2021-11-01 20:33:03 +08:00

754 lines
21 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_helium_utils.h
* Description: Utility functions for Helium development
*
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _ARM_UTILS_HELIUM_H_
#define _ARM_UTILS_HELIUM_H_
#ifdef __cplusplus
extern "C"
{
#endif
/***************************************
Definitions available for MVEF and MVEI
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
#define INACTIVELANE 0 /* inactive lane content */
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */
/***************************************
Definitions available for MVEF only
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF)) && !defined(ARM_MATH_AUTOVECTORIZE)
__STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in)
{
float32_t acc;
acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) +
vgetq_lane(in, 2) + vgetq_lane(in, 3);
return acc;
}
/* newton initial guess */
#define INVSQRT_MAGIC_F32 0x5f3759df
#define INV_NEWTON_INIT_F32 0x7EF127EA
#define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\
{ \
float32x4_t tmp; \
\
/* tmp = xhalf * x * x */ \
tmp = vmulq(xStart, xStart); \
tmp = vmulq(tmp, xHalf); \
/* (1.5f - xhalf * x * x) */ \
tmp = vsubq(vdupq_n_f32(1.5f), tmp); \
/* x = x*(1.5f-xhalf*x*x); */ \
invSqrt = vmulq(tmp, xStart); \
}
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */
/***************************************
Definitions available for f16 datatype with HW acceleration only
***************************************/
#if defined(ARM_FLOAT16_SUPPORTED)
#if defined (ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
__STATIC_FORCEINLINE float16_t vecAddAcrossF16Mve(float16x8_t in)
{
float16x8_t tmpVec;
_Float16 acc;
tmpVec = (float16x8_t) vrev32q_s16((int16x8_t) in);
in = vaddq_f16(tmpVec, in);
tmpVec = (float16x8_t) vrev64q_s32((int32x4_t) in);
in = vaddq_f16(tmpVec, in);
acc = (_Float16)vgetq_lane_f16(in, 0) + (_Float16)vgetq_lane_f16(in, 4);
return acc;
}
__STATIC_FORCEINLINE float16x8_t __mve_cmplx_sum_intra_vec_f16(
float16x8_t vecIn)
{
float16x8_t vecTmp, vecOut;
uint32_t tmp;
vecTmp = (float16x8_t) vrev64q_s32((int32x4_t) vecIn);
// TO TRACK : using canonical addition leads to unefficient code generation for f16
// vecTmp = vecTmp + vecAccCpx0;
/*
* Compute
* re0+re1 | im0+im1 | re0+re1 | im0+im1
* re2+re3 | im2+im3 | re2+re3 | im2+im3
*/
vecTmp = vaddq_f16(vecTmp, vecIn);
vecOut = vecTmp;
/*
* shift left, random tmp insertion in bottom
*/
vecOut = vreinterpretq_f16_s32(vshlcq_s32(vreinterpretq_s32_f16(vecOut) , &tmp, 32));
/*
* Compute:
* DONTCARE | DONTCARE | re0+re1+re0+re1 |im0+im1+im0+im1
* re0+re1+re2+re3 | im0+im1+im2+im3 | re2+re3+re2+re3 |im2+im3+im2+im3
*/
vecOut = vaddq_f16(vecOut, vecTmp);
/*
* Cmplx sum is in 4rd & 5th f16 elt
* return full vector
*/
return vecOut;
}
#define mve_cmplx_sum_intra_r_i_f16(vec, Re, Im) \
{ \
float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vec); \
Re = vgetq_lane(vecOut, 4); \
Im = vgetq_lane(vecOut, 5); \
}
__STATIC_FORCEINLINE void mve_cmplx_sum_intra_vec_f16(
float16x8_t vecIn,
float16_t *pOut)
{
float16x8_t vecOut = __mve_cmplx_sum_intra_vec_f16(vecIn);
/*
* Cmplx sum is in 4rd & 5th f16 elt
* use 32-bit extraction
*/
*(float32_t *) pOut = ((float32x4_t) vecOut)[2];
}
#define INVSQRT_MAGIC_F16 0x59ba /* ( 0x1ba = 0x3759df >> 13) */
/* canonical version of INVSQRT_NEWTON_MVE_F16 leads to bad performance */
#define INVSQRT_NEWTON_MVE_F16(invSqrt, xHalf, xStart) \
{ \
float16x8_t tmp; \
\
/* tmp = xhalf * x * x */ \
tmp = vmulq(xStart, xStart); \
tmp = vmulq(tmp, xHalf); \
/* (1.5f - xhalf * x * x) */ \
tmp = vsubq(vdupq_n_f16((float16_t)1.5), tmp); \
