mirror of
https://gitee.com/Lyon1998/pikapython.git
synced 2025-01-22 17:12:55 +08:00
4784 lines
141 KiB
C
4784 lines
141 KiB
C
/******************************************************************************
|
|
* @file csky_math.h
|
|
* @brief Public header file for CSI DSP Library.
|
|
* @version V1.0
|
|
* @date 20. Dec 2016
|
|
******************************************************************************/
|
|
/* ---------------------------------------------------------------------------
|
|
* Copyright (C) 2016 CSKY Limited. All rights reserved.
|
|
*
|
|
* Redistribution and use of this software in source and binary forms,
|
|
* with or without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* * Neither the name of CSKY Ltd. nor the names of CSKY's contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission of CSKY Ltd.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
|
|
/**
|
|
* @defgroup groupMath Basic Math Functions
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupFastMath Fast Math Functions
|
|
* This set of functions provides a fast approximation to sine, cosine, and square root.
|
|
* As compared to most of the other functions in the CSI math library, the fast math functions
|
|
* operate on individual values and not arrays.
|
|
* There are separate functions for Q15, Q31, and floating-point data.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupCmplxMath Complex Math Functions
|
|
* This set of functions operates on complex data vectors.
|
|
* The data in the complex arrays is stored in an interleaved fashion
|
|
* (real, imag, real, imag, ...).
|
|
* In the API functions, the number of samples in a complex array refers
|
|
* to the number of complex values; the array contains twice this number of
|
|
* real values.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupFilters Filtering Functions
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupMatrix Matrix Functions
|
|
*
|
|
* This set of functions provides basic matrix math operations.
|
|
* The functions operate on matrix data structures. For example,
|
|
* the type
|
|
* definition for the floating-point matrix structure is shown
|
|
* below:
|
|
* <pre>
|
|
* typedef struct
|
|
* {
|
|
* uint16_t numRows; // number of rows of the matrix.
|
|
* uint16_t numCols; // number of columns of the matrix.
|
|
* float32_t *pData; // points to the data of the matrix.
|
|
* } csky_matrix_instance_f32;
|
|
* </pre>
|
|
* There are similar definitions for Q15 and Q31 data types.
|
|
*
|
|
* The structure specifies the size of the matrix and then points to
|
|
* an array of data. The array is of size <code>numRows X numCols</code>
|
|
* and the values are arranged in row order. That is, the
|
|
* matrix element (i, j) is stored at:
|
|
* <pre>
|
|
* pData[i*numCols + j]
|
|
* </pre>
|
|
*
|
|
* \par Init Functions
|
|
* There is an associated initialization function for each type of matrix
|
|
* data structure.
|
|
* The initialization function sets the values of the internal structure fields.
|
|
* Refer to the function <code>csky_mat_init_f32()</code>, <code>csky_mat_init_q31()</code>
|
|
* and <code>csky_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
|
|
*
|
|
* \par
|
|
* Use of the initialization function is optional. However, if initialization function is used
|
|
* then the instance structure cannot be placed into a const data section.
|
|
* To place the instance structure in a const data
|
|
* section, manually initialize the data structure. For example:
|
|
* <pre>
|
|
* <code>csky_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
|
|
* <code>csky_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
|
|
* <code>csky_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
|
|
* </pre>
|
|
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
|
|
* specifies the number of columns, and <code>pData</code> points to the
|
|
* data array.
|
|
*
|
|
* \par Size Checking
|
|
* By default all of the matrix functions perform size checking on the input and
|
|
* output matrices. For example, the matrix addition function verifies that the
|
|
* two input matrices and the output matrix all have the same number of rows and
|
|
* columns. If the size check fails the functions return:
|
|
* <pre>
|
|
* CSKY_MATH_SIZE_MISMATCH
|
|
* </pre>
|
|
* Otherwise the functions return
|
|
* <pre>
|
|
* CSKY_MATH_SUCCESS
|
|
* </pre>
|
|
* There is some overhead associated with this matrix size checking.
