mirror of
https://gitee.com/Lyon1998/pikapython.git
synced 2025-01-15 17:02:53 +08:00
685 lines
22 KiB
C
685 lines
22 KiB
C
/*
|
|
******************************************************************************
|
|
*
|
|
* COPYRIGHT(c) 2020, China Mobile IOT
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of China Mobile IOT nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/**
|
|
* @file system_cm32m101a.c
|
|
* @author CMIOT
|
|
* @version v1.0.0
|
|
*
|
|
* @COPYRIGHT(c) 2020, China Mobile IOT. All rights reserved.
|
|
*/
|
|
#include "cm32m101a.h"
|
|
|
|
/* Uncomment the line corresponding to the desired System clock (SYSCLK)
|
|
frequency (after reset the HSI is used as SYSCLK source)
|
|
|
|
IMPORTANT NOTE:
|
|
==============
|
|
1. After each device reset the HSI is used as System clock source.
|
|
|
|
2. Please make sure that the selected System clock doesn't exceed your
|
|
device's maximum frequency.
|
|
|
|
3. If none of the define below is enabled, the HSI is used as System clock
|
|
source.
|
|
|
|
4. The System clock configuration functions provided within this file assume
|
|
that:
|
|
- For Low, Medium and High density Value line devices an external 8MHz
|
|
crystal is used to drive the System clock.
|
|
- For Low, Medium and High density devices an external 8MHz crystal is
|
|
used to drive the System clock.
|
|
- For Connectivity line devices an external 25MHz crystal is used to
|
|
drive the System clock. If you are using different crystal you have to adapt
|
|
those functions accordingly.
|
|
*/
|
|
|
|
#define SYSCLK_USE_MSI 0
|
|
#define SYSCLK_USE_HSI 1
|
|
#define SYSCLK_USE_HSE 2
|
|
#define SYSCLK_USE_HSI_PLL 3
|
|
#define SYSCLK_USE_HSE_PLL 4
|
|
|
|
#ifndef SYSCLK_FREQ
|
|
#define SYSCLK_FREQ 108000000
|
|
#endif
|
|
|
|
/*
|
|
* SYSCLK_SRC *
|
|
** SYSCLK_USE_MSI **
|
|
** SYSCLK_USE_HSI **
|
|
** SYSCLK_USE_HSE **
|
|
** SYSCLK_USE_HSI_PLL **
|
|
** SYSCLK_USE_HSE_PLL **
|
|
*/
|
|
#ifndef SYSCLK_SRC
|
|
#define SYSCLK_SRC SYSCLK_USE_HSE_PLL
|
|
#endif
|
|
|
|
#define PLL_DIV2_DISABLE 0x00000000
|
|
#define PLL_DIV2_ENABLE 0x00000002
|
|
|
|
#if SYSCLK_SRC == SYSCLK_USE_MSI
|
|
|
|
#if (SYSCLK_FREQ == MSI_VALUE_L0)
|
|
#define MSI_CLK 0
|
|
#elif (SYSCLK_FREQ == MSI_VALUE_L1)
|
|
#define MSI_CLK 1
|
|
#elif (SYSCLK_FREQ == MSI_VALUE_L2)
|
|
#define MSI_CLK 2
|
|
#elif (SYSCLK_FREQ == MSI_VALUE_L3)
|
|
#define MSI_CLK 3
|
|
#elif (SYSCLK_FREQ == MSI_VALUE_L4)
|
|
#define MSI_CLK 4
|
|
#elif (SYSCLK_FREQ == MSI_VALUE_L5)
|
|
#define MSI_CLK 5
|
|
#elif (SYSCLK_FREQ == MSI_VALUE_L6)
|
|
#define MSI_CLK 6
|
|
#else
|
|
#error SYSCL_FREQ must be set to MSI_VALUE_Lx(x=0~6)
|
|
#endif
|
|
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSI
|
|
|
|
#if SYSCLK_FREQ != HSI_VALUE
|
|
#error SYSCL_FREQ must be set to HSI_VALUE
|
|
#endif
|
|
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSE
|
|
|
|
#ifndef HSE_VALUE
|
|
#error HSE_VALUE must be defined!
