/****************************************************************************** * @file bayes_functions.h * @brief Public header file for CMSIS DSP Library * @version V1.10.0 * @date 08 July 2021 * Target Processor: Cortex-M and Cortex-A cores ******************************************************************************/ /* * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _BAYES_FUNCTIONS_H_ #define _BAYES_FUNCTIONS_H_ #include "arm_math_types.h" #include "arm_math_memory.h" #include "dsp/none.h" #include "dsp/utils.h" #include "dsp/statistics_functions.h" /** * @defgroup groupBayes Bayesian estimators * * Implement the naive gaussian Bayes estimator. * The training must be done from scikit-learn. * * The parameters can be easily * generated from the scikit-learn object. Some examples are given in * DSP/Testing/PatternGeneration/Bayes.py */ #ifdef __cplusplus extern "C" { #endif /** * @brief Instance structure for Naive Gaussian Bayesian estimator. */ typedef struct { uint32_t vectorDimension; /**< Dimension of vector space */ uint32_t numberOfClasses; /**< Number of different classes */ const float32_t *theta; /**< Mean values for the Gaussians */ const float32_t *sigma; /**< Variances for the Gaussians */ const float32_t *classPriors; /**< Class prior probabilities */ float32_t epsilon; /**< Additive value to variances */ } arm_gaussian_naive_bayes_instance_f32; /** * @brief Naive Gaussian Bayesian Estimator * * @param[in] S points to a naive bayes instance structure * @param[in] in points to the elements of the input vector. * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses * @return The predicted class * */ uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S, const float32_t * in, float32_t *pOutputProbabilities, float32_t *pBufferB); #ifdef __cplusplus } #endif #endif /* ifndef _BAYES_FUNCTIONS_H_ */