pikapython/src/pika_adapter_mpy.h

867 lines
26 KiB
C

/*
* This file is part of the PikaPython project, http://pikapython.com
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2017 Paul Sokolovsky
* Copyright (c) 2014-2019 Damien P. George
* Copyright (c) 2023 Lyon
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifdef __cplusplus
extern "C" {
#endif
#ifndef __PIKA_ADAPTER_MPY_H__
#define __PIKA_ADAPTER_MPY_H__
#include <stdint.h>
#include <stddef.h>
#include "PikaObj.h"
#include "PikaStdData_List.h"
#define bool int
#define true 1
#define false 0
/* object type */
#define mp_obj_t Arg*
/* type define*/
#define STATIC static
#define NORETURN
typedef unsigned char byte;
typedef unsigned int uint;
#define mp_uint_t size_t
#define mp_int_t int
typedef uint32_t unichar;
#define UTF8_IS_NONASCII(ch) ((ch)&0x80)
#define UTF8_IS_CONT(ch) (((ch)&0xC0) == 0x80)
/* object API */
#define MP_OBJ_NEW_SMALL_INT(...) arg_newInt(__VA_ARGS__)
#define mp_obj_new_bool(...) arg_newInt(__VA_ARGS__)
#define mp_obj_new_bytes(...) arg_newBytes(__VA_ARGS__)
#define mp_obj_new_float(...) arg_newFloat(__VA_ARGS__)
#define mp_obj_new_int(...) arg_newInt(__VA_ARGS__)
#define MP_OBJ_TO_PTR(...) arg_getPtr(__VA_ARGS__)
#define MP_OBJ_FROM_PTR(_p) arg_newPtr(ARG_TYPE_OBJECT, (_p))
#define mp_obj_get_int(...) arg_getInt(__VA_ARGS__)
#define mp_obj_is_true(...) (bool)arg_getInt(__VA_ARGS__)
#define mp_const_true arg_newInt(1)
#define mp_const_false arg_newInt(0)
#define mp_const_none arg_newNull()
#define mp_obj_new_int_from_ll mp_obj_new_int
#define mp_obj_new_int_from_ull mp_obj_new_int
#define mp_obj_new_float_from_f mp_obj_new_float
#define mp_obj_new_float_from_d mp_obj_new_float
#define MP_OBJ_SMALL_INT_VALUE(...) arg_getInt(__VA_ARGS__)
/* module API */
#define MP_DEFINE_CONST_DICT(...)
#define MP_DEFINE_CONST_FUN_OBJ_KW(...)
#define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(...)
#define MP_DEFINE_CONST_FUN_OBJ_1(...)
#define MP_DEFINE_CONST_FUN_OBJ_2(...)
#define MP_DEFINE_CONST_FUN_OBJ_3(...)
#define MP_DEFINE_CONST_FUN_OBJ_4(...)
#define MP_DEFINE_CONST_FUN_OBJ_5(...)
#define MP_DEFINE_CONST_FUN_OBJ_6(...)
#define MP_DEFINE_CONST_FUN_OBJ_7(...)
#define MP_DEFINE_CONST_FUN_OBJ_8(...)
/* gil */
#define MP_THREAD_GIL_EXIT(...)
#define MP_THREAD_GIL_ENTER(...)
