263 lines
8.8 KiB
C

#include "PikaStdDevice_UART.h"
#include "PikaStdDevice_common.h"
void PikaStdDevice_UART_enable(PikaObj* self) {
obj_runNativeMethod(self, "platformEnable", NULL);
}
void PikaStdDevice_UART_disable(PikaObj* self) {
obj_runNativeMethod(self, "platformDisable", NULL);
}
void PikaStdDevice_UART_init(PikaObj* self) {
/* const */
obj_setInt(self, "FLOW_CONTROL_NONE", PIKA_HAL_UART_FLOW_CONTROL_NONE);
obj_setInt(self, "FLOW_CONTROL_RTS", PIKA_HAL_UART_FLOW_CONTROL_RTS);
obj_setInt(self, "FLOW_CONTROL_CTS", PIKA_HAL_UART_FLOW_CONTROL_CTS);
obj_setInt(self, "FLOW_CONTROL_RTS_CTS",
PIKA_HAL_UART_FLOW_CONTROL_RTS_CTS);
obj_setInt(self, "SIGNAL_RX", PIKA_HAL_UART_EVENT_SIGNAL_RX);
obj_setInt(self, "SIGNAL_TX", PIKA_HAL_UART_EVENT_SIGNAL_TX);
obj_setInt(self, "STOP_BITS_1", PIKA_HAL_UART_STOP_BITS_1);
obj_setInt(self, "STOP_BITS_2", PIKA_HAL_UART_STOP_BITS_2);
obj_setInt(self, "STOP_BITS_1_5", PIKA_HAL_UART_STOP_BITS_1_5);
obj_setInt(self, "PARITY_NONE", PIKA_HAL_UART_PARITY_NONE);
obj_setInt(self, "PARITY_ODD", PIKA_HAL_UART_PARITY_ODD);
obj_setInt(self, "PARITY_EVEN", PIKA_HAL_UART_PARITY_EVEN);
/* default */
obj_setInt(self, "baudRate", 115200);
obj_setInt(self, "id", 1);
obj_setStr(self, "readBuff", "");
obj_setInt(self, "flowControl", PIKA_HAL_UART_FLOW_CONTROL_NONE);
obj_setStr(self, "TXpin", "none");
obj_setStr(self, "RXpin", "none");
obj_setStr(self, "RTSpin", "none");
obj_setStr(self, "CTSpin", "none");
obj_setInt(self, "dataBits", 8);
obj_setInt(self, "parity", PIKA_HAL_UART_PARITY_NONE);
obj_setInt(self, "stopBits", PIKA_HAL_UART_STOP_BITS_1);
}
void PikaStdDevice_UART___init__(PikaObj* self) {
PikaStdDevice_UART_init(self);
}
char* PikaStdDevice_UART_read(PikaObj* self, int length) {
obj_setInt(self, "length", length);
obj_runNativeMethod(self, "platformRead", NULL);
return obj_getStr(self, "readData");
}
Arg* PikaStdDevice_UART_readBytes(PikaObj* self, int length) {
obj_setInt(self, "length", length);
obj_runNativeMethod(self, "platformReadBytes", NULL);
return arg_copy(obj_getArg(self, "readData"));
}
void PikaStdDevice_UART_setBaudRate(PikaObj* self, int baudRate) {
obj_setInt(self, "baudRate", baudRate);
}
void PikaStdDevice_UART_setFlowControl(PikaObj* self, int flowControl) {
obj_setInt(self, "flowControl", flowControl);
}
void PikaStdDevice_UART_setDataBits(PikaObj* self, int dataBits) {
obj_setInt(self, "dataBits", dataBits);
}
void PikaStdDevice_UART_setParity(PikaObj* self, int parity) {
obj_setInt(self, "parity", parity);
}
void PikaStdDevice_UART_setStopBits(PikaObj* self, int stopBits) {
obj_setInt(self, "stopBits", stopBits);
}
void PikaStdDevice_UART_setId(PikaObj* self, int id) {
obj_setInt(self, "id", id);
}
void PikaStdDevice_UART_write(PikaObj* self, char* data) {
obj_setStr(self, "writeData", data);
obj_runNativeMethod(self, "platformWrite", NULL);
}
void PikaStdDevice_UART_writeBytes(PikaObj* self, uint8_t* data, int length) {
obj_setBytes(self, "writeData", data, length);
obj_runNativeMethod(self, "platformWriteBytes", NULL);
}
static pika_dev* _get_dev(PikaObj* self) {
pika_dev* dev = obj_getPtr(self, "pika_dev");
if (NULL != dev) {
return dev;
}
int id = obj_getInt(self, "id");
char id_str[32] = {0};
sprintf(id_str, "UART%d", id);
dev = pika_hal_open(PIKA_HAL_UART, id_str);
if (NULL == dev) {
__platform_printf("Error: open UART '%s' failed.\r\n", id_str);
}
obj_setPtr(self, "pika_dev", dev);
return dev;
}
void PikaStdDevice_UART_platformEnable(PikaObj* self) {
pika_dev* dev = _get_dev(self);
if (NULL == dev) {
__platform_printf("Error: open UART '%d' failed.\r\n",
(int)obj_getInt(self, "id"));
return;
}
pika_hal_UART_config cfg = {0};
cfg.baudrate = obj_getInt(self, "baudRate");
cfg.flow_control = obj_getInt(self, "flowControl");
cfg.stop_bits = obj_getInt(self, "stopBits");
cfg.parity = obj_getInt(self, "parity");
cfg.data_bits = obj_getInt(self, "dataBits");
if (!strEqu(obj_getStr(self, "TXpin"), "none")) {
