACING_Q15 0x80
#ifdef __cplusplus
}
#endif
#endif /* _ARM_MATH_H */
/**
*
* End of file.
*/

View File

@ -0,0 +1,59 @@
/******************************************************************************
* @file arm_math_f16.h
* @brief Public header file for f16 function of the CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_MATH_F16_H
#define _ARM_MATH_F16_H
#include "arm_math.h"
#ifdef __cplusplus
extern "C"
{
#endif
#include "arm_math_types_f16.h"
#include "dsp/none.h"
#include "dsp/utils.h"
#include "dsp/basic_math_functions_f16.h"
#include "dsp/interpolation_functions_f16.h"
#include "dsp/bayes_functions_f16.h"
#include "dsp/matrix_functions_f16.h"
#include "dsp/complex_math_functions_f16.h"
#include "dsp/statistics_functions_f16.h"
#include "dsp/controller_functions_f16.h"
#include "dsp/support_functions_f16.h"
#include "dsp/distance_functions_f16.h"
#include "dsp/svm_functions_f16.h"
#include "dsp/fast_math_functions_f16.h"
#include "dsp/transform_functions_f16.h"
#include "dsp/filtering_functions_f16.h"
#ifdef __cplusplus
}
#endif
#endif /* _ARM_MATH_F16_H */

View File

@ -0,0 +1,241 @@
/******************************************************************************
* @file arm_math_memory.h
* @brief Public header file for CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_MATH_MEMORY_H_
#define _ARM_MATH_MEMORY_H_
#include "arm_math_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
@brief definition to read/write two 16 bit values.
@deprecated
*/
#if defined ( __CC_ARM )
#define __SIMD32_TYPE int32_t __packed
#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
#define __SIMD32_TYPE int32_t
#elif defined ( __GNUC__ )
#define __SIMD32_TYPE int32_t
#elif defined ( __ICCARM__ )
#define __SIMD32_TYPE int32_t __packed
#elif defined ( __TI_ARM__ )
#define __SIMD32_TYPE int32_t
#elif defined ( __CSMC__ )
#define __SIMD32_TYPE int32_t
#elif defined ( __TASKING__ )
#define __SIMD32_TYPE __un(aligned) int32_t
#elif defined(_MSC_VER )
#define __SIMD32_TYPE int32_t
#else
#error Unknown compiler
#endif
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
#define __SIMD32_CONST(addr) ( (__SIMD32_TYPE * ) (addr))
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE * ) (addr))
#define __SIMD64(addr) (*( int64_t **) & (addr))
/* SIMD replacement */
/**
@brief Read 2 Q15 from Q15 pointer.
@param[in] pQ15 points to input value
@return Q31 value
*/
__STATIC_FORCEINLINE q31_t read_q15x2 (
q15_t * pQ15)
{
q31_t val;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (&val, pQ15, 4);
#else
val = (pQ15[1] << 16) | (pQ15[0] & 0x0FFFF) ;
#endif
return (val);
}
/**
@brief Read 2 Q15 from Q15 pointer and increment pointer afterwards.
@param[in] pQ15 points to input value
@return Q31 value
*/
__STATIC_FORCEINLINE q31_t read_q15x2_ia (
q15_t ** pQ15)
{
q31_t val;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (&val, *pQ15, 4);
#else
val = ((*pQ15)[1] << 16) | ((*pQ15)[0] & 0x0FFFF);
#endif
*pQ15 += 2;
return (val);
}
/**
@brief Read 2 Q15 from Q15 pointer and decrement pointer afterwards.
@param[in] pQ15 points to input value
@return Q31 value
*/
__STATIC_FORCEINLINE q31_t read_q15x2_da (
q15_t ** pQ15)
{
q31_t val;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (&val, *pQ15, 4);
#else
val = ((*pQ15)[1] << 16) | ((*pQ15)[0] & 0x0FFFF);
#endif
*pQ15 -= 2;
return (val);
}
/**
@brief Write 2 Q15 to Q15 pointer and increment pointer afterwards.
@param[in] pQ15 points to input value
@param[in] value Q31 value
@return none
*/
__STATIC_FORCEINLINE void write_q15x2_ia (
q15_t ** pQ15,
q31_t value)
{
q31_t val = value;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (*pQ15, &val, 4);
#else
(*pQ15)[0] = (val & 0x0FFFF);
(*pQ15)[1] = (val >> 16) & 0x0FFFF;
#endif
*pQ15 += 2;
}
/**
@brief Write 2 Q15 to Q15 pointer.