|
|
* The matrix size checking is enabled via the \#define
|
|
* <pre>
|
|
* CSKY_MATH_MATRIX_CHECK
|
|
* </pre>
|
|
* within the library project settings. By default this macro is defined
|
|
* and size checking is enabled. By changing the project settings and
|
|
* undefining this macro size checking is eliminated and the functions
|
|
* run a bit faster. With size checking disabled the functions always
|
|
* return <code>CSKY_MATH_SUCCESS</code>.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupTransforms Transform Functions
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupController Controller Functions
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupStats Statistics Functions
|
|
*/
|
|
/**
|
|
* @defgroup groupSupport Support Functions
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupInterpolation Interpolation Functions
|
|
* These functions perform 1- and 2-dimensional interpolation of data.
|
|
* Linear interpolation is used for 1-dimensional data and
|
|
* bilinear interpolation is used for 2-dimensional data.
|
|
*/
|
|
|
|
|
|
/**
|
|
* @defgroup groupYunvoice Yunvoice Functions
|
|
* These functions are designed for Yunvoice project, which are modified
|
|
* according to the CEVA DSP functions. So, one can porting the software
|
|
* from CEVA to CSKY straightforwardly.
|
|
*/
|
|
|
|
/**
|
|
* @defgroup groupExamples Examples
|
|
*/
|
|
|
|
|
|
#ifndef _CSKY_MATH_H
|
|
#define _CSKY_MATH_H
|
|
|
|
#define __CSI_GENERIC /* disable NVIC and Systick functions */
|
|
|
|
#include "csi_core.h"
|
|
|
|
#include <float.h>
|
|
#undef __CSI_GENERIC /* enable NVIC and Systick functions */
|
|
#include "string.h"
|
|
#include "math.h"
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
|
|
/**
|
|
* @brief Macros required for reciprocal calculation in Normalized LMS
|
|
*/
|
|
|
|
#define DELTA_Q31 (0x100)
|
|
#define DELTA_Q15 0x5
|
|
#define INDEX_MASK 0x0000003F
|
|
#ifndef PI
|
|
#define PI 3.14159265358979f
|
|
#endif
|
|
|
|
/**
|
|
* @brief Macros required for SINE and COSINE Fast math approximations
|
|
*/
|
|
|
|
#define FAST_MATH_TABLE_SIZE 512
|
|
#define FAST_MATH_Q31_SHIFT (32 - 10)
|
|
#define FAST_MATH_Q15_SHIFT (16 - 10)
|
|
#define CONTROLLER_Q31_SHIFT (32 - 9)
|
|
#define TABLE_SIZE 256
|
|
#define TABLE_SPACING_Q31 0x400000
|
|
#define TABLE_SPACING_Q15 0x80
|
|
|
|
/**
|
|
* @brief Macros required for SINE and COSINE Controller functions
|
|
*/
|
|
/* 1.31(q31) Fixed value of 2/360 */
|
|
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
|
|
#define INPUT_SPACING 0xB60B61
|
|
|
|
/**
|
|
* @brief Macro for Unaligned Support
|
|
*/
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
#define ALIGN4
|
|
#else
|
|
#define ALIGN4 __attribute__((aligned(4)))
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
|
|
|
|
/**
|
|
* @brief Macro for log , pow and related fast functions.
|
|
*/
|
|
#define ABS(x) (((x) > 0) ? (x) : (-x))
|
|
#define max(x) (((y) > (x)) ? (y) : (x))
|
|
#define min(x) (((y) < (x)) ? (y) : (x))
|
|
#define CN 124217729.0
|
|
#define HIGH_HALF 1
|
|
#define LOW_HALF 0
|
|
|
|
/* Exact addition of two single-length floating point numbers. */
|
|
/* The macro produces a double-length number (z,zz) that satisfies */
|
|
/* z+zz = x+y exactly. */
|
|
|
|
#define EADD(x,y,z,zz) \
|
|
z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
|
|
|
|
/* Exact multiplication of two single-length floating point numbers, */
|
|
/*The macro produces a double-length number (z,zz) that */
|
|
/* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
|
|
/* storage variables of type double. */
|
|
|
|
# define EMULV(x,y,z,zz,p,hx,tx,hy,ty) \
|
|
p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
|
|
p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
|
|
z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;
|
|