|
|
#endif
|
|
|
|
#if SYSCLK_FREQ != HSE_VALUE
|
|
#error SYSCL_FREQ must be set to HSE_VALUE
|
|
#endif
|
|
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSI_PLL
|
|
|
|
#ifndef HSI_VALUE
|
|
#error HSI_VALUE must be defined!
|
|
#endif
|
|
|
|
#if ((SYSCLK_FREQ % (HSI_VALUE / 2)) == 0) && (SYSCLK_FREQ / (HSI_VALUE / 2) >= 2) \
|
|
&& (SYSCLK_FREQ / (HSI_VALUE / 2) <= 32)
|
|
|
|
#define PLLSRC_DIV 2
|
|
#define PLL_DIV PLL_DIV2_DISABLE
|
|
#define PLL_MUL (SYSCLK_FREQ / (HSI_VALUE / 2))
|
|
|
|
#elif (SYSCLK_FREQ % HSI_VALUE == 0) && (SYSCLK_FREQ / HSI_VALUE >= 2) && (SYSCLK_FREQ / HSI_VALUE <= 32)
|
|
|
|
#define PLLSRC_DIV 1
|
|
#define PLL_DIV PLL_DIV2_DISABLE
|
|
#define PLL_MUL (SYSCLK_FREQ / HSI_VALUE)
|
|
|
|
#elif ((SYSCLK_FREQ % (HSI_VALUE / 4)) == 0) && (SYSCLK_FREQ / (HSI_VALUE / 4) >= 2) \
|
|
&& (SYSCLK_FREQ / (HSI_VALUE / 4) <= 32)
|
|
|
|
#define PLLSRC_DIV 2
|
|
#define PLL_DIV PLL_DIV2_ENABLE
|
|
#define PLL_MUL (SYSCLK_FREQ / (HSI_VALUE / 4))
|
|
|
|
#else
|
|
#error Cannot make a PLL multiply factor to SYSCLK_FREQ.
|
|
#endif
|
|
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSE_PLL
|
|
|
|
#ifndef HSE_VALUE
|
|
#error HSE_VALUE must be defined!
|
|
#endif
|
|
|
|
#if ((SYSCLK_FREQ % (HSE_VALUE / 2)) == 0) && (SYSCLK_FREQ / (HSE_VALUE / 2) >= 2) \
|
|
&& (SYSCLK_FREQ / (HSE_VALUE / 2) <= 32)
|
|
|
|
#define PLLSRC_DIV 2
|
|
#define PLL_DIV PLL_DIV2_DISABLE
|
|
#define PLL_MUL (SYSCLK_FREQ / (HSE_VALUE / 2))
|
|
|
|
#elif (SYSCLK_FREQ % HSE_VALUE == 0) && (SYSCLK_FREQ / HSE_VALUE >= 2) && (SYSCLK_FREQ / HSE_VALUE <= 32)
|
|
|
|
#define PLLSRC_DIV 1
|
|
#define PLL_DIV PLL_DIV2_DISABLE
|
|
#define PLL_MUL (SYSCLK_FREQ / HSE_VALUE)
|
|
|
|
#elif ((SYSCLK_FREQ % (HSE_VALUE / 4)) == 0) && (SYSCLK_FREQ / (HSE_VALUE / 4) >= 2) \
|
|
&& (SYSCLK_FREQ / (HSE_VALUE / 4) <= 32)
|
|
|
|
#define PLLSRC_DIV 2
|
|
#define PLL_DIV PLL_DIV2_ENABLE
|
|
#define PLL_MUL (SYSCLK_FREQ / (HSE_VALUE / 4))
|
|
|
|
#else
|
|
#error Cannot make a PLL multiply factor to SYSCLK_FREQ.