/* raise */
#define MP_ETIMEDOUT "timed out"
#define MP_ENOMEM "out of memory"
#define MP_ENDIANNESS_LITTLE (1)
#define MP_ENDIANNESS_BIG (0)
#define MICROPY_PY_BUILTINS_FLOAT (1)
#define MP_BYTES_PER_OBJ_WORD (sizeof(mp_uint_t))
#define MP_BUFFER_READ "read"
#define MP_ERROR_TEXT(_s) _s
#define mp_raise_msg_varg(_, ...) pika_platform_printf(__VA_ARGS__)
#define mp_raise_msg(_, _s) mp_raise_msg_varg(_, _s)
#define mp_raise_TpyeXXX(_s) mp_raise_msg(NULL, _s)
#define mp_raise_ValueError mp_raise_TpyeXXX
#define mp_raise_TypeError mp_raise_TpyeXXX
#define mp_raise_OSError mp_raise_TpyeXXX
/* utils */
#define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b))
/* list */
typedef struct mp_obj_tuple_t {
size_t len;
mp_obj_t* items;
} mp_obj_tuple_t;
#define mp_obj_str_get_str(...) arg_getStr(__VA_ARGS__)
#define mp_obj_get_float(...) arg_getFloat(__VA_ARGS__)
static inline float mp_obj_get_float_to_f(mp_obj_t o) {
return mp_obj_get_float(o);
}
static inline double mp_obj_get_float_to_d(mp_obj_t o) {
return (double)mp_obj_get_float(o);
}
typedef struct _mp_map_elem_t {
mp_obj_t key;
mp_obj_t value;
} mp_map_elem_t;
typedef struct mp_map_t {
size_t all_keys_are_qstrs : 1;
size_t is_fixed : 1; // if set, table is fixed/read-only and can't be
// modified
size_t is_ordered : 1; // if set, table is an ordered array, not a hash
// map
size_t used : (8 * sizeof(size_t) - 3);
size_t alloc;
mp_map_elem_t* table;
} mp_map_t;
static inline bool mp_map_slot_is_filled(const mp_map_t* map, size_t pos) {
return (map)->table[pos].key != NULL;
}
static inline int mp_obj_str_get_qstr(Arg* arg) {
return hash_time33(arg_getStr(arg));
}
static inline Arg* mp_obj_new_str(const char* str, size_t len) {
return arg_newStrN((char*)str, len);
}
typedef struct _mp_buffer_info_t {
void* buf; // can be NULL if len == 0
size_t len; // in bytes
int typecode; // as per binary.h
} mp_buffer_info_t;
#define MP_QSTR(_str) hash_time33(#_str)
static inline Arg* mp_obj_new_list(int n, Arg** items) {
PikaObj* list = newNormalObj(New_PikaStdData_List);
PikaStdData_List___init__(list);
return arg_newObj(list);
}
static inline mp_obj_t mp_obj_new_tuple(int n, Arg** items_in) {
mp_obj_tuple_t* tuple = (mp_obj_tuple_t*)malloc(sizeof(mp_obj_tuple_t));
Arg** items = (Arg**)malloc(sizeof(Arg*) * n);
if (NULL == items_in) {
tuple->len = n;
tuple->items = items;
}
return arg_newPtr(ARG_TYPE_POINTER, tuple);
}
static inline void mp_obj_list_append(Arg* list, mp_obj_tuple_t* tuple) {
PikaObj* list_obj = (PikaObj*)arg_getPtr(list);
for (int i = 0; i < tuple->len; i++) {
PikaStdData_List_append(list_obj, tuple->items[i]);
arg_deinit(tuple->items[i]);
}
free(tuple->items);
free(tuple);
}
static inline char* mp_obj_str_get_data(Arg* self, size_t* len) {
char* str = arg_getStr(self);
*len = strGetSize(str);
return str;
}
static inline size_t pks_load_mp_args(PikaTuple* tuple,
mp_obj_t mp_self,
mp_obj_t* args) {
size_t len = pikaTuple_getSize(tuple);
size_t i = 0;
if (NULL != mp_self) {
args[0] = mp_self;
i = 1;
}
for (i = 0; i < len; i++) {
args[i] = pikaTuple_getArg(tuple, i);
}
return len;
}
static inline void pks_load_mp_map(PikaDict* kw, mp_map_t* map) {
size_t len = pikaDict_getSize(kw);
map->alloc = len;
map->used = len;
map->table = (mp_map_elem_t*)malloc(sizeof(mp_map_elem_t) * len);
for (int i = 0; i < len; i++) {
Arg* item = pikaDict_getArgByidex(kw, i);
map->table[i].key = arg_newInt(arg_getNameHash(item));
map->table[i].value = item;
}
}
static inline void mp_get_buffer_raise(const mp_obj_t item,
mp_buffer_info_t* buf,
char* msg) {
buf->len = arg_getSize((Arg*)item);
buf->buf = malloc(buf->len);
if (NULL == buf->buf) {
mp_raise_OSError(msg);
}
memcpy(buf->buf, arg_getBytes((Arg*)item), buf->len);
}
static const ArgType mp_type_tuple = ARG_TYPE_TUPLE;
static const ArgType mp_type_list = ARG_TYPE_TUPLE;
static const ArgType mp_type_str = ARG_TYPE_STRING;
