pikastech e85639a1e9 fix valgrind in check CLS
add pikann
2022-09-08 22:33:23 +08:00

247 lines
11 KiB
Python

# Copyright 2022 Sipeed Technology Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
from keras.datasets import mnist
from tensorflow.python.keras.backend import set_session
from tensorflow.python.keras.models import load_model
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.layers import Conv2D, Dense, MaxPooling2D, Softmax, Activation, BatchNormalization, Flatten, Dropout, DepthwiseConv2D
from tensorflow.keras.layers import MaxPool2D, AvgPool2D, AveragePooling2D, GlobalAveragePooling2D,ZeroPadding2D,Input,Embedding,PReLU
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
import keras.backend as K
import tensorflow as tf
import time
#/tensorflow/lite/tools/visualize.py
import re
from tensorflow.lite.python import schema_py_generated as schema_fb
def BuiltinCodeToName(code):
"""Converts a builtin op code enum to a readable name."""
for name, value in schema_fb.BuiltinOperator.__dict__.items():
if value == code:
return name
return None
def CamelCaseToSnakeCase(camel_case_input):
"""Converts an identifier in CamelCase to snake_case."""
s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camel_case_input)
return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
def FlatbufferToDict(fb, preserve_as_numpy):
if isinstance(fb, int) or isinstance(fb, float) or isinstance(fb, str):
return fb
elif hasattr(fb, "__dict__"):
result = {}
for attribute_name in dir(fb):
attribute = fb.__getattribute__(attribute_name)
if not callable(attribute) and attribute_name[0] != "_":
snake_name = CamelCaseToSnakeCase(attribute_name)
preserve = True if attribute_name == "buffers" else preserve_as_numpy
result[snake_name] = FlatbufferToDict(attribute, preserve)
return result
elif isinstance(fb, np.ndarray):
return fb if preserve_as_numpy else fb.tolist()
elif hasattr(fb, "__len__"):
return [FlatbufferToDict(entry, preserve_as_numpy) for entry in fb]
else:
return fb
def CreateDictFromFlatbuffer(buffer_data):
model_obj = schema_fb.Model.GetRootAsModel(buffer_data, 0)
model = schema_fb.ModelT.InitFromObj(model_obj)
return FlatbufferToDict(model, preserve_as_numpy=False)
def read_tflite(tflite_name, log_func=print):
layers = []
# Read the model.
with open(tflite_name, 'rb') as f:
model_buffer = f.read()
interpreter = tf.lite.Interpreter(model_content=model_buffer)
interpreter.allocate_tensors()
data = CreateDictFromFlatbuffer(model_buffer)
op_codes = data['operator_codes']
subg = data['subgraphs'][0]
tensors = subg['tensors'] #weight, bias here
input_idxs = subg['inputs']
output_idxs = subg['outputs']
# convert name to utf readable
for i in range(len(tensors)):
tmp = tensors[i]["name"]
tmp = bytearray(tmp)
tensors[i]["name"] = tmp.decode('utf-8')
# export layer param
last_pad = None
for idx in range(len(subg['operators'])):
layer = subg['operators'][idx]
l={}
#layer name
op_idx = layer['opcode_index']
op_code = op_codes[op_idx]['builtin_code']
layer_name = BuiltinCodeToName(op_code)
l["name"]=layer_name
log_func(layer_name)
#layer param
layer_param = layer['builtin_options']
log_func(layer_param)
if layer_param is not None:
l.update(layer_param)
#layer input/output idx
input_tensor_idx = layer['inputs']
output_tensor_idx = layer['outputs']
if len(output_tensor_idx)>1:
raise Exception("Not support multi output yet")
if output_tensor_idx[0] in output_idxs:
l.update({"is_output":1})
log_func("OUTPUT!")