@param[in] pQ15 points to input value
@param[in] value Q31 value
@return none
*/
__STATIC_FORCEINLINE void write_q15x2 (
q15_t * pQ15,
q31_t value)
{
q31_t val = value;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (pQ15, &val, 4);
#else
pQ15[0] = val & 0x0FFFF;
pQ15[1] = val >> 16;
#endif
}
/**
@brief Read 4 Q7 from Q7 pointer and increment pointer afterwards.
@param[in] pQ7 points to input value
@return Q31 value
*/
__STATIC_FORCEINLINE q31_t read_q7x4_ia (
q7_t ** pQ7)
{
q31_t val;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (&val, *pQ7, 4);
#else
val =(((*pQ7)[3] & 0x0FF) << 24) | (((*pQ7)[2] & 0x0FF) << 16) | (((*pQ7)[1] & 0x0FF) << 8) | ((*pQ7)[0] & 0x0FF);
#endif
*pQ7 += 4;
return (val);
}
/**
@brief Read 4 Q7 from Q7 pointer and decrement pointer afterwards.
@param[in] pQ7 points to input value
@return Q31 value
*/
__STATIC_FORCEINLINE q31_t read_q7x4_da (
q7_t ** pQ7)
{
q31_t val;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (&val, *pQ7, 4);
#else
val = ((((*pQ7)[3]) & 0x0FF) << 24) | ((((*pQ7)[2]) & 0x0FF) << 16) | ((((*pQ7)[1]) & 0x0FF) << 8) | ((*pQ7)[0] & 0x0FF);
#endif
*pQ7 -= 4;
return (val);
}
/**
@brief Write 4 Q7 to Q7 pointer and increment pointer afterwards.
@param[in] pQ7 points to input value
@param[in] value Q31 value
@return none
*/
__STATIC_FORCEINLINE void write_q7x4_ia (
q7_t ** pQ7,
q31_t value)
{
q31_t val = value;
#ifdef __ARM_FEATURE_UNALIGNED
memcpy (*pQ7, &val, 4);
#else
(*pQ7)[0] = val & 0x0FF;
(*pQ7)[1] = (val >> 8) & 0x0FF;
(*pQ7)[2] = (val >> 16) & 0x0FF;
(*pQ7)[3] = (val >> 24) & 0x0FF;
#endif
*pQ7 += 4;
}
#ifdef __cplusplus
}
#endif
#endif /*ifndef _ARM_MATH_MEMORY_H_ */

View File

@ -0,0 +1,592 @@
/******************************************************************************
* @file arm_math_types.h
* @brief Public header file for CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_MATH_TYPES_H_
#define _ARM_MATH_TYPES_H_
#ifdef __cplusplus
extern "C"
{
#endif
/* Compiler specific diagnostic adjustment */
#if defined ( __CC_ARM )
#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
#elif defined ( __GNUC__ )
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#elif defined ( __ICCARM__ )
#elif defined ( __TI_ARM__ )
#elif defined ( __CSMC__ )
#elif defined ( __TASKING__ )
#elif defined ( _MSC_VER )
#else
#error Unknown compiler
#endif
/* Included for instrinsics definitions */
#if defined (_MSC_VER )
#include <stdint.h>
#define __STATIC_FORCEINLINE static __forceinline
#define __STATIC_INLINE static __inline
#define __ALIGNED(x) __declspec(align(x))
#elif defined (__GNUC_PYTHON__)
#include <stdint.h>
#define __ALIGNED(x) __attribute__((aligned(x)))
#define __STATIC_FORCEINLINE static inline __attribute__((always_inline))
#define __STATIC_INLINE static inline
#else
#include "cmsis_compiler.h"
#endif
#include <string.h>
#include <math.h>
#include <float.h>
#include <limits.h>
/* evaluate ARM DSP feature */
#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
#define ARM_MATH_DSP 1
#endif
#if defined(ARM_MATH_NEON)
#include <arm_neon.h>
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if !defined(ARM_MATH_NEON_FLOAT16)
#define ARM_MATH_NEON_FLOAT16
#endif
#endif
#endif
#if !defined(ARM_MATH_AUTOVECTORIZE)
#if __ARM_FEATURE_MVE
#if !defined(ARM_MATH_MVEI)
#define ARM_MATH_MVEI
#endif
#endif
#if (__ARM_FEATURE_MVE & 2)
#if !defined(ARM_MATH_MVEF)
#define ARM_MATH_MVEF
#endif
#if !defined(ARM_MATH_MVE_FLOAT16)
#define ARM_MATH_MVE_FLOAT16
#endif
#endif
#endif /*!defined(ARM_MATH_AUTOVECTORIZE)*/
#if defined (ARM_MATH_HELIUM)