static const ArgType mp_type_bytes = ARG_TYPE_BYTES;
static const ArgType mp_type_int = ARG_TYPE_INT;
static const ArgType mp_type_float = ARG_TYPE_FLOAT;
static const ArgType mp_type_bool = ARG_TYPE_INT;
static const ArgType mp_type_none = ARG_TYPE_NONE;
static inline bool mp_obj_is_type(mp_obj_t self, ArgType* arg_type_ptr) {
if (arg_getType(self) == *arg_type_ptr) {
return true;
}
return false;
}
#define mp_obj_is_integer(self) mp_obj_is_type(self, &mp_type_int)
typedef void (*mp_print_strn_t)(void* data, const char* str, size_t len);
typedef struct _mp_print_t {
void* data;
mp_print_strn_t print_strn;
} mp_print_t;
static inline void mp_obj_get_array_fixed_n(mp_obj_t tuple,
size_t n,
mp_obj_t* arrray) {
for (int i = 0; i < n; i++) {
arrray[i] = pikaTuple_getArg((PikaTuple*)arg_getPtr(tuple), i);
}
}
typedef const void* mp_const_obj_t;
typedef mp_const_obj_t mp_rom_obj_t;
typedef struct _mp_rom_map_elem_t {
mp_rom_obj_t key;
mp_rom_obj_t value;
} mp_rom_map_elem_t;
#define MICROPY_OBJ_BASE_ALIGNMENT
#define MP_ALIGN(ptr, alignment) \
(void*)(((uintptr_t)(ptr) + ((alignment)-1)) & ~((alignment)-1))
#define MP_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
typedef struct _mp_obj_type_t mp_obj_type_t;
struct _mp_obj_base_t {
const mp_obj_type_t* type MICROPY_OBJ_BASE_ALIGNMENT;
};
typedef struct _mp_obj_base_t mp_obj_base_t;
struct _mp_obj_type_t {
// A type is an object so must start with this entry, which points to
// mp_type_type.
mp_obj_base_t base;
// Flags associated with this type.
uint16_t flags;
// The name of this type, a qstr.
uint16_t name;
// Slots: For the rest of the fields, the slot index points to the
// relevant function in the variable-length "slots" field. Ideally these
// would be only 4 bits, but the extra overhead of accessing them adds
// more code, and we also need to be able to take the address of them
// for mp_obj_class_lookup.
// Corresponds to __new__ and __init__ special methods, to make an
// instance of the type.
uint8_t slot_index_make_new;
// Corresponds to __repr__ and __str__ special methods.
uint8_t slot_index_print;
// Corresponds to __call__ special method, ie T(...).
uint8_t slot_index_call;
// Implements unary and binary operations.
// Can return MP_OBJ_NULL if the operation is not supported.
uint8_t slot_index_unary_op;
uint8_t slot_index_binary_op;
// Implements load, store and delete attribute.
//
// dest[0] = MP_OBJ_NULL means load
// return: for fail, do nothing
// for fail but continue lookup in locals_dict, dest[1] =
// MP_OBJ_SENTINEL for attr, dest[0] = value for method,
// dest[0] = method, dest[1] = self
//
// dest[0,1] = {MP_OBJ_SENTINEL, MP_OBJ_NULL} means delete
// dest[0,1] = {MP_OBJ_SENTINEL, object} means store
// return: for fail, do nothing
// for success set dest[0] = MP_OBJ_NULL
uint8_t slot_index_attr;
// Implements load, store and delete subscripting:
// - value = MP_OBJ_SENTINEL means load
// - value = MP_OBJ_NULL means delete
// - all other values mean store the value
// Can return MP_OBJ_NULL if operation not supported.
uint8_t slot_index_subscr;
// This slot's behaviour depends on the MP_TYPE_FLAG_ITER_IS_* flags
// above.
// - If MP_TYPE_FLAG_ITER_IS_GETITER flag is set, then this corresponds
// to the __iter__
// special method (of type mp_getiter_fun_t). Can use the given
// mp_obj_iter_buf_t to store the iterator object, otherwise can
// return a pointer to an object on the heap.
// - If MP_TYPE_FLAG_ITER_IS_ITERNEXT is set, then this corresponds to
// __next__ special method.
// May return MP_OBJ_STOP_ITERATION as an optimisation instead of
// raising StopIteration() with no args. The type will implicitly
// implement getiter as "return self".
// - If MP_TYPE_FLAG_ITER_IS_CUSTOM is set, then this slot must point to
// an
// mp_getiter_iternext_custom_t instance with both the getiter and
// iternext fields set.