|
|
#endif
|
|
|
|
#else
|
|
#error wrong value for SYSCLK_SRC
|
|
#endif
|
|
|
|
/* #define VECT_TAB_SRAM */
|
|
#define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */
|
|
|
|
/*******************************************************************************
|
|
* Clock Definitions
|
|
*******************************************************************************/
|
|
uint32_t SystemCoreClock = SYSCLK_FREQ; /*!< System Clock Frequency (Core Clock) */
|
|
|
|
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
|
|
const uint32_t MSIClockTable[7] = {MSI_VALUE_L0, MSI_VALUE_L1, MSI_VALUE_L2, MSI_VALUE_L3,
|
|
MSI_VALUE_L4, MSI_VALUE_L5, MSI_VALUE_L6};
|
|
|
|
static void SetSysClock(void);
|
|
|
|
#ifdef DATA_IN_ExtSRAM
|
|
static void SystemInit_ExtMemCtl(void);
|
|
#endif /* DATA_IN_ExtSRAM */
|
|
|
|
/**
|
|
* @brief Setup the microcontroller system
|
|
* Initialize the Embedded Flash Interface, the PLL and update the
|
|
* SystemCoreClock variable.
|
|
* @note This function should be used only after reset.
|
|
*/
|
|
void SystemInit(void)
|
|
{
|
|
/* FPU settings
|
|
* ------------------------------------------------------------*/
|
|
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
|
|
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10 and CP11 Full Access */
|
|
#endif
|
|
|
|
/* Reset the RCC clock configuration to the default reset state(for debug purpose) */
|
|
/* Set MSIEN bit */
|
|
RCC->CTRLSTS |= (uint32_t)0x00000004;
|
|
|
|
/* Reset SW, HPRE, PPRE1, PPRE2 and MCO bits */
|
|
RCC->CFG &= (uint32_t)0xF8FFC000;
|
|
|
|
/* Reset HSEON, CLKSSEN and PLLEN bits */
|
|
RCC->CTRL &= (uint32_t)0xFEF6FFFF;
|
|
|
|
/* Reset HSEBYP bit */
|
|
RCC->CTRL &= (uint32_t)0xFFFBFFFF;
|
|
|
|
/* Reset PLLSRC, PLLXTPRE, PLLMUL, MCOPRES and USBPRES bits */
|
|
RCC->CFG &= (uint32_t)0x0700FFFF;
|
|
|
|
/* Reset CFG2 register */
|
|
RCC->CFG2 = 0x00000000;
|
|
|
|
/* Reset CFG3 register */
|
|
RCC->CFG3 = 0x00000000;
|
|
|
|
/* Reset RDCTRL register */
|
|
RCC->RDCTRL = 0x00000000;
|
|
|
|
/* Reset PLLHSIPRE register */
|
|
RCC->PLLHSIPRE = 0x00000000;
|
|
|
|
/* Disable all interrupts and clear pending bits */
|
|
RCC->CLKINT = 0x04BF8000;
|
|
|
|
/* Enable ex mode */
|
|
RCC->APB1PCLKEN |= RCC_APB1PCLKEN_PWREN;
|
|
RCC->APB1PCLKEN &= (uint32_t)(~RCC_APB1PCLKEN_PWREN);
|
|
|
|
/* Enable ICACHE and Prefetch Buffer */
|
|
FLASH->AC |= (uint32_t)(FLASH_AC_ICAHEN | FLASH_AC_PRFTBFEN);
|
|
|
|
/* Checks whether the Low Voltage Mode status is SET or RESET */
|
|
if((FLASH->AC & FLASH_AC_LVMF) != RESET)
|
|
{
|
|
/* FLASH Low Voltage Mode Disable */
|
|
FLASH->AC &= (uint32_t)(~FLASH_AC_LVMEN);
|
|
}
|
|
|
|
#ifdef DATA_IN_ExtSRAM
|
|
SystemInit_ExtMemCtl();
|
|
#endif /* DATA_IN_ExtSRAM */
|
|
|
|
/* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */
|
|
/* Configure the Flash Latency cycles and enable prefetch buffer */
|
|
SetSysClock();
|
|
|
|
#ifdef VECT_TAB_SRAM
|
|
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
|
|
#else
|
|
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Update SystemCoreClock variable according to Clock Register Values.