#if !defined(ARM_MATH_MVEF)
#define ARM_MATH_MVEF
#endif
#if !defined(ARM_MATH_MVEI)
#define ARM_MATH_MVEI
#endif
#if !defined(ARM_MATH_MVE_FLOAT16)
#define ARM_MATH_MVE_FLOAT16
#endif
#endif
#if defined ( __CC_ARM )
/* Enter low optimization region - place directly above function definition */
#if defined( __ARM_ARCH_7EM__ )
#define LOW_OPTIMIZATION_ENTER \
_Pragma ("push") \
_Pragma ("O1")
#else
#define LOW_OPTIMIZATION_ENTER
#endif
/* Exit low optimization region - place directly after end of function definition */
#if defined ( __ARM_ARCH_7EM__ )
#define LOW_OPTIMIZATION_EXIT \
_Pragma ("pop")
#else
#define LOW_OPTIMIZATION_EXIT
#endif
/* Enter low optimization region - place directly above function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
/* Exit low optimization region - place directly after end of function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined ( __GNUC__ )
#define LOW_OPTIMIZATION_ENTER \
__attribute__(( optimize("-O1") ))
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined ( __ICCARM__ )
/* Enter low optimization region - place directly above function definition */
#if defined ( __ARM_ARCH_7EM__ )
#define LOW_OPTIMIZATION_ENTER \
_Pragma ("optimize=low")
#else
#define LOW_OPTIMIZATION_ENTER
#endif
/* Exit low optimization region - place directly after end of function definition */
#define LOW_OPTIMIZATION_EXIT
/* Enter low optimization region - place directly above function definition */
#if defined ( __ARM_ARCH_7EM__ )
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
_Pragma ("optimize=low")
#else
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#endif
/* Exit low optimization region - place directly after end of function definition */
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined ( __TI_ARM__ )
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined ( __CSMC__ )
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined ( __TASKING__ )
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#elif defined ( _MSC_VER ) || defined(__GNUC_PYTHON__)
#define LOW_OPTIMIZATION_ENTER
#define LOW_OPTIMIZATION_EXIT
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
#endif
/* Compiler specific diagnostic adjustment */
#if defined ( __CC_ARM )
#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
#elif defined ( __GNUC__ )
#pragma GCC diagnostic pop
#elif defined ( __ICCARM__ )
#elif defined ( __TI_ARM__ )
#elif defined ( __CSMC__ )
#elif defined ( __TASKING__ )
#elif defined ( _MSC_VER )
#else
#error Unknown compiler
#endif
#ifdef __cplusplus
}
#endif
#if __ARM_FEATURE_MVE
#include <arm_mve.h>
#endif
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief 8-bit fractional data type in 1.7 format.
*/
typedef int8_t q7_t;
/**
* @brief 16-bit fractional data type in 1.15 format.
*/
typedef int16_t q15_t;
/**
* @brief 32-bit fractional data type in 1.31 format.
*/
typedef int32_t q31_t;
/**
* @brief 64-bit fractional data type in 1.63 format.
*/
typedef int64_t q63_t;
/**
* @brief 32-bit floating-point type definition.
*/
typedef float float32_t;
/**
* @brief 64-bit floating-point type definition.
*/
typedef double float64_t;
/**
* @brief vector types
*/
#if defined(ARM_MATH_NEON) || (defined (ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE))
/**
* @brief 64-bit fractional 128-bit vector data type in 1.63 format
*/
typedef int64x2_t q63x2_t;
/**
* @brief 32-bit fractional 128-bit vector data type in 1.31 format.
*/
typedef int32x4_t q31x4_t;
/**
* @brief 16-bit fractional 128-bit vector data type with 16-bit alignment in 1.15 format.