/* Exact multiplication of two single-length floating point numbers. */
|
|
/* The macro produces a nearly double-length number (z,zz) (see Dekker) */
|
|
/* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
|
|
/* storage variables of type double. */
|
|
|
|
# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
|
|
p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
|
|
p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
|
|
p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
|
|
|
|
/* Double-length addition, Dekker. The macro produces a double-length */
|
|
/* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
|
|
/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
|
|
/* are assumed to be double-length numbers. r,s are temporary */
|
|
/* storage variables of type double. */
|
|
|
|
#define ADD2(x,xx,y,yy,z,zz,r,s) \
|
|
r=(x)+(y); s=(ABS(x)>ABS(y)) ? \
|
|
(((((x)-r)+(y))+(yy))+(xx)) : \
|
|
(((((y)-r)+(x))+(xx))+(yy)); \
|
|
z=r+s; zz=(r-z)+s;
|
|
|
|
|
|
/* Double-length subtraction, Dekker. The macro produces a double-length */
|
|
/* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
|
|
/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
|
|
/* are assumed to be double-length numbers. r,s are temporary */
|
|
/* storage variables of type double. */
|
|
|
|
#define SUB2(x,xx,y,yy,z,zz,r,s) \
|
|
r=(x)-(y); s=(ABS(x)>ABS(y)) ? \
|
|
(((((x)-r)-(y))-(yy))+(xx)) : \
|
|
((((x)-((y)+r))+(xx))-(yy)); \
|
|
z=r+s; zz=(r-z)+s;
|
|
|
|
|
|
/* Double-length multiplication, Dekker. The macro produces a double-length */
|
|
/* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
|
|
/* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
|
|
/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
|
|
/* temporary storage variables of type double. */
|
|
|
|
#define MUL2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc) \
|
|
MUL12(x,y,c,cc,p,hx,tx,hy,ty,q) \
|
|
cc=((x)*(yy)+(xx)*(y))+cc; z=c+cc; zz=(c-z)+cc;
|
|
|
|
__STATIC_INLINE int32_t __SSAT_31(int32_t x)
|
|
{
|
|
int32_t res = x;
|
|
if (x > 0x3fffffff) {
|
|
res = 0x3fffffff;
|
|
} else if (x < -1073741824) {
|
|
res = -1073741824;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t __SSAT_16(int32_t x)
|
|
{
|
|
int32_t res = x;
|
|
if (x > 0x7fff) {
|
|
res = 0x7fff;
|
|
} else if (x < -32768) {
|
|
res = -32768;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t __SSAT_8(int32_t x)
|
|
{
|
|
int32_t res = x;
|
|
if (x > 0x7f) {
|
|
res = 0x7f;
|
|
} else if (x < -128) {
|
|
res = -128;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
#ifdef CSKY_SIMD
|
|
/* SMMLAR */
|
|
__STATIC_INLINE int32_t multAcc_32x32_keep32_R(int32_t a, int32_t x, int32_t y)
|
|
{
|
|
__ASM volatile("mula.s32.rhs %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y) : "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
/* SMMLSR */
|
|
__STATIC_INLINE int32_t multSub_32x32_keep32_R(int32_t a, int32_t x, int32_t y)
|
|
{
|
|
__ASM volatile("muls.s32.rhs %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
/* SMMULR */
|
|
__STATIC_INLINE int32_t mult_32x32_keep32_R(int32_t x, int32_t y)
|
|
{
|
|
int32_t a;
|
|
__ASM volatile("mul.s32.rh %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
/* SMMLA */
|
|
__STATIC_INLINE int32_t multAcc_32x32_keep32(int32_t a, int32_t x, int32_t y)
|
|
{
|
|
__ASM volatile("mula.s32.hs %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
/* SMMLS */
|
|
__STATIC_INLINE int32_t multSub_32x32_keep32(int32_t a, int32_t x, int32_t y)
|
|
{
|
|
__ASM volatile("muls.s32.hs %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
/* SMMUL */
|
|
__STATIC_INLINE int32_t mult_32x32_keep32(int32_t x, int32_t y)
|
|
{
|
|
int32_t a;
|
|
__ASM volatile("mul.s32.h %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t multAcc_16x16_keep32(int32_t a, int16_t x, int16_t y)
|
|
{
|
|