|
|
* The SystemCoreClock variable contains the core clock (HCLK), it can
|
|
* be used by the user application to setup the SysTick timer or
|
|
* configure other parameters.
|
|
*
|
|
* @note Each time the core clock (HCLK) changes, this function must be called
|
|
* to update SystemCoreClock variable value. Otherwise, any
|
|
* configuration based on this variable will be incorrect.
|
|
*
|
|
* @note - The system frequency computed by this function is not the real
|
|
* frequency in the chip. It is calculated based on the predefined
|
|
* constant and the selected clock source:
|
|
*
|
|
* - If SYSCLK source is MSI, SystemCoreClock will contain the
|
|
* MSI_VALUE(*)
|
|
*
|
|
* - If SYSCLK source is HSI, SystemCoreClock will contain the
|
|
* HSI_VALUE(**)
|
|
*
|
|
* - If SYSCLK source is HSE, SystemCoreClock will contain the
|
|
* HSE_VALUE(***)
|
|
*
|
|
* - If SYSCLK source is PLL, SystemCoreClock will contain the
|
|
* HSE_VALUE(***) or HSI_VALUE(**) multiplied by the PLL factors.
|
|
*
|
|
* (*) MSI_VALUE is a constant defined in cm32m101a.h file (default value
|
|
* 4 MHz, 100KHz/200KHz/400KHz/800KHz/1MHz/2MHz/4MHz ) but the real
|
|
* value may vary depending on the variations in voltage and temperature.
|
|
*
|
|
* (**) HSI_VALUE is a constant defined in cm32m101a.h file (default value
|
|
* 8 MHz) but the real value may vary depending on the variations
|
|
* in voltage and temperature.
|
|
*
|
|
* (***) HSE_VALUE is a constant defined in cm32m101a.h file (default value
|
|
* 8 MHz or 25 MHz, depedning on the product used), user has to
|
|
* ensure that HSE_VALUE is same as the real frequency of the crystal used.
|
|
* Otherwise, this function may have wrong result.
|
|
*
|
|
* - The result of this function could be not correct when using
|
|
* fractional value for HSE crystal.
|
|
*/
|
|
void SystemCoreClockUpdate(void)
|
|
{
|
|
uint32_t tmp = 0, pllmull = 0, pllsource = 0, plldiv2 = 0;
|
|
uint8_t msi_clk = 0;
|
|
|
|
/* Get SYSCLK source
|
|
* -------------------------------------------------------*/
|
|
tmp = RCC->CFG & RCC_CFG_SCLKSTS;
|
|
|
|
/* Get MSI clock
|
|
* -------------------------------------------------------*/
|
|
msi_clk = (uint8_t) ((RCC->CTRLSTS & RCC_CTRLSTS_MSIRANGE)>>4);
|
|
|
|
switch (tmp)
|
|
{
|
|
case 0x00: /* MSI used as system clock */
|
|
SystemCoreClock = MSIClockTable[msi_clk];
|
|
break;
|
|
case 0x04: /* HSI used as system clock */
|
|
SystemCoreClock = HSI_VALUE;
|
|
break;
|
|
case 0x08: /* HSE used as system clock */
|
|
SystemCoreClock = HSE_VALUE;