*/
typedef __ALIGNED(2) int16x8_t q15x8_t;
/**
* @brief 8-bit fractional 128-bit vector data type with 8-bit alignment in 1.7 format.
*/
typedef __ALIGNED(1) int8x16_t q7x16_t;
/**
* @brief 32-bit fractional 128-bit vector pair data type in 1.31 format.
*/
typedef int32x4x2_t q31x4x2_t;
/**
* @brief 32-bit fractional 128-bit vector quadruplet data type in 1.31 format.
*/
typedef int32x4x4_t q31x4x4_t;
/**
* @brief 16-bit fractional 128-bit vector pair data type in 1.15 format.
*/
typedef int16x8x2_t q15x8x2_t;
/**
* @brief 16-bit fractional 128-bit vector quadruplet data type in 1.15 format.
*/
typedef int16x8x4_t q15x8x4_t;
/**
* @brief 8-bit fractional 128-bit vector pair data type in 1.7 format.
*/
typedef int8x16x2_t q7x16x2_t;
/**
* @brief 8-bit fractional 128-bit vector quadruplet data type in 1.7 format.
*/
typedef int8x16x4_t q7x16x4_t;
/**
* @brief 32-bit fractional data type in 9.23 format.
*/
typedef int32_t q23_t;
/**
* @brief 32-bit fractional 128-bit vector data type in 9.23 format.
*/
typedef int32x4_t q23x4_t;
/**
* @brief 64-bit status 128-bit vector data type.
*/
typedef int64x2_t status64x2_t;
/**
* @brief 32-bit status 128-bit vector data type.
*/
typedef int32x4_t status32x4_t;
/**
* @brief 16-bit status 128-bit vector data type.
*/
typedef int16x8_t status16x8_t;
/**
* @brief 8-bit status 128-bit vector data type.
*/
typedef int8x16_t status8x16_t;
#endif
#if defined(ARM_MATH_NEON) || (defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)) /* floating point vector*/
/**
* @brief 32-bit floating-point 128-bit vector type
*/
typedef float32x4_t f32x4_t;
/**
* @brief 32-bit floating-point 128-bit vector pair data type
*/
typedef float32x4x2_t f32x4x2_t;
/**
* @brief 32-bit floating-point 128-bit vector quadruplet data type
*/
typedef float32x4x4_t f32x4x4_t;
/**
* @brief 32-bit ubiquitous 128-bit vector data type
*/
typedef union _any32x4_t
{
float32x4_t f;
int32x4_t i;
} any32x4_t;
#endif
#if defined(ARM_MATH_NEON)
/**
* @brief 32-bit fractional 64-bit vector data type in 1.31 format.
*/
typedef int32x2_t q31x2_t;
/**
* @brief 16-bit fractional 64-bit vector data type in 1.15 format.
*/
typedef __ALIGNED(2) int16x4_t q15x4_t;
/**
* @brief 8-bit fractional 64-bit vector data type in 1.7 format.
*/
typedef __ALIGNED(1) int8x8_t q7x8_t;
/**
* @brief 32-bit float 64-bit vector data type.
*/
typedef float32x2_t f32x2_t;
/**
* @brief 32-bit floating-point 128-bit vector triplet data type
*/
typedef float32x4x3_t f32x4x3_t;
/**
* @brief 32-bit fractional 128-bit vector triplet data type in 1.31 format
*/
typedef int32x4x3_t q31x4x3_t;
/**
* @brief 16-bit fractional 128-bit vector triplet data type in 1.15 format
*/
typedef int16x8x3_t q15x8x3_t;
/**
* @brief 8-bit fractional 128-bit vector triplet data type in 1.7 format
*/
typedef int8x16x3_t q7x16x3_t;
/**
* @brief 32-bit floating-point 64-bit vector pair data type
*/
typedef float32x2x2_t f32x2x2_t;
/**
* @brief 32-bit floating-point 64-bit vector triplet data type
*/
typedef float32x2x3_t f32x2x3_t;
/**
* @brief 32-bit floating-point 64-bit vector quadruplet data type
*/
typedef float32x2x4_t f32x2x4_t;
/**
* @brief 32-bit fractional 64-bit vector pair data type in 1.31 format
*/
typedef int32x2x2_t q31x2x2_t;
/**
* @brief 32-bit fractional 64-bit vector triplet data type in 1.31 format
*/
typedef int32x2x3_t q31x2x3_t;
/**
* @brief 32-bit fractional 64-bit vector quadruplet data type in 1.31 format
*/
typedef int32x4x3_t q31x2x4_t;
/**
* @brief 16-bit fractional 64-bit vector pair data type in 1.15 format
*/
typedef int16x4x2_t q15x4x2_t;
/**
* @brief 16-bit fractional 64-bit vector triplet data type in 1.15 format
*/
typedef int16x4x2_t q15x4x3_t;
/**
* @brief 16-bit fractional 64-bit vector quadruplet data type in 1.15 format
*/
typedef int16x4x3_t q15x4x4_t;
/**
* @brief 8-bit fractional 64-bit vector pair data type in 1.7 format
*/
typedef int8x8x2_t q7x8x2_t;
/**
* @brief 8-bit fractional 64-bit vector triplet data type in 1.7 format
*/
typedef int8x8x3_t q7x8x3_t;
/**
* @brief 8-bit fractional 64-bit vector quadruplet data type in 1.7 format
*/
typedef int8x8x4_t q7x8x4_t;
/**
* @brief 32-bit ubiquitous 64-bit vector data type
*/
typedef union _any32x2_t
{
float32x2_t f;
int32x2_t i;
} any32x2_t;
/**
* @brief 32-bit status 64-bit vector data type.