__ASM volatile("mulall.s16 %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int64_t multAcc_16x16_keep64(int64_t a, int16_t x, int16_t y)
|
|
{
|
|
__ASM volatile("mulall.s16.e %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int64_t mult_32x32_keep64(int32_t x, int32_t y)
|
|
{
|
|
int64_t a;
|
|
__ASM volatile("mul.s32 %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int64_t multAcc_32x32_keep64(int64_t a, int32_t x, int32_t y)
|
|
{
|
|
__ASM volatile("mula.s32 %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_32x32_dext_31(int32_t x, int32_t y)
|
|
{
|
|
int64_t tmp1;
|
|
int32_t tmp2;
|
|
__ASM volatile("mul.s32 %0, %1, %2\n\t"
|
|
"dexti %3, %0, %R0, 31"
|
|
:"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
|
|
return tmp2;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_32x32_dext_30(int32_t x, int32_t y)
|
|
{
|
|
int64_t tmp1;
|
|
int32_t tmp2;
|
|
__ASM volatile("mul.s32 %0, %1, %2\n\t"
|
|
"dexti %3, %0, %R0, 30"
|
|
:"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
|
|
return tmp2;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_32x32_dext_4(int32_t x, int32_t y)
|
|
{
|
|
int64_t tmp1;
|
|
int32_t tmp2;
|
|
__ASM volatile("mul.s32 %0, %1, %2\n\t"
|
|
"dexti %3, %0, %R0, 4"
|
|
:"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
|
|
return tmp2;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_32x32_dext_33(int32_t x, int32_t y)
|
|
{
|
|
int64_t tmp1;
|
|
int32_t tmp2;
|
|
__ASM volatile("mul.s32 %0, %1, %2\n\t"
|
|
"asri %3, %R0, 1"
|
|
:"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
|
|
return tmp2;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t dext_31(int64_t x)
|
|
{
|
|
int32_t tmp1;
|
|
__ASM volatile(
|
|
"dexti %0, %1, %R1, 31"
|
|
:"=r" (tmp1), "=r" (x) : "1" (x));
|
|
return tmp1;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_l16xl16_keep32(int32_t x, int32_t y)
|
|
{
|
|
int32_t a;
|
|
__ASM volatile("mulll.s16 %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_h16xl16_keep32(int32_t x, int32_t y)
|
|
{
|
|
int32_t a;
|
|
__ASM volatile("mulhl.s16 %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
__STATIC_INLINE int32_t mult_h16xh16_keep32(int32_t x, int32_t y)
|
|
{
|
|
int32_t a;
|
|
__ASM volatile("mulhh.s16 %0, %1, %2\n\t"
|
|
:"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
|
|
return a;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/**
|
|
* @brief Error status returned by some functions in the library.
|
|
*/
|
|
|
|
typedef enum
|
|
{
|
|
CSKY_MATH_SUCCESS = 0, /**< No error */
|
|
CSKY_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
|
|
CSKY_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
|
|
CSKY_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
|
|
CSKY_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
|
|
CSKY_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
|
|
CSKY_MATH_TEST_FAILURE = -6 /**< Test Failed */
|
|
} csky_status;
|
|
|
|
/**
|
|
* @brief 8-bit fractional data type in 1.7 format.
|
|
*/
|
|
typedef int8_t q7_t;
|
|
|
|
/**
|
|
* @brief 16-bit fractional data type in 1.15 format.
|
|
*/
|
|
typedef int16_t q15_t;
|
|
|
|
/**
|
|
* @brief 32-bit fractional data type in 1.31 format.
|
|
*/
|
|
typedef int32_t q31_t;
|
|
|
|
/**
|
|
* @brief 64-bit fractional data type in 1.63 format.
|
|
*/
|
|
typedef int64_t q63_t;
|
|
|
|
/**
|
|
* @brief 32-bit floating-point type definition.
|
|
*/
|
|
typedef float float32_t;
|
|
|
|
/**
|
|
* @brief 64-bit floating-point type definition.
|
|
*/
|
|
typedef double float64_t;
|
|
|
|
/**
|
|
* @brief 32-bit fractional complex data type in 1.31 format.
|
|
*/
|
|
typedef struct
|
|
{
|
|
q31_t re;
|
|
q31_t im;
|
|
} cq31_t;
|
|
/**
|
|
* @brief 16-bit fractional complex data type in 1.15 format.
|
|
*/
|
|
typedef struct
|
|
{
|
|
q15_t re;
|
|
q15_t im;
|
|
} cq15_t;
|
|
/**
|
|
* @brief definition to read/write two 16 bit values.