|
|
break;
|
|
case 0x0C: /* PLL used as system clock */
|
|
|
|
/* Get PLL clock source and multiplication factor
|
|
* ----------------------*/
|
|
pllmull = RCC->CFG & RCC_CFG_PLLMULFCT;
|
|
pllsource = RCC->CFG & RCC_CFG_PLLSRC;
|
|
plldiv2 = RCC->PLLHSIPRE & RCC_PLLHSIPRE_PLLSRCDIV;
|
|
|
|
if ((pllmull & RCC_CFG_PLLMULFCT_4) == 0)
|
|
{
|
|
pllmull = (pllmull >> 18) + 2; // PLLMUL[4]=0
|
|
}
|
|
else
|
|
{
|
|
pllmull = ((pllmull >> 18) - 496) + 1; // PLLMUL[4]=1
|
|
}
|
|
|
|
if (pllsource == 0x00)
|
|
{
|
|
/* HSI selected as PLL clock entry */
|
|
if ((RCC->PLLHSIPRE & RCC_PLLHSIPRE_PLLSRCDIV) != (uint32_t)RESET)
|
|
{ /* HSI oscillator clock divided by 2 */
|
|
SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
|
|
}
|
|
else
|
|
{
|
|
SystemCoreClock = HSI_VALUE * pllmull;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* HSE selected as PLL clock entry */
|
|
if ((RCC->CFG & RCC_CFG_PLLHSEPRES) != (uint32_t)RESET)
|
|
{ /* HSE oscillator clock divided by 2 */
|
|
SystemCoreClock = (HSE_VALUE >> 1) * pllmull;
|
|
}
|
|
else
|
|
{
|
|
SystemCoreClock = HSE_VALUE * pllmull;
|
|
}
|
|
}
|
|
|
|
if (plldiv2 == 0x02)
|
|
{
|
|
/* PLL source clock divided by 2 selected as PLL clock entry */
|
|
SystemCoreClock >>= 1;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
SystemCoreClock = MSIClockTable[msi_clk];
|
|
break;
|
|
}
|
|
|
|
/* Compute HCLK clock frequency ----------------*/
|
|
/* Get HCLK prescaler */
|
|
tmp = AHBPrescTable[((RCC->CFG & RCC_CFG_AHBPRES) >> 4)];
|
|
/* HCLK clock frequency */
|
|
SystemCoreClock >>= tmp;
|
|
}
|
|
|
|
/**
|
|
* @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1
|
|
* prescalers.
|
|
*/
|
|
static void SetSysClock(void)
|
|
{
|
|
uint32_t rcc_cfg = 0;
|
|
uint32_t rcc_pllhsipre = 0;
|
|
uint32_t StartUpCounter = 0;
|
|
|
|
#if (SYSCLK_SRC == SYSCLK_USE_MSI)
|
|
|
|
bool MSIStatus = 0;
|
|
/* Config MSI */
|
|
RCC->CTRLSTS |= (((uint32_t)MSI_CLK) << 4);
|
|
/* Enable MSI */
|
|
RCC->CTRLSTS |= ((uint32_t)RCC_CTRLSTS_MSIEN);
|
|
|
|
/* Wait till MSI is ready and if Time out is reached exit */
|
|
do
|
|
{
|
|
MSIStatus = RCC->CTRLSTS & RCC_CTRLSTS_MSIRD;
|
|
StartUpCounter++;
|
|
} while ((MSIStatus == 0) && (StartUpCounter != MSI_STARTUP_TIMEOUT));
|
|
|
|
MSIStatus = ((RCC->CTRLSTS & RCC_CTRLSTS_MSIRD) != RESET);
|
|
if (!MSIStatus)
|
|
{
|
|
/* If MSI fails to start-up, the application will have wrong clock
|
|
* configuration. User can add here some code to deal with this error */
|
|
SystemCoreClock = MSI_VALUE_L6;
|
|