*/
typedef int32x4_t status32x2_t;
/**
* @brief 16-bit status 64-bit vector data type.
*/
typedef int16x8_t status16x4_t;
/**
* @brief 8-bit status 64-bit vector data type.
*/
typedef int8x16_t status8x8_t;
#endif
#define F64_MAX ((float64_t)DBL_MAX)
#define F32_MAX ((float32_t)FLT_MAX)
#define F64_MIN (-DBL_MAX)
#define F32_MIN (-FLT_MAX)
#define F64_ABSMAX ((float64_t)DBL_MAX)
#define F32_ABSMAX ((float32_t)FLT_MAX)
#define F64_ABSMIN ((float64_t)0.0)
#define F32_ABSMIN ((float32_t)0.0)
#define Q31_MAX ((q31_t)(0x7FFFFFFFL))
#define Q15_MAX ((q15_t)(0x7FFF))
#define Q7_MAX ((q7_t)(0x7F))
#define Q31_MIN ((q31_t)(0x80000000L))
#define Q15_MIN ((q15_t)(0x8000))
#define Q7_MIN ((q7_t)(0x80))
#define Q31_ABSMAX ((q31_t)(0x7FFFFFFFL))
#define Q15_ABSMAX ((q15_t)(0x7FFF))
#define Q7_ABSMAX ((q7_t)(0x7F))
#define Q31_ABSMIN ((q31_t)0)
#define Q15_ABSMIN ((q15_t)0)
#define Q7_ABSMIN ((q7_t)0)
/* Dimension C vector space */
#define CMPLX_DIM 2
/**
* @brief Error status returned by some functions in the library.
*/
typedef enum
{
ARM_MATH_SUCCESS = 0, /**< No error */
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation */
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
ARM_MATH_SINGULAR = -5, /**< Input matrix is singular and cannot be inverted */
ARM_MATH_TEST_FAILURE = -6, /**< Test Failed */
ARM_MATH_DECOMPOSITION_FAILURE = -7 /**< Decomposition Failed */
} arm_status;
#ifdef __cplusplus
}
#endif
#endif /*ifndef _ARM_MATH_TYPES_H_ */

View File

@ -0,0 +1,156 @@
/******************************************************************************
* @file arm_math_types_f16.h
* @brief Public header file for f16 function of the CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_MATH_TYPES_F16_H
#define _ARM_MATH_TYPES_F16_H
#include "arm_math_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
#if !defined( __CC_ARM )
/**
* @brief 16-bit floating-point type definition.
* This is already defined in arm_mve.h
*
* This is not fully supported on ARM AC5.
*/
/*
Check if the type __fp16 is available.
If it is not available, f16 version of the kernels
won't be built.
