/****************************************************************************** * @file distance_functions.h * @brief Public header file for CMSIS DSP Library * @version V1.10.0 * @date 08 July 2021 * Target Processor: Cortex-M and Cortex-A cores ******************************************************************************/ /* * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _DISTANCE_FUNCTIONS_H_ #define _DISTANCE_FUNCTIONS_H_ #include "arm_math_types.h" #include "arm_math_memory.h" #include "dsp/none.h" #include "dsp/utils.h" #include "dsp/statistics_functions.h" #include "dsp/basic_math_functions.h" #include "dsp/fast_math_functions.h" #ifdef __cplusplus extern "C" { #endif /** * @defgroup groupDistance Distance functions * * Distance functions for use with clustering algorithms. * There are distance functions for float vectors and boolean vectors. * */ /* 6.14 bug */ #if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001) __attribute__((weak)) float __powisf2(float a, int b); #endif /** * @brief Euclidean distance between two vectors * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); /** * @brief Bray-Curtis distance between two vectors * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); /** * @brief Canberra distance between two vectors * * This function may divide by zero when samples pA[i] and pB[i] are both zero. * The result of the computation will be correct. So the division per zero may be * ignored. * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); /** * @brief Chebyshev distance between two vectors * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); /** * @brief Cityblock (Manhattan) distance between two vectors * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); /** * @brief Correlation distance between two vectors * * The input vectors are modified in place ! * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize); /** * @brief Cosine distance between two vectors * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); /** * @brief Jensen-Shannon distance between two vectors * * This function is assuming that elements of second vector are > 0 * and 0 only when the corresponding element of first vector is 0. * Otherwise the result of the computation does not make sense * and for speed reasons, the cases returning NaN or Infinity are not * managed. * * When the function is computing x log (x / y) with x 0 and y 0, * it will compute the right value (0) but a division per zero will occur * and shoudl be ignored in client code. * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] blockSize vector length * @return distance * */ float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize); /** * @brief Minkowski distance between two vectors * * @param[in] pA First vector * @param[in] pB Second vector * @param[in] n Norm order (>= 2) * @param[in] blockSize vector length * @return distance * */ float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize); /** * @brief Dice distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] order Distance order * @param[in] blockSize Number of samples * @return distance * */ float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Hamming distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Jaccard distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Kulsinski distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Roger Stanimoto distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Russell-Rao distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Sokal-Michener distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Sokal-Sneath distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); /** * @brief Yule distance between two vectors * * @param[in] pA First vector of packed booleans * @param[in] pB Second vector of packed booleans * @param[in] numberOfBools Number of booleans * @return distance * */ float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); #ifdef __cplusplus } #endif #endif /* ifndef _DISTANCE_FUNCTIONS_H_ */