return;
|
|
}
|
|
|
|
#elif ((SYSCLK_SRC == SYSCLK_USE_HSI) || (SYSCLK_SRC == SYSCLK_USE_HSI_PLL))
|
|
|
|
bool HSIStatus = 0;
|
|
/* Enable HSI */
|
|
RCC->CTRL |= ((uint32_t)RCC_CTRL_HSIEN);
|
|
|
|
/* Wait till HSI is ready and if Time out is reached exit */
|
|
do
|
|
{
|
|
HSIStatus = RCC->CTRL & RCC_CTRL_HSIRDF;
|
|
StartUpCounter++;
|
|
} while ((HSIStatus == 0) && (StartUpCounter != HSI_STARTUP_TIMEOUT));
|
|
|
|
HSIStatus = ((RCC->CTRL & RCC_CTRL_HSIRDF) != RESET);
|
|
if (!HSIStatus)
|
|
{
|
|
/* If HSI fails to start-up, the application will have wrong clock
|
|
* configuration. User can add here some code to deal with this error */
|
|
SystemCoreClock = MSI_VALUE_L6;
|
|
return;
|
|
}
|
|
|
|
#elif ((SYSCLK_SRC == SYSCLK_USE_HSE) || (SYSCLK_SRC == SYSCLK_USE_HSE_PLL))
|
|
|
|
bool HSEStatus = 0;
|
|
/* Enable HSE */
|
|
RCC->CTRL |= ((uint32_t)RCC_CTRL_HSEEN);
|
|
|
|
/* Wait till HSE is ready and if Time out is reached exit */
|
|
do
|
|
{
|
|
HSEStatus = RCC->CTRL & RCC_CTRL_HSERDF;
|
|
StartUpCounter++;
|
|
} while ((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
|
|
|
|
HSEStatus = ((RCC->CTRL & RCC_CTRL_HSERDF) != RESET);
|
|
if (!HSEStatus)
|
|
{
|
|
/* If HSE fails to start-up, the application will have wrong clock
|
|
* configuration. User can add here some code to deal with this error */
|
|
SystemCoreClock = MSI_VALUE_L6;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* If the system clock is greater than 64MHz, the voltage range of the main voltage regulator
|
|
must be configured as 1.1V */
|
|
if(SYSCLK_FREQ >= 64000000)
|
|
{
|
|
/* Enables PWR peripheral clock */
|
|
RCC->APB1PCLKEN |= RCC_APB1_PERIPH_PWR;
|
|
/* Check PWR->CTRL1.MRSEL configuration */
|
|
if((PWR->CTRL1 & ((uint32_t)PWR_CTRL1_MRSEL)) == ((uint32_t)PWR_CTRL1_MRSEL2))
|
|
{
|
|
/* Config 1.1V */
|
|
PWR->CTRL1 |= PWR_CTRL1_MRSEL1;
|
|
}
|
|
}
|
|
|
|
/* Flash wait state
|
|
0: HCLK <= 32M
|
|
1: HCLK <= 64M
|
|
2: HCLK <= 96M
|
|
3: HCLK <= 128M
|
|
*/
|
|
FLASH->AC &= (uint32_t)((uint32_t)~FLASH_AC_LATENCY);
|
|
FLASH->AC |= (uint32_t)((SYSCLK_FREQ - 1) / 32000000);
|
|
|
|
/* HCLK = SYSCLK */
|
|
RCC->CFG |= (uint32_t)RCC_CFG_AHBPRES_DIV1;
|
|
|
|
/* PCLK2 max 54M */
|
|
if (SYSCLK_FREQ > 54000000)
|
|
{
|
|
RCC->CFG |= (uint32_t)RCC_CFG_APB2PRES_DIV2;
|
|
}
|
|
else
|
|
{
|
|
RCC->CFG |= (uint32_t)RCC_CFG_APB2PRES_DIV1;
|
|
}
|
|
|
|
/* PCLK1 max 27M */
|
|
if (SYSCLK_FREQ > 54000000)
|
|
{
|
|
RCC->CFG |= (uint32_t)RCC_CFG_APB1PRES_DIV4;
|
|
}
|
|
else if (SYSCLK_FREQ > 27000000)
|
|
{
|
|