// - If MP_TYPE_FLAG_ITER_IS_STREAM is set, this this slot should be
// unset.
uint8_t slot_index_iter;
// Implements the buffer protocol if supported by this type.
uint8_t slot_index_buffer;
// One of disjoint protocols (interfaces), like mp_stream_p_t, etc.
uint8_t slot_index_protocol;
// A pointer to the parents of this type:
// - 0 parents: pointer is NULL (object is implicitly the single
// parent)
// - 1 parent: a pointer to the type of that parent
// - 2 or more parents: pointer to a tuple object containing the parent
// types
uint8_t slot_index_parent;
// A dict mapping qstrs to objects local methods/constants/etc.
uint8_t slot_index_locals_dict;
const void* slots[];
};
typedef struct _mp_obj_dict_t {
mp_obj_base_t base;
mp_map_t map;
} mp_obj_dict_t;
typedef struct _mp_obj_module_t {
mp_obj_base_t base;
mp_obj_dict_t* globals;
} mp_obj_module_t;
typedef struct _vstr_t {
size_t alloc;
size_t len;
char* buf;
bool fixed_buf;
} vstr_t;
typedef struct _mp_obj_list_t {
mp_obj_base_t base;
size_t alloc;
size_t len;
mp_obj_t* items;
} mp_obj_list_t;
// attribute flags
#define FL_PRINT (0x01)
#define FL_SPACE (0x02)
#define FL_DIGIT (0x04)
#define FL_ALPHA (0x08)
#define FL_UPPER (0x10)
#define FL_LOWER (0x20)
#define FL_XDIGIT (0x40)
// shorthand character attributes
#define AT_PR (FL_PRINT)
#define AT_SP (FL_SPACE | FL_PRINT)
#define AT_DI (FL_DIGIT | FL_PRINT | FL_XDIGIT)
#define AT_AL (FL_ALPHA | FL_PRINT)
#define AT_UP (FL_UPPER | FL_ALPHA | FL_PRINT)
#define AT_LO (FL_LOWER | FL_ALPHA | FL_PRINT)
#define AT_UX (FL_UPPER | FL_ALPHA | FL_PRINT | FL_XDIGIT)
#define AT_LX (FL_LOWER | FL_ALPHA | FL_PRINT | FL_XDIGIT)
// table of attributes for ascii characters
STATIC const uint8_t attr[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, AT_SP, AT_SP,
AT_SP, AT_SP, AT_SP, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, AT_SP,
AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR,
AT_PR, AT_PR, AT_PR, AT_PR, AT_DI, AT_DI, AT_DI, AT_DI, AT_DI, AT_DI, AT_DI,
AT_DI, AT_DI, AT_DI, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_UX,
AT_UX, AT_UX, AT_UX, AT_UX, AT_UX, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP,
AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP, AT_UP,
AT_UP, AT_UP, AT_UP, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_PR, AT_LX, AT_LX,
AT_LX, AT_LX, AT_LX, AT_LX, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO,
AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO, AT_LO,
AT_LO, AT_LO, AT_PR, AT_PR, AT_PR, AT_PR, 0};
static unichar utf8_get_char(const byte* s) {
unichar ord = *s++;
if (!UTF8_IS_NONASCII(ord)) {
return ord;
}
ord &= 0x7F;
for (unichar mask = 0x40; ord & mask; mask >>= 1) {
ord &= ~mask;
}
while (UTF8_IS_CONT(*s)) {
ord = (ord << 6) | (*s++ & 0x3F);
}
return ord;
}
static const byte* utf8_next_char(const byte* s) {
++s;
while (UTF8_IS_CONT(*s)) {
++s;
}
return s;
}
static mp_uint_t utf8_ptr_to_index(const byte* s, const byte* ptr) {
mp_uint_t i = 0;
while (ptr > s) {
if (!UTF8_IS_CONT(*--ptr)) {
i++;
}
}
return i;
}
static size_t utf8_charlen(const byte* str, size_t len) {
size_t charlen = 0;
for (const byte* top = str + len; str < top; ++str) {
if (!UTF8_IS_CONT(*str)) {
++charlen;
}
}
return charlen;
}
// Be aware: These unichar_is* functions are actually ASCII-only!