*/
#if !(__ARM_FEATURE_MVE & 2)
#if !defined(DISABLEFLOAT16)
#if defined(__ARM_FP16_FORMAT_IEEE) || defined(__ARM_FP16_FORMAT_ALTERNATIVE)
typedef __fp16 float16_t;
#define ARM_FLOAT16_SUPPORTED
#endif
#endif
#else
/* When Vector float16, this flag is always defined and can't be disabled */
#define ARM_FLOAT16_SUPPORTED
#endif
#if defined(ARM_MATH_NEON) || (defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)) /* floating point vector*/
#if defined(ARM_MATH_MVE_FLOAT16) || defined(ARM_MATH_NEON_FLOAT16)
/**
* @brief 16-bit floating-point 128-bit vector data type
*/
typedef __ALIGNED(2) float16x8_t f16x8_t;
/**
* @brief 16-bit floating-point 128-bit vector pair data type
*/
typedef float16x8x2_t f16x8x2_t;
/**
* @brief 16-bit floating-point 128-bit vector quadruplet data type
*/
typedef float16x8x4_t f16x8x4_t;
/**
* @brief 16-bit ubiquitous 128-bit vector data type
*/
typedef union _any16x8_t
{
float16x8_t f;
int16x8_t i;
} any16x8_t;
#endif
#endif
#if defined(ARM_MATH_NEON)
#if defined(ARM_MATH_NEON_FLOAT16)
/**
* @brief 16-bit float 64-bit vector data type.
*/
typedef __ALIGNED(2) float16x4_t f16x4_t;
/**
* @brief 16-bit floating-point 128-bit vector triplet data type
*/
typedef float16x8x3_t f16x8x3_t;
/**
* @brief 16-bit floating-point 64-bit vector pair data type
*/
typedef float16x4x2_t f16x4x2_t;
/**
* @brief 16-bit floating-point 64-bit vector triplet data type
*/
typedef float16x4x3_t f16x4x3_t;
/**
* @brief 16-bit floating-point 64-bit vector quadruplet data type
*/
typedef float16x4x4_t f16x4x4_t;
/**
* @brief 16-bit ubiquitous 64-bit vector data type
*/
typedef union _any16x4_t
{
float16x4_t f;
int16x4_t i;
} any16x4_t;
#endif
#endif
#if defined(ARM_FLOAT16_SUPPORTED)
#define F16_MAX ((float16_t)__FLT16_MAX__)
#define F16_MIN (-(_Float16)__FLT16_MAX__)
#define F16_ABSMAX ((float16_t)__FLT16_MAX__)
#define F16_ABSMIN ((float16_t)0.0f16)
#define F16INFINITY ((float16_t)__builtin_inf())
#endif /* ARM_FLOAT16_SUPPORTED*/
#endif /* !defined( __CC_ARM ) */
#ifdef __cplusplus
}
#endif
#endif /* _ARM_MATH_F16_H */

View File

@ -0,0 +1,231 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mve_tables.h
* Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc
* used for MVE implementation only
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_MVE_TABLES_H
#define _ARM_MVE_TABLES_H
#include "arm_math_types.h"
#ifdef __cplusplus
extern "C"
{
#endif
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16) || defined(ARM_TABLE_TWIDDLECOEF_F32_32)
extern uint32_t rearranged_twiddle_tab_stride1_arr_16_f32[2];
extern uint32_t rearranged_twiddle_tab_stride2_arr_16_f32[2];
extern uint32_t rearranged_twiddle_tab_stride3_arr_16_f32[2];
extern float32_t rearranged_twiddle_stride1_16_f32[8];
extern float32_t rearranged_twiddle_stride2_16_f32[8];
extern float32_t rearranged_twiddle_stride3_16_f32[8];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64) || defined(ARM_TABLE_TWIDDLECOEF_F32_128)
extern uint32_t rearranged_twiddle_tab_stride1_arr_64_f32[3];
extern uint32_t rearranged_twiddle_tab_stride2_arr_64_f32[3];
extern uint32_t rearranged_twiddle_tab_stride3_arr_64_f32[3];
extern float32_t rearranged_twiddle_stride1_64_f32[40];
extern float32_t rearranged_twiddle_stride2_64_f32[40];
extern float32_t rearranged_twiddle_stride3_64_f32[40];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256) || defined(ARM_TABLE_TWIDDLECOEF_F32_512)
extern uint32_t rearranged_twiddle_tab_stride1_arr_256_f32[4];
extern uint32_t rearranged_twiddle_tab_stride2_arr_256_f32[4];
extern uint32_t rearranged_twiddle_tab_stride3_arr_256_f32[4];
extern float32_t rearranged_twiddle_stride1_256_f32[168];
extern float32_t rearranged_twiddle_stride2_256_f32[168];
extern float32_t rearranged_twiddle_stride3_256_f32[168];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048)
extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_f32[5];
extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_f32[5];
extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_f32[5];