RCC->CFG |= (uint32_t)RCC_CFG_APB1PRES_DIV2;
|
|
}
|
|
else
|
|
{
|
|
RCC->CFG |= (uint32_t)RCC_CFG_APB1PRES_DIV1;
|
|
}
|
|
|
|
#if SYSCLK_SRC == SYSCLK_USE_MSI
|
|
/* Select MSI as system clock source */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_SCLKSW));
|
|
RCC->CFG |= (uint32_t)RCC_CFG_SCLKSW_MSI;
|
|
|
|
/* Wait till MSI is used as system clock source */
|
|
while ((RCC->CFG & (uint32_t)RCC_CFG_SCLKSTS) != (uint32_t)0x00)
|
|
{
|
|
}
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSI
|
|
if(((*(__IO uint8_t*)((UCID_BASE + 0x2))) == 0x01)
|
|
|| ((*(__IO uint8_t*)((UCID_BASE + 0x2))) == 0x11)
|
|
|| ((*(__IO uint8_t*)((UCID_BASE + 0x2))) == 0xFF))
|
|
{
|
|
/* clear bits */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_PLLSRC | RCC_CFG_PLLHSEPRES | RCC_CFG_PLLMULFCT));
|
|
RCC->PLLHSIPRE &= (uint32_t)((uint32_t) ~(RCC_PLLHSIPRE_PLLHSIPRE | RCC_PLLHSIPRE_PLLSRCDIV));
|
|
|
|
/* set PLL source */
|
|
rcc_cfg = RCC->CFG;
|
|
rcc_cfg |= RCC_CFG_PLLSRC_HSI;
|
|
/* PLL DIV */
|
|
rcc_pllhsipre = RCC->PLLHSIPRE;
|
|
rcc_pllhsipre |= RCC_PLLHSIPRE_PLLHSIPRE_HSI_DIV2;
|
|
|
|
RCC->CFG = rcc_cfg;
|
|
RCC->PLLHSIPRE = rcc_pllhsipre;
|
|
|
|
/* Enable PLL */
|
|
RCC->CTRL |= RCC_CTRL_PLLEN;
|
|
/* Wait till PLL is ready */
|
|
while ((RCC->CTRL & RCC_CTRL_PLLRDF) == 0)
|
|
{
|
|
}
|
|
|
|
/* Select PLL as system clock source */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_SCLKSW));
|
|
RCC->CFG |= (uint32_t)RCC_CFG_SCLKSW_PLL;
|
|
/* Wait till PLL is used as system clock source */
|
|
while ((RCC->CFG & (uint32_t)RCC_CFG_SCLKSTS) != (uint32_t)0x0C)
|
|
{
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Select HSI as system clock source */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_SCLKSW));
|
|
RCC->CFG |= (uint32_t)RCC_CFG_SCLKSW_HSI;
|
|
|
|
/* Wait till HSI is used as system clock source */
|
|
while ((RCC->CFG & (uint32_t)RCC_CFG_SCLKSTS) != (uint32_t)0x04)
|
|
{
|
|
}
|
|
}
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSE
|
|
if(((*(__IO uint8_t*)((UCID_BASE + 0x2))) == 0x01)
|
|
|| ((*(__IO uint8_t*)((UCID_BASE + 0x2))) == 0x11)
|
|
|| ((*(__IO uint8_t*)((UCID_BASE + 0x2))) == 0xFF))
|
|
{
|
|
/* clear bits */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_PLLSRC | RCC_CFG_PLLHSEPRES | RCC_CFG_PLLMULFCT));
|
|
RCC->PLLHSIPRE &= (uint32_t)((uint32_t) ~(RCC_PLLHSIPRE_PLLHSIPRE | RCC_PLLHSIPRE_PLLSRCDIV));
|
|
|
|
/* set PLL source */
|
|
rcc_cfg = RCC->CFG;
|
|
rcc_cfg |= (RCC_CFG_PLLSRC_HSE | RCC_CFG_PLLHSEPRES_HSE_DIV2);
|
|
/* PLL DIV */