cfg.TX = pika_hal_open(PIKA_HAL_GPIO, obj_getStr(self, "TXpin"));
if (NULL == cfg.TX) {
__platform_printf("Error: open GPIO '%s' failed.\r\n",
obj_getStr(self, "TXpin"));
}
}
if (!strEqu(obj_getStr(self, "RXpin"), "none")) {
cfg.RX = pika_hal_open(PIKA_HAL_GPIO, obj_getStr(self, "RXpin"));
if (NULL == cfg.RX) {
__platform_printf("Error: open GPIO '%s' failed.\r\n",
obj_getStr(self, "RXpin"));
}
}
if (!strEqu(obj_getStr(self, "RTSpin"), "none")) {
cfg.RTS = pika_hal_open(PIKA_HAL_GPIO, obj_getStr(self, "RTSpin"));
if (NULL == cfg.RTS) {
__platform_printf("Error: open GPIO '%s' failed.\r\n",
obj_getStr(self, "RTSpin"));
}
}
if (!strEqu(obj_getStr(self, "CTSpin"), "none")) {
cfg.CTS = pika_hal_open(PIKA_HAL_GPIO, obj_getStr(self, "CTSpin"));
if (NULL == cfg.CTS) {
__platform_printf("Error: open GPIO '%s' failed.\r\n",
obj_getStr(self, "CTSpin"));
}
}
int err = -1;
err = pika_hal_ioctl(dev, PIKA_HAL_IOCTL_CONFIG, &cfg);
if (err != 0) {
__platform_printf("Error: config UART '%d' failed.\r\n",
(int)obj_getInt(self, "id"));
return;
}
err = pika_hal_ioctl(dev, PIKA_HAL_IOCTL_ENABLE);
if (err != 0) {
__platform_printf("Error: enable UART '%d' failed.\r\n",
(int)obj_getInt(self, "id"));
return;
}
}
void PikaStdDevice_UART_platformRead(PikaObj* self) {
int len = obj_getInt(self, "length");
obj_setBytes(self, "_readData", NULL, len + 1);
char* buff = (char*)obj_getBytes(self, "_readData");
pika_dev* dev = _get_dev(self);
int len_get = pika_hal_read(dev, buff, len);
buff[len_get] = 0;
obj_setStr(self, "readData", buff);
}
void PikaStdDevice_UART_platformWrite(PikaObj* self) {
char* data = obj_getStr(self, "writeData");
pika_dev* dev = _get_dev(self);
pika_hal_write(dev, data, strlen(data));
}
void PikaStdDevice_UART_platformDisable(PikaObj* self) {
pika_dev* dev = _get_dev(self);
if (NULL == dev) {
__platform_printf("Error: open UART '%d' failed.\r\n",
(int)obj_getInt(self, "id"));
return;
}
pika_hal_ioctl(dev, PIKA_HAL_IOCTL_DISABLE);
}
void PikaStdDevice_UART_platformReadBytes(PikaObj* self) {
int len = obj_getInt(self, "length");
obj_setBytes(self, "_readData", NULL, len + 1);
uint8_t* buff = obj_getBytes(self, "_readData");
pika_dev* dev = _get_dev(self);
int len_get = pika_hal_read(dev, buff, len);
obj_setBytes(self, "readData", buff, len_get);
}
void PikaStdDevice_UART_platformWriteBytes(PikaObj* self) {
uint8_t* data = obj_getBytes(self, "writeData");
int len = obj_getBytesSize(self, "writeData");
pika_dev* dev = _get_dev(self);
pika_hal_write(dev, data, len);
}
void PikaStdDevice_UART_setCallBack(PikaObj* self,
Arg* eventCallBack,
int filter) {
#if PIKA_EVENT_ENABLE
pika_dev* dev = _get_dev(self);
_PikaStdDevice_setCallBack(self, eventCallBack, (uintptr_t)dev);
/* regist event to pika_hal */
pika_hal_UART_config cfg_cb = {0};
cfg_cb.event_callback = (void*)_PikaStdDevice_event_handler;
cfg_cb.event_callback_filter = filter;
cfg_cb.event_callback_ena = PIKA_HAL_EVENT_CALLBACK_ENA_ENABLE;
pika_hal_ioctl(dev, PIKA_HAL_IOCTL_CONFIG, &cfg_cb);
#else
obj_setErrorCode(self, 1);
obj_setSysOut(self, "[error] PIKA_EVENT_ENABLE is disabled.");
#endif
}
void PikaStdDevice_UART_close(PikaObj* self) {
pika_dev* dev = _get_dev(self);
pika_hal_UART_config* cfg = (pika_hal_UART_config*)dev->ioctl_config;
if (NULL != cfg->TX) {
pika_hal_close(cfg->TX);
cfg->TX = NULL;
}
if (NULL != cfg->RX) {
pika_hal_close(cfg->RX);
cfg->RX = NULL;
}
if (NULL != cfg->RTS) {
pika_hal_close(cfg->RTS);
cfg->RTS = NULL;
}
if (NULL != cfg->CTS) {
pika_hal_close(cfg->CTS);
cfg->CTS = NULL;
}
pika_hal_close(dev);
}
void PikaStdDevice_UART_setPinCTS(PikaObj* self, char* pin) {
obj_setStr(self, "CTSpin", pin);
}
void PikaStdDevice_UART_setPinRTS(PikaObj* self, char* pin) {
obj_setStr(self, "RTSpin", pin);
}
void PikaStdDevice_UART_setPinRX(PikaObj* self, char* pin) {
obj_setStr(self, "RXpin", pin);
}
void PikaStdDevice_UART_setPinTX(PikaObj* self, char* pin) {
obj_setStr(self, "TXpin", pin);
}