static bool unichar_isspace(unichar c) {
return c < 128 && (attr[c] & FL_SPACE) != 0;
}
static bool unichar_isalpha(unichar c) {
return c < 128 && (attr[c] & FL_ALPHA) != 0;
}
/* unused
bool unichar_isprint(unichar c) {
return c < 128 && (attr[c] & FL_PRINT) != 0;
}
*/
static bool unichar_isdigit(unichar c) {
return c < 128 && (attr[c] & FL_DIGIT) != 0;
}
static bool unichar_isxdigit(unichar c) {
return c < 128 && (attr[c] & FL_XDIGIT) != 0;
}
static bool unichar_isident(unichar c) {
return c < 128 && ((attr[c] & (FL_ALPHA | FL_DIGIT)) != 0 || c == '_');
}
static bool unichar_isalnum(unichar c) {
return c < 128 && ((attr[c] & (FL_ALPHA | FL_DIGIT)) != 0);
}
static bool unichar_isupper(unichar c) {
return c < 128 && (attr[c] & FL_UPPER) != 0;
}
static bool unichar_islower(unichar c) {
return c < 128 && (attr[c] & FL_LOWER) != 0;
}
static unichar unichar_tolower(unichar c) {
if (unichar_isupper(c)) {
return c + 0x20;
}
return c;
}
static unichar unichar_toupper(unichar c) {
if (unichar_islower(c)) {
return c - 0x20;
}
return c;
}
static mp_uint_t unichar_xdigit_value(unichar c) {
// c is assumed to be hex digit
mp_uint_t n = c - '0';
if (n > 9) {
n &= ~('a' - 'A');
n -= ('A' - ('9' + 1));
}
return n;
}
static bool utf8_check(const byte* p, size_t len) {
uint8_t need = 0;
const byte* end = p + len;
for (; p < end; p++) {
byte c = *p;
if (need) {
if (UTF8_IS_CONT(c)) {
need--;
} else {
// mismatch
return 0;
}
} else {
if (c >= 0xc0) {
if (c >= 0xf8) {
// mismatch
return 0;
}
need = (0xe5 >> ((c >> 3) & 0x6)) & 3;
} else if (c >= 0x80) {
// mismatch
return 0;
}
}
}
return need == 0; // no pending fragments allowed
}
#ifndef alignof
#define alignof(type) \
offsetof( \
struct { \
char c; \
type t; \
}, \
t)
#endif
#define BYTEARRAY_TYPECODE 1
static size_t mp_binary_get_size(char struct_type,
char val_type,
size_t* palign) {
size_t size = 0;
int align = 1;
switch (struct_type) {
case '<':
case '>':
switch (val_type) {
case 'b':
case 'B':
size = 1;
break;
case 'h':
case 'H':
size = 2;
break;
case 'i':
case 'I':
size = 4;
break;
case 'l':
case 'L':
size = 4;
break;
case 'q':
case 'Q':
size = 8;
break;
case 'P':
case 'O':
case 'S':
size = sizeof(void*);
break;
case 'f':
size = sizeof(float);
break;
case 'd':
size = sizeof(double);
break;
}
break;
case '@': {
// TODO:
// The simplest heuristic for alignment is to align by value
// size, but that doesn't work for "bigger than int" types,
// for example, long long may very well have long alignment
// So, we introduce separate alignment handling, but having
// formal support for that is different from actually supporting
// particular (or any) ABI.
switch (val_type) {
case BYTEARRAY_TYPECODE:
case 'b':
case 'B':
align = size = 1;
break;
case 'h':
case 'H':
align = alignof(short);
size = sizeof(short);
break;
case 'i':
case 'I':
align = alignof(int);
size = sizeof(int);
break;
case 'l':
case 'L':
align = alignof(long);
size = sizeof(long);
break;
case 'q':
case 'Q':
align = alignof(long long);
size = sizeof(long long);
break;
case 'P':
case 'O':
case 'S':
align = alignof(void*);
size = sizeof(void*);
break;
case 'f':
align = alignof(float);
size = sizeof(float);
break;
case 'd':
align = alignof(double);
size = sizeof(double);
break;
}
}
}
if (size == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("bad typecode"));
}
if (palign != NULL) {
*palign = align;
}
return size;
}
// The long long type is guaranteed to hold at least 64 bits, and size is at
// most 8 (for q and Q), so we will always be able to parse the given data
// and fit it into a long long.