extern float32_t rearranged_twiddle_stride1_1024_f32[680];
extern float32_t rearranged_twiddle_stride2_1024_f32[680];
extern float32_t rearranged_twiddle_stride3_1024_f32[680];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096) || defined(ARM_TABLE_TWIDDLECOEF_F32_8192)
extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_f32[6];
extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_f32[6];
extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_f32[6];
extern float32_t rearranged_twiddle_stride1_4096_f32[2728];
extern float32_t rearranged_twiddle_stride2_4096_f32[2728];
extern float32_t rearranged_twiddle_stride3_4096_f32[2728];
#endif
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32)
extern uint32_t rearranged_twiddle_tab_stride1_arr_16_q31[2];
extern uint32_t rearranged_twiddle_tab_stride2_arr_16_q31[2];
extern uint32_t rearranged_twiddle_tab_stride3_arr_16_q31[2];
extern q31_t rearranged_twiddle_stride1_16_q31[8];
extern q31_t rearranged_twiddle_stride2_16_q31[8];
extern q31_t rearranged_twiddle_stride3_16_q31[8];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128)
extern uint32_t rearranged_twiddle_tab_stride1_arr_64_q31[3];
extern uint32_t rearranged_twiddle_tab_stride2_arr_64_q31[3];
extern uint32_t rearranged_twiddle_tab_stride3_arr_64_q31[3];
extern q31_t rearranged_twiddle_stride1_64_q31[40];
extern q31_t rearranged_twiddle_stride2_64_q31[40];
extern q31_t rearranged_twiddle_stride3_64_q31[40];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512)
extern uint32_t rearranged_twiddle_tab_stride1_arr_256_q31[4];
extern uint32_t rearranged_twiddle_tab_stride2_arr_256_q31[4];
extern uint32_t rearranged_twiddle_tab_stride3_arr_256_q31[4];
extern q31_t rearranged_twiddle_stride1_256_q31[168];
extern q31_t rearranged_twiddle_stride2_256_q31[168];
extern q31_t rearranged_twiddle_stride3_256_q31[168];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048)
extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_q31[5];
extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_q31[5];
extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_q31[5];
extern q31_t rearranged_twiddle_stride1_1024_q31[680];
extern q31_t rearranged_twiddle_stride2_1024_q31[680];
extern q31_t rearranged_twiddle_stride3_1024_q31[680];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096) || defined(ARM_TABLE_TWIDDLECOEF_Q31_8192)
extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_q31[6];
extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_q31[6];
extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_q31[6];
extern q31_t rearranged_twiddle_stride1_4096_q31[2728];
extern q31_t rearranged_twiddle_stride2_4096_q31[2728];
extern q31_t rearranged_twiddle_stride3_4096_q31[2728];
#endif
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
#endif /* defined(ARM_MATH_MVEI) */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32)
extern uint32_t rearranged_twiddle_tab_stride1_arr_16_q15[2];
extern uint32_t rearranged_twiddle_tab_stride2_arr_16_q15[2];
extern uint32_t rearranged_twiddle_tab_stride3_arr_16_q15[2];
extern q15_t rearranged_twiddle_stride1_16_q15[8];
extern q15_t rearranged_twiddle_stride2_16_q15[8];
extern q15_t rearranged_twiddle_stride3_16_q15[8];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128)
extern uint32_t rearranged_twiddle_tab_stride1_arr_64_q15[3];
extern uint32_t rearranged_twiddle_tab_stride2_arr_64_q15[3];
extern uint32_t rearranged_twiddle_tab_stride3_arr_64_q15[3];
extern q15_t rearranged_twiddle_stride1_64_q15[40];
extern q15_t rearranged_twiddle_stride2_64_q15[40];
extern q15_t rearranged_twiddle_stride3_64_q15[40];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512)
extern uint32_t rearranged_twiddle_tab_stride1_arr_256_q15[4];
extern uint32_t rearranged_twiddle_tab_stride2_arr_256_q15[4];
extern uint32_t rearranged_twiddle_tab_stride3_arr_256_q15[4];
extern q15_t rearranged_twiddle_stride1_256_q15[168];
extern q15_t rearranged_twiddle_stride2_256_q15[168];