/* x = x*(1.5f-xhalf*x*x); */ \
invSqrt = vmulq(tmp, xStart); \
}
#endif
#endif
/***************************************
Definitions available for MVEI and MVEF only
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Following functions are used to transpose matrix in f32 and q31 cases */
__STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve(
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
static const uint32x4_t vecOffs = { 0, 2, 1, 3 };
/*
*
* | 0 1 | => | 0 2 |
* | 2 3 | | 1 3 |
*
*/
uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve(
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
const uint32x4_t vecOffs1 = { 0, 3, 6, 1};
const uint32x4_t vecOffs2 = { 4, 7, 2, 5};
/*
*
* | 0 1 2 | | 0 3 6 | 4 x 32 flattened version | 0 3 6 1 |
* | 3 4 5 | => | 1 4 7 | => | 4 7 2 5 |
* | 6 7 8 | | 2 5 8 | (row major) | 8 . . . |
*
*/
uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc);
uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1);
vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2);
pDataDest[8] = pDataSrc[8];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest)
{
/*
* 4x4 Matrix transposition
* is 4 x de-interleave operation
*
* 0 1 2 3 0 4 8 12
* 4 5 6 7 1 5 9 13
* 8 9 10 11 2 6 10 14
* 12 13 14 15 3 7 11 15
*/
uint32x4x4_t vecIn;
vecIn = vld4q((uint32_t const *) pDataSrc);
vstrwq(pDataDest, vecIn.val[0]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[1]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[2]);
pDataDest += 4;
vstrwq(pDataDest, vecIn.val[3]);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve(
uint16_t srcRows,
uint16_t srcCols,
uint32_t * pDataSrc,
uint32_t * pDataDest)
{
uint32x4_t vecOffs;
uint32_t i;
uint32_t blkCnt;
uint32_t const *pDataC;
uint32_t *pDataDestR;
uint32x4_t vecIn;
vecOffs = vidupq_u32((uint32_t)0, 1);
vecOffs = vecOffs * srcCols;
i = srcCols;
do
{
pDataC = (uint32_t const *) pDataSrc;
pDataDestR = pDataDest;
blkCnt = srcRows >> 2;
while (blkCnt > 0U)
{
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
vstrwq(pDataDestR, vecIn);
pDataDestR += 4;
pDataC = pDataC + srcCols * 4;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
*/
blkCnt = srcRows & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
vstrwq_p(pDataDestR, vecIn, p0);
}
pDataSrc += 1;
pDataDest += srcRows;
}
while (--i);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_cmplx_trans_32bit(
uint16_t srcRows,
uint16_t srcCols,
uint32_t *pDataSrc,
uint16_t dstRows,
uint16_t dstCols,
uint32_t *pDataDest)
{
uint32_t i;
uint32_t const *pDataC;
uint32_t *pDataRow;
uint32_t *pDataDestR, *pDataDestRow;
uint32x4_t vecOffsRef, vecOffsCur;
uint32_t blkCnt;
uint32x4_t vecIn;
#ifdef ARM_MATH_MATRIX_CHECK
/*
* Check for matrix mismatch condition
*/
if ((srcRows != dstCols) || (srcCols != dstRows))
{
/*
* Set status as ARM_MATH_SIZE_MISMATCH
*/
return ARM_MATH_SIZE_MISMATCH;
}
#else
(void)dstRows;
(void)dstCols;
#endif
/* 2x2, 3x3 and 4x4 specialization to be added */
vecOffsRef[0] = 0;
vecOffsRef[1] = 1;
vecOffsRef[2] = srcCols << 1;
vecOffsRef[3] = (srcCols << 1) + 1;
pDataRow = pDataSrc;
pDataDestRow = pDataDest;
i = srcCols;
do
{
pDataC = (uint32_t const *) pDataRow;
pDataDestR = pDataDestRow;
vecOffsCur = vecOffsRef;
blkCnt = (srcRows * CMPLX_DIM) >> 2;
while (blkCnt > 0U)
{
vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
vstrwq(pDataDestR, vecIn);
pDataDestR += 4;
vecOffsCur = vaddq(vecOffsCur, (srcCols << 2));
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (srcRows * CMPLX_DIM) & 3;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp32q(blkCnt);
vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