else:
l.update({"is_output":0})
#input
input_idx = input_tensor_idx[0]
if last_pad == None:
l.update({"in_shape":tensors[input_idx]["shape"]})
else:
shape = tensors[input_idx]["shape"]
shape[1] = shape[1] - last_pad[0] - last_pad[1]
shape[2] = shape[2] - last_pad[2] - last_pad[3]
l.update({"in_shape":shape})
l.update({"in_name":tensors[input_idx]["name"]})
log_func(" input: %s"%(tensors[input_idx]["name"]))
if tensors[input_idx]["quantization"]['scale'] is not None:
l.update({"i_scale":tensors[input_idx]['quantization' ]['scale'][0]})
l.update({"i_zeropoint":tensors[input_idx]['quantization' ]['zero_point'][0]})
l.update({"quant":1})
else:
l.update({"i_scale":1})
l.update({"i_zeropoint":0})
l.update({"quant":0})
#output
output_idx = output_tensor_idx[0]
l.update({"out_shape":tensors[output_idx]["shape"]})
l.update({"out_name":tensors[output_idx]["name"]})
if tensors[output_idx]["quantization"]['scale'] is not None:
l.update({"o_scale":tensors[output_idx]['quantization' ]['scale'][0]})
l.update({"o_zeropoint":tensors[output_idx]['quantization' ]['zero_point'][0]})
else:
l.update({"o_scale":1})
l.update({"o_zeropoint":0})
if layer_name == "CONV_2D" or layer_name == "DEPTHWISE_CONV_2D":
#filter weight
weight_idx = input_tensor_idx[1]
weight = interpreter.get_tensor(weight_idx) #用interpreter获取具体的权重数值
filters = tensors[weight_idx]['shape'] #卷积核尺寸
log_func(" filter %d: %s "%(weight_idx, tensors[weight_idx]["name"]))
#print(weight.shape, filters)
#print(tensors[weight_idx])
l.update({"weight":weight})
if tensors[weight_idx]["quantization"]['scale'] is not None:
l.update({"w_scale":np.array(tensors[weight_idx]['quantization' ]['scale'])})
l.update({"w_zeropoint":np.array(tensors[weight_idx]['quantization' ]['zero_point'])})
else:
l.update({"w_scale":1})
l.update({"w_zeropoint":0})
#filter bias
bias_idx = input_tensor_idx[2]
bias = interpreter.get_tensor(bias_idx)
log_func(" bias %d: %s"%(bias_idx,tensors[bias_idx]["name"]))
l.update({"bias":bias})
if tensors[bias_idx]["quantization"]['scale'] is not None:
l.update({"b_scale":np.array(tensors[bias_idx]['quantization' ]['scale'])})
l.update({"b_zeropoint":np.array(tensors[bias_idx]['quantization' ]['zero_point'])})
else:
l.update({"b_scale":1})
l.update({"b_zeropoint":0})
#fuse pad
if last_pad != None:
l.update({"padding":2})
l.update({"pad":last_pad})
elif layer_name == "MEAN":
data_idx = input_tensor_idx[1]
log_func(" data: %s"%(tensors[data_idx]["name"]))
reduce_idx = interpreter.get_tensor(data_idx)
l.update({"reduce_idx":reduce_idx-1})
elif layer_name == "FULLY_CONNECTED":
weight_idx = input_tensor_idx[1]
log_func(" weight: %s"%(tensors[weight_idx]["name"]))
weight = interpreter.get_tensor(weight_idx)
l.update({"weight":weight})
if tensors[weight_idx]["quantization"]['scale'] is not None:
l.update({"w_scale":np.array(tensors[weight_idx]['quantization' ]['scale'])})
l.update({"w_zeropoint":np.array(tensors[weight_idx]['quantization' ]['zero_point'])})
else:
l.update({"w_scale":1})
l.update({"w_zeropoint":0})
bias_idx = input_tensor_idx[2]
if bias_idx >= 0:
log_func(" bias: %s"%(tensors[bias_idx]["name"]))
bias = interpreter.get_tensor(bias_idx)
l.update({"bias":bias})
if tensors[bias_idx]["quantization"]['scale'] is not None:
l.update({"b_scale":np.array(tensors[bias_idx]['quantization' ]['scale'])})
l.update({"b_zeropoint":np.array(tensors[bias_idx]['quantization' ]['zero_point'])})
else:
l.update({"b_scale":1})
l.update({"b_zeropoint":0})
elif layer_name == "SOFTMAX":
log_func(" softmax no param")
elif layer_name == "RESHAPE":
log_func(" reshape no param")
elif layer_name == "PAD":
log_func(" Dirty deal with PAD")
layer_next = subg['operators'][idx+1]
op_idx = layer_next['opcode_index']
op_code = op_codes[op_idx]['builtin_code']
layer_next_name = BuiltinCodeToName(op_code)
if layer_next_name == "CONV_2D" or layer_next_name == "DEPTHWISE_CONV_2D":
if layer_next['builtin_options']["padding"] == 1: #valid
#print(layer_next)
#print(len(input_tensor_idx))
pad_idx = input_tensor_idx[1]
log_func(" pad: %s"%(tensors[pad_idx]["name"]))
pad = interpreter.get_tensor(pad_idx)
#print(pad)
assert pad[0,0]==0 and pad[0,1]==0 and pad[3,0]==0 and pad[3,1]==0
#l.update({"pad":[pad[1][0], pad[1][1], pad[2][0], pad[2][1]]})
last_pad = [pad[1][0], pad[1][1], pad[2][0], pad[2][1]]
continue
else:
raise Exception("only deal with pad+conv_valid")
else:
raise Exception("only deal with pad+conv/dwconv")
elif layer_name in ["SHAPE", "STRIDED_SLICE", "PACK"]:
log_func(" ignore %s" % layer_name)
continue
elif layer_name == "QUANTIZE":
raise Exception("QUANTIZE not supported, maybe tflite is not quantized model, check your tflite model")
else:
raise Exception("Not support layer %s"%layer_name)
layers.append(l)
last_pad = None
return layers