|
|
*/
|
|
#define __SIMD32_TYPE int32_t
|
|
#define CSI_UNUSED __attribute__((unused))
|
|
|
|
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
|
|
#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
|
|
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
|
|
#define __SIMD64(addr) (*(int64_t **) & (addr))
|
|
|
|
#if defined (CSKY_MATH_NO_SIMD)
|
|
/**
|
|
* @brief definition to pack two 16 bit values.
|
|
*/
|
|
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
|
|
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
|
|
#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
|
|
(((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
|
|
|
|
#endif
|
|
|
|
|
|
/**
|
|
* @brief definition to pack four 8 bit values.
|
|
*/
|
|
#ifndef CSKY_MATH_BIG_ENDIAN
|
|
|
|
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
|
|
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
|
|
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
|
|
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
|
|
#else
|
|
|
|
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
|
|
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
|
|
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
|
|
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
|
|
|
|
#endif
|
|
|
|
/**
|
|
* @brief Clips Q63 to Q31 values.
|
|
*/
|
|
static __INLINE q31_t clip_q63_to_q31(
|
|
q63_t x)
|
|
{
|
|
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
|
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
|
|
}
|
|
|
|
/**
|
|
* @brief Instance structure for the Q7 FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
} csky_fir_instance_q7;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
} csky_fir_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
} csky_fir_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
} csky_fir_instance_f32;
|
|
|
|
void csky_fir_q7(
|
|
const csky_fir_instance_q7 * S,
|
|
q7_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_init_q7(
|
|
csky_fir_instance_q7 * S,
|
|
uint16_t numTaps,
|
|
q7_t * pCoeffs,
|
|
q7_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_q15(
|
|
const csky_fir_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_fast_q15(
|
|
const csky_fir_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_init_q15(
|
|
csky_fir_instance_q15 * S,
|
|
uint16_t numTaps,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_q31(
|
|
const csky_fir_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_fast_q31(
|
|
const csky_fir_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_init_q31(
|
|
csky_fir_instance_q31 * S,
|
|
uint16_t numTaps,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_f32(
|
|
const csky_fir_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_init_f32(
|
|
csky_fir_instance_f32 * S,
|
|
uint16_t numTaps,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
|
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
|
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
|
|
} csky_biquad_casd_df1_inst_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
|
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
|
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
|
|
} csky_biquad_casd_df1_inst_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 Biquad cascade filter.
|
|
*/
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
|
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
|
} csky_biquad_casd_df1_inst_f32;
|
|
|
|
void csky_biquad_cascade_df1_q15(
|
|
const csky_biquad_casd_df1_inst_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df1_init_q15(
|
|
csky_biquad_casd_df1_inst_q15 * S,
|
|
uint8_t numStages,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
int8_t postShift);
|
|
|
|
void csky_biquad_cascade_df1_fast_q15(
|
|
const csky_biquad_casd_df1_inst_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df1_q31(
|
|
const csky_biquad_casd_df1_inst_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df1_fast_q31(
|
|
const csky_biquad_casd_df1_inst_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df1_init_q31(
|
|
csky_biquad_casd_df1_inst_q31 * S,
|
|
uint8_t numStages,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
int8_t postShift);
|
|
|
|
void csky_biquad_cascade_df1_f32(
|
|
const csky_biquad_casd_df1_inst_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df1_init_f32(
|
|
csky_biquad_casd_df1_inst_f32 * S,
|
|
uint8_t numStages,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point matrix structure.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows of the matrix. */
|
|
uint16_t numCols; /**< number of columns of the matrix. */
|
|
float32_t *pData; /**< points to the data of the matrix. */
|
|
} csky_matrix_instance_f32;
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point matrix structure.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows of the matrix. */
|
|
uint16_t numCols; /**< number of columns of the matrix. */
|
|
float64_t *pData; /**< points to the data of the matrix. */
|
|
} csky_matrix_instance_f64;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 matrix structure.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows of the matrix. */
|
|
uint16_t numCols; /**< number of columns of the matrix. */
|
|
q15_t *pData; /**< points to the data of the matrix. */
|
|
} csky_matrix_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 matrix structure.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows of the matrix. */
|
|
uint16_t numCols; /**< number of columns of the matrix. */
|
|