vstrwq_p(pDataDestR, vecIn, p0);
}
pDataRow += CMPLX_DIM;
pDataDestRow += (srcRows * CMPLX_DIM);
}
while (--i);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_2x2(uint16_t * pDataSrc, uint16_t * pDataDest)
{
pDataDest[0] = pDataSrc[0];
pDataDest[3] = pDataSrc[3];
pDataDest[2] = pDataSrc[1];
pDataDest[1] = pDataSrc[2];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
{
static const uint16_t stridesTr33[8] = { 0, 3, 6, 1, 4, 7, 2, 5 };
uint16x8_t vecOffs1;
uint16x8_t vecIn1;
/*
*
* | 0 1 2 | | 0 3 6 | 8 x 16 flattened version | 0 3 6 1 4 7 2 5 |
* | 3 4 5 | => | 1 4 7 | => | 8 . . . . . . . |
* | 6 7 8 | | 2 5 8 | (row major)
*
*/
vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr33);
vecIn1 = vldrhq_u16((uint16_t const *) pDataSrc);
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
pDataDest[8] = pDataSrc[8];
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
{
static const uint16_t stridesTr44_1[8] = { 0, 4, 8, 12, 1, 5, 9, 13 };
static const uint16_t stridesTr44_2[8] = { 2, 6, 10, 14, 3, 7, 11, 15 };
uint16x8_t vecOffs1, vecOffs2;
uint16x8_t vecIn1, vecIn2;
uint16_t const * pDataSrcVec = (uint16_t const *) pDataSrc;
/*
* 4x4 Matrix transposition
*
* | 0 1 2 3 | | 0 4 8 12 | 8 x 16 flattened version
* | 4 5 6 7 | => | 1 5 9 13 | => [0 4 8 12 1 5 9 13]
* | 8 9 10 11 | | 2 6 10 14 | [2 6 10 14 3 7 11 15]
* | 12 13 14 15 | | 3 7 11 15 |
*/
vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr44_1);
vecOffs2 = vldrhq_u16((uint16_t const *) stridesTr44_2);
vecIn1 = vldrhq_u16(pDataSrcVec);
pDataSrcVec += 8;
vecIn2 = vldrhq_u16(pDataSrcVec);
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs2, vecIn2);
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_trans_16bit_generic(
uint16_t srcRows,
uint16_t srcCols,
uint16_t * pDataSrc,
uint16_t * pDataDest)
{
uint16x8_t vecOffs;
uint32_t i;
uint32_t blkCnt;
uint16_t const *pDataC;
uint16_t *pDataDestR;
uint16x8_t vecIn;
vecOffs = vidupq_u16((uint32_t)0, 1);
vecOffs = vecOffs * srcCols;
i = srcCols;
while(i > 0U)
{
pDataC = (uint16_t const *) pDataSrc;
pDataDestR = pDataDest;
blkCnt = srcRows >> 3;
while (blkCnt > 0U)
{
vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
vstrhq_u16(pDataDestR, vecIn);
pDataDestR += 8;
pDataC = pDataC + srcCols * 8;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
*/
blkCnt = srcRows & 7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
vstrhq_p_u16(pDataDestR, vecIn, p0);
}
pDataSrc += 1;
pDataDest += srcRows;
i--;
}
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_cmplx_trans_16bit(
uint16_t srcRows,
uint16_t srcCols,
uint16_t *pDataSrc,
uint16_t dstRows,
uint16_t dstCols,
uint16_t *pDataDest)
{
static const uint16_t loadCmplxCol[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
int i;
uint16x8_t vecOffsRef, vecOffsCur;
uint16_t const *pDataC;
uint16_t *pDataRow;
uint16_t *pDataDestR, *pDataDestRow;
uint32_t blkCnt;
uint16x8_t vecIn;
#ifdef ARM_MATH_MATRIX_CHECK
/*
* Check for matrix mismatch condition
*/
if ((srcRows != dstCols) || (srcCols != dstRows))
{
/*
* Set status as ARM_MATH_SIZE_MISMATCH
*/
return ARM_MATH_SIZE_MISMATCH;
}
#else
(void)dstRows;
(void)dstCols;
#endif
/*
* 2x2, 3x3 and 4x4 specialization to be added
*/
/*
* build [0, 1, 2xcol, 2xcol+1, 4xcol, 4xcol+1, 6xcol, 6xcol+1]
*/
vecOffsRef = vldrhq_u16((uint16_t const *) loadCmplxCol);
vecOffsRef = vmulq(vecOffsRef, (uint16_t) (srcCols * CMPLX_DIM))
+ viwdupq_u16((uint32_t)0, (uint16_t) 2, 1);
pDataRow = pDataSrc;
pDataDestRow = pDataDest;
i = srcCols;
do
{
pDataC = (uint16_t const *) pDataRow;
pDataDestR = pDataDestRow;
vecOffsCur = vecOffsRef;
blkCnt = (srcRows * CMPLX_DIM) >> 3;
while (blkCnt > 0U)
{
vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
vstrhq(pDataDestR, vecIn);
pDataDestR+= 8; // VEC_LANES_U16
vecOffsCur = vaddq(vecOffsCur, (srcCols << 3));
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (srcRows * CMPLX_DIM) & 0x7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
vstrhq_p(pDataDestR, vecIn, p0);
}
pDataRow += CMPLX_DIM;
pDataDestRow += (srcRows * CMPLX_DIM);
}
while (--i);
return (ARM_MATH_SUCCESS);
}
#endif /* MVEF and MVEI */
/***************************************
Definitions available for MVEI only
***************************************/
#if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI)) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_common_tables.h"
#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
#define MVE_ASRL_SAT32(acc, shift) ((sqrshrl(acc, -(32-shift)) >> 32) & 0xffffffff)
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE)
__STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn)
{
q63x2_t vecTmpLL;
q31x4_t vecTmp0, vecTmp1;
q31_t scale;
q63_t tmp64;
q31x4_t vecNrm, vecDst, vecIdx, vecSignBits;
vecSignBits = vclsq(vecIn);
vecSignBits = vbicq_n_s32(vecSignBits, 1);
/*
* in = in << no_of_sign_bits;
*/
vecNrm = vshlq(vecIn, vecSignBits);
/*
* index = in >> 24;
*/
vecIdx = vecNrm >> 24;
vecIdx = vecIdx << 1;
vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
vecIdx = vecIdx + 1;
vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
vecTmp0 = vecTmp0 - vecTmp1;
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1;
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
vecTmpLL = vmullbq_int(vecNrm, vecTmp0);
/*
* scale elements 0, 2
*/
scale = 26 + (vecSignBits[0] >> 1);
tmp64 = asrl(vecTmpLL[0], scale);
vecDst[0] = (q31_t) tmp64;
scale = 26 + (vecSignBits[2] >> 1);
tmp64 = asrl(vecTmpLL[1], scale);
vecDst[2] = (q31_t) tmp64;
vecTmpLL = vmulltq_int(vecNrm, vecTmp0);
/*
* scale elements 1, 3
*/
scale = 26 + (vecSignBits[1] >> 1);
tmp64 = asrl(vecTmpLL[0], scale);
vecDst[1] = (q31_t) tmp64;
scale = 26 + (vecSignBits[3] >> 1);
tmp64 = asrl(vecTmpLL[1], scale);
vecDst[3] = (q31_t) tmp64;
/*
* set negative values to 0
*/
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0));
return vecDst;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE)
__STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn)
{
q31x4_t vecTmpLev, vecTmpLodd, vecSignL;
q15x8_t vecTmp0, vecTmp1;
q15x8_t vecNrm, vecDst, vecIdx, vecSignBits;
vecDst = vuninitializedq_s16();
vecSignBits = vclsq(vecIn);
vecSignBits = vbicq_n_s16(vecSignBits, 1);
/*
* in = in << no_of_sign_bits;
*/
vecNrm = vshlq(vecIn, vecSignBits);
vecIdx = vecNrm >> 8;
vecIdx = vecIdx << 1;
vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
vecIdx = vecIdx + 1;
vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
vecTmp0 = vecTmp0 - vecTmp1;
vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1;
vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
vecSignBits = vecSignBits >> 1;
vecTmpLev = vmullbq_int(vecNrm, vecTmp0);
vecTmpLodd = vmulltq_int(vecNrm, vecTmp0);
vecTmp0 = vecSignBits + 10;
/*
* negate sign to apply register based vshl
*/
vecTmp0 = -vecTmp0;
/*
* shift even elements
*/
vecSignL = vmovlbq(vecTmp0);
vecTmpLev = vshlq(vecTmpLev, vecSignL);
/*
* shift odd elements
*/
vecSignL = vmovltq(vecTmp0);
vecTmpLodd = vshlq(vecTmpLodd, vecSignL);
/*
* merge and narrow odd and even parts
*/
vecDst = vmovnbq_s32(vecDst, vecTmpLev);
vecDst = vmovntq_s32(vecDst, vecTmpLodd);
/*
* set negative values to 0
*/
vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0));
return vecDst;
}
#endif
#endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */
#ifdef __cplusplus
}
#endif
#endif