static inline long long mp_binary_get_int(size_t size,
bool is_signed,
bool big_endian,
const byte* src) {
int delta;
if (!big_endian) {
delta = -1;
src += size - 1;
} else {
delta = 1;
}
unsigned long long val = 0;
if (is_signed && *src & 0x80) {
val = -1;
}
for (uint i = 0; i < size; i++) {
val <<= 8;
val |= *src;
src += delta;
}
return val;
}
#define is_signed(typecode) (typecode > 'Z')
static mp_obj_t mp_binary_get_val(char struct_type,
char val_type,
byte* p_base,
byte** ptr) {
byte* p = *ptr;
size_t align;
size_t size = mp_binary_get_size(struct_type, val_type, &align);
if (struct_type == '@') {
// Align p relative to p_base
p = p_base + (uintptr_t)MP_ALIGN(p - p_base, align);
#if MP_ENDIANNESS_LITTLE
struct_type = '<';
#else
struct_type = '>';
#endif
}
*ptr = p + size;
long long val =
mp_binary_get_int(size, is_signed(val_type), (struct_type == '>'), p);
if (val_type == 'O') {
return (mp_obj_t)(mp_uint_t)val;
} else if (val_type == 'S') {
const char* s_val = (const char*)(uintptr_t)(mp_uint_t)val;
return mp_obj_new_str(s_val, strlen(s_val));
} else if (val_type == 'f') {
union {
uint32_t i;
float f;
} fpu = {val};
return mp_obj_new_float_from_f(fpu.f);
} else if (val_type == 'd') {
union {
uint64_t i;
double f;
} fpu = {val};
return mp_obj_new_float_from_d(fpu.f);
} else if (is_signed(val_type)) {
return mp_obj_new_int_from_ll(val);
} else {
return mp_obj_new_int_from_ull(val);
}
}
void mp_binary_set_int(size_t val_sz,
bool big_endian,
byte* dest,
mp_uint_t val) {
if (MP_ENDIANNESS_LITTLE && !big_endian) {
memcpy(dest, &val, val_sz);
} else if (MP_ENDIANNESS_BIG && big_endian) {
// only copy the least-significant val_sz bytes
memcpy(dest, (byte*)&val + sizeof(mp_uint_t) - val_sz, val_sz);
} else {
const byte* src;
if (MP_ENDIANNESS_LITTLE) {
src = (const byte*)&val + val_sz;
} else {
src = (const byte*)&val + sizeof(mp_uint_t);
}
while (val_sz--) {
*dest++ = *--src;
}
}
}
static void mp_binary_set_val(char struct_type,
char val_type,
mp_obj_t val_in,
byte* p_base,
byte** ptr) {
byte* p = *ptr;
size_t align;
size_t size = mp_binary_get_size(struct_type, val_type, &align);
if (struct_type == '@') {
// Align p relative to p_base
p = p_base + (uintptr_t)MP_ALIGN(p - p_base, align);
if (MP_ENDIANNESS_LITTLE) {
struct_type = '<';
} else {
struct_type = '>';
}
}
*ptr = p + size;
mp_uint_t val;
switch (val_type) {
case 'O':
val = (mp_uint_t)val_in;
break;
#if MICROPY_PY_BUILTINS_FLOAT
case 'f': {
union {
uint32_t i;
float f;
} fp_sp;
fp_sp.f = mp_obj_get_float_to_f(val_in);
val = fp_sp.i;
break;
}
case 'd': {
union {
uint64_t i64;
uint32_t i32[2];
double f;
} fp_dp;
fp_dp.f = mp_obj_get_float_to_d(val_in);
if (MP_BYTES_PER_OBJ_WORD == 8) {
val = fp_dp.i64;
} else {
int be = struct_type == '>';
mp_binary_set_int(sizeof(uint32_t), be, p,
fp_dp.i32[MP_ENDIANNESS_BIG ^ be]);
p += sizeof(uint32_t);
val = fp_dp.i32[MP_ENDIANNESS_LITTLE ^ be];
}
break;
}
#endif
default:
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
if (mp_obj_is_exact_type(val_in, &mp_type_int)) {
mp_obj_int_to_bytes_impl(val_in, struct_type == '>', size, p);
return;
}
#endif
val = mp_obj_get_int(val_in);
// zero/sign extend if needed
if (MP_BYTES_PER_OBJ_WORD < 8 && size > sizeof(val)) {
int c = (mp_int_t)val < 0 ? 0xff : 0x00;
memset(p, c, size);
if (struct_type == '>') {
p += size - sizeof(val);
}
}
break;
}
mp_binary_set_int(MIN((size_t)size, sizeof(val)), struct_type == '>', p,
val);
}
#endif
#ifdef __cplusplus
}
#endif