/* * FreeRTOS Kernel V10.4.1 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /*----------------------------------------------------------- * Portable layer API. Each function must be defined for each port. *----------------------------------------------------------*/ #ifndef PORTABLE_H #define PORTABLE_H /* Each FreeRTOS port has a unique portmacro.h header file. Originally a * pre-processor definition was used to ensure the pre-processor found the correct * portmacro.h file for the port being used. That scheme was deprecated in favour * of setting the compiler's include path such that it found the correct * portmacro.h file - removing the need for the constant and allowing the * portmacro.h file to be located anywhere in relation to the port being used. * Purely for reasons of backward compatibility the old method is still valid, but * to make it clear that new projects should not use it, support for the port * specific constants has been moved into the deprecated_definitions.h header * file. */ #include "deprecated_definitions.h" /* If portENTER_CRITICAL is not defined then including deprecated_definitions.h * did not result in a portmacro.h header file being included - and it should be * included here. In this case the path to the correct portmacro.h header file * must be set in the compiler's include path. */ #ifndef portENTER_CRITICAL #include "portmacro.h" #endif #if portBYTE_ALIGNMENT == 32 #define portBYTE_ALIGNMENT_MASK ( 0x001f ) #endif #if portBYTE_ALIGNMENT == 16 #define portBYTE_ALIGNMENT_MASK ( 0x000f ) #endif #if portBYTE_ALIGNMENT == 8 #define portBYTE_ALIGNMENT_MASK ( 0x0007 ) #endif #if portBYTE_ALIGNMENT == 4 #define portBYTE_ALIGNMENT_MASK ( 0x0003 ) #endif #if portBYTE_ALIGNMENT == 2 #define portBYTE_ALIGNMENT_MASK ( 0x0001 ) #endif #if portBYTE_ALIGNMENT == 1 #define portBYTE_ALIGNMENT_MASK ( 0x0000 ) #endif #ifndef portBYTE_ALIGNMENT_MASK #error "Invalid portBYTE_ALIGNMENT definition" #endif #ifndef portNUM_CONFIGURABLE_REGIONS #define portNUM_CONFIGURABLE_REGIONS 1 #endif #ifndef portHAS_STACK_OVERFLOW_CHECKING #define portHAS_STACK_OVERFLOW_CHECKING 0 #endif #ifndef portARCH_NAME #define portARCH_NAME NULL #endif /* *INDENT-OFF* */ #ifdef __cplusplus extern "C" { #endif /* *INDENT-ON* */ #include "mpu_wrappers.h" /* * Setup the stack of a new task so it is ready to be placed under the * scheduler control. The registers have to be placed on the stack in * the order that the port expects to find them. * */ #if ( portUSING_MPU_WRAPPERS == 1 ) #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, StackType_t * pxEndOfStack, TaskFunction_t pxCode, void * pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION; #else StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION; #endif #else /* if ( portUSING_MPU_WRAPPERS == 1 ) */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, StackType_t * pxEndOfStack, TaskFunction_t pxCode, void * pvParameters ) PRIVILEGED_FUNCTION; #else StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters ) PRIVILEGED_FUNCTION; #endif #endif /* if ( portUSING_MPU_WRAPPERS == 1 ) */ /* Used by heap_5.c to define the start address and size of each memory region * that together comprise the total FreeRTOS heap space. */ typedef struct HeapRegion { uint8_t * pucStartAddress; size_t xSizeInBytes; } HeapRegion_t; /* Used to pass information about the heap out of vPortGetHeapStats(). */ typedef struct xHeapStats { size_t xAvailableHeapSpaceInBytes; /* The total heap size currently available - this is the sum of all the free blocks, not the largest block that can be allocated. */ size_t xSizeOfLargestFreeBlockInBytes; /* The maximum size, in bytes, of all the free blocks within the heap at the time vPortGetHeapStats() is called. */ size_t xSizeOfSmallestFreeBlockInBytes; /* The minimum size, in bytes, of all the free blocks within the heap at the time vPortGetHeapStats() is called. */ size_t xNumberOfFreeBlocks; /* The number of free memory blocks within the heap at the time vPortGetHeapStats() is called. */ size_t xMinimumEverFreeBytesRemaining; /* The minimum amount of total free memory (sum of all free blocks) there has been in the heap since the system booted. */ size_t xNumberOfSuccessfulAllocations; /* The number of calls to pvPortMalloc() that have returned a valid memory block. */ size_t xNumberOfSuccessfulFrees; /* The number of calls to vPortFree() that has successfully freed a block of memory. */ } HeapStats_t; /* * Used to define multiple heap regions for use by heap_5.c. This function * must be called before any calls to pvPortMalloc() - not creating a task, * queue, semaphore, mutex, software timer, event group, etc. will result in * pvPortMalloc being called. * * pxHeapRegions passes in an array of HeapRegion_t structures - each of which * defines a region of memory that can be used as the heap. The array is * terminated by a HeapRegions_t structure that has a size of 0. The region * with the lowest start address must appear first in the array. */ void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions ) PRIVILEGED_FUNCTION; /* * Returns a HeapStats_t structure filled with information about the current * heap state. */ void vPortGetHeapStats( HeapStats_t * pxHeapStats ); /* * Map to the memory management routines required for the port. */ void * pvPortMalloc( size_t xSize ) PRIVILEGED_FUNCTION; void vPortFree( void * pv ) PRIVILEGED_FUNCTION; void vPortInitialiseBlocks( void ) PRIVILEGED_FUNCTION; size_t xPortGetFreeHeapSize( void ) PRIVILEGED_FUNCTION; size_t xPortGetMinimumEverFreeHeapSize( void ) PRIVILEGED_FUNCTION; /* * Setup the hardware ready for the scheduler to take control. This generally * sets up a tick interrupt and sets timers for the correct tick frequency. */ BaseType_t xPortStartScheduler( void ) PRIVILEGED_FUNCTION; /* * Undo any hardware/ISR setup that was performed by xPortStartScheduler() so * the hardware is left in its original condition after the scheduler stops * executing. */ void vPortEndScheduler( void ) PRIVILEGED_FUNCTION; /* * The structures and methods of manipulating the MPU are contained within the * port layer. * * Fills the xMPUSettings structure with the memory region information * contained in xRegions. */ #if ( portUSING_MPU_WRAPPERS == 1 ) struct xMEMORY_REGION; void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t * pxBottomOfStack, uint32_t ulStackDepth ) PRIVILEGED_FUNCTION; #endif /* *INDENT-OFF* */ #ifdef __cplusplus } #endif /* *INDENT-ON* */ #endif /* PORTABLE_H */