extern q15_t rearranged_twiddle_stride3_256_q15[168];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048)
extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_q15[5];
extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_q15[5];
extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_q15[5];
extern q15_t rearranged_twiddle_stride1_1024_q15[680];
extern q15_t rearranged_twiddle_stride2_1024_q15[680];
extern q15_t rearranged_twiddle_stride3_1024_q15[680];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096) || defined(ARM_TABLE_TWIDDLECOEF_Q15_8192)
extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_q15[6];
extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_q15[6];
extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_q15[6];
extern q15_t rearranged_twiddle_stride1_4096_q15[2728];
extern q15_t rearranged_twiddle_stride2_4096_q15[2728];
extern q15_t rearranged_twiddle_stride3_4096_q15[2728];
#endif
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
#endif /* defined(ARM_MATH_MVEI) */
#ifdef __cplusplus
}
#endif
#endif /*_ARM_MVE_TABLES_H*/

View File

@ -0,0 +1,109 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mve_tables_f16.h
* Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc
* used for MVE implementation only
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_MVE_TABLES_F16_H
#define _ARM_MVE_TABLES_F16_H
#include "arm_math_types_f16.h"
#ifdef __cplusplus
extern "C"
{
#endif
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_16) || defined(ARM_TABLE_TWIDDLECOEF_F16_32)
extern uint32_t rearranged_twiddle_tab_stride1_arr_16_f16[2];
extern uint32_t rearranged_twiddle_tab_stride2_arr_16_f16[2];
extern uint32_t rearranged_twiddle_tab_stride3_arr_16_f16[2];
extern float16_t rearranged_twiddle_stride1_16_f16[8];
extern float16_t rearranged_twiddle_stride2_16_f16[8];
extern float16_t rearranged_twiddle_stride3_16_f16[8];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_64) || defined(ARM_TABLE_TWIDDLECOEF_F16_128)
extern uint32_t rearranged_twiddle_tab_stride1_arr_64_f16[3];
extern uint32_t rearranged_twiddle_tab_stride2_arr_64_f16[3];
extern uint32_t rearranged_twiddle_tab_stride3_arr_64_f16[3];
extern float16_t rearranged_twiddle_stride1_64_f16[40];
extern float16_t rearranged_twiddle_stride2_64_f16[40];
extern float16_t rearranged_twiddle_stride3_64_f16[40];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_256) || defined(ARM_TABLE_TWIDDLECOEF_F16_512)
extern uint32_t rearranged_twiddle_tab_stride1_arr_256_f16[4];
extern uint32_t rearranged_twiddle_tab_stride2_arr_256_f16[4];
extern uint32_t rearranged_twiddle_tab_stride3_arr_256_f16[4];
extern float16_t rearranged_twiddle_stride1_256_f16[168];
extern float16_t rearranged_twiddle_stride2_256_f16[168];
extern float16_t rearranged_twiddle_stride3_256_f16[168];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_1024) || defined(ARM_TABLE_TWIDDLECOEF_F16_2048)
extern uint32_t rearranged_twiddle_tab_stride1_arr_1024_f16[5];
extern uint32_t rearranged_twiddle_tab_stride2_arr_1024_f16[5];
extern uint32_t rearranged_twiddle_tab_stride3_arr_1024_f16[5];
extern float16_t rearranged_twiddle_stride1_1024_f16[680];
extern float16_t rearranged_twiddle_stride2_1024_f16[680];
extern float16_t rearranged_twiddle_stride3_1024_f16[680];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096) || defined(ARM_TABLE_TWIDDLECOEF_F16_8192)
extern uint32_t rearranged_twiddle_tab_stride1_arr_4096_f16[6];
extern uint32_t rearranged_twiddle_tab_stride2_arr_4096_f16[6];
extern uint32_t rearranged_twiddle_tab_stride3_arr_4096_f16[6];
extern float16_t rearranged_twiddle_stride1_4096_f16[2728];
extern float16_t rearranged_twiddle_stride2_4096_f16[2728];
extern float16_t rearranged_twiddle_stride3_4096_f16[2728];
#endif
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
#ifdef __cplusplus
}
#endif
#endif /*_ARM_MVE_TABLES_F16_H*/

Some files were not shown because too many files have changed in this diff Show More