|
|
rcc_pllhsipre = RCC->PLLHSIPRE;
|
|
|
|
RCC->CFG = rcc_cfg;
|
|
RCC->PLLHSIPRE = rcc_pllhsipre;
|
|
|
|
/* Enable PLL */
|
|
RCC->CTRL |= RCC_CTRL_PLLEN;
|
|
/* Wait till PLL is ready */
|
|
while ((RCC->CTRL & RCC_CTRL_PLLRDF) == 0)
|
|
{
|
|
}
|
|
|
|
/* Select PLL as system clock source */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_SCLKSW));
|
|
RCC->CFG |= (uint32_t)RCC_CFG_SCLKSW_PLL;
|
|
/* Wait till PLL is used as system clock source */
|
|
while ((RCC->CFG & (uint32_t)RCC_CFG_SCLKSTS) != (uint32_t)0x0C)
|
|
{
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Select HSE as system clock source */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_SCLKSW));
|
|
RCC->CFG |= (uint32_t)RCC_CFG_SCLKSW_HSE;
|
|
|
|
/* Wait till HSE is used as system clock source */
|
|
while ((RCC->CFG & (uint32_t)RCC_CFG_SCLKSTS) != (uint32_t)0x08)
|
|
{
|
|
}
|
|
}
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSI_PLL || SYSCLK_SRC == SYSCLK_USE_HSE_PLL
|
|
|
|
/* clear bits */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_PLLSRC | RCC_CFG_PLLHSEPRES | RCC_CFG_PLLMULFCT));
|
|
RCC->PLLHSIPRE &= (uint32_t)((uint32_t) ~(RCC_PLLHSIPRE_PLLHSIPRE | RCC_PLLHSIPRE_PLLSRCDIV));
|
|
|
|
/* set PLL source */
|
|
rcc_cfg = RCC->CFG;
|
|
rcc_cfg |= (SYSCLK_SRC == SYSCLK_USE_HSI_PLL ? RCC_CFG_PLLSRC_HSI : RCC_CFG_PLLSRC_HSE);
|
|
/* PLL DIV */
|
|
rcc_pllhsipre = RCC->PLLHSIPRE;
|
|
|
|
#if SYSCLK_SRC == SYSCLK_USE_HSI_PLL
|
|
rcc_pllhsipre |= (PLLSRC_DIV == 1 ? RCC_PLLHSIPRE_PLLHSIPRE_HSI : RCC_PLLHSIPRE_PLLHSIPRE_HSI_DIV2);
|
|
#elif SYSCLK_SRC == SYSCLK_USE_HSE_PLL
|
|
rcc_cfg |= (PLLSRC_DIV == 1 ? RCC_CFG_PLLHSEPRES_HSE : RCC_CFG_PLLHSEPRES_HSE_DIV2);
|
|
#endif
|
|
|
|
/* set PLL DIV */
|
|
rcc_pllhsipre |= (PLL_DIV == PLL_DIV2_DISABLE ? RCC_PLLHSIPRE_PLLSRCDIV_DISABLE : RCC_PLLHSIPRE_PLLSRCDIV_ENABLE);
|
|
|
|
/* set PLL multiply factor */
|
|
#if PLL_MUL <= 16
|
|
rcc_cfg |= (PLL_MUL - 2) << 18;
|
|
#else
|
|
rcc_cfg |= ((PLL_MUL - 17) << 18) | (1 << 27);
|
|
#endif
|
|
|
|
RCC->CFG = rcc_cfg;
|
|
RCC->PLLHSIPRE = rcc_pllhsipre;
|
|
|
|
/* Enable PLL */
|
|
RCC->CTRL |= RCC_CTRL_PLLEN;
|
|
|
|
/* Wait till PLL is ready */
|
|
while ((RCC->CTRL & RCC_CTRL_PLLRDF) == 0)
|
|
{
|
|
}
|
|
|
|
/* Select PLL as system clock source */
|
|
RCC->CFG &= (uint32_t)((uint32_t) ~(RCC_CFG_SCLKSW));
|
|
RCC->CFG |= (uint32_t)RCC_CFG_SCLKSW_PLL;
|
|
|
|
/* Wait till PLL is used as system clock source */
|
|
while ((RCC->CFG & (uint32_t)RCC_CFG_SCLKSTS) != (uint32_t)0x0C)
|
|
{
|
|
}
|
|
#endif
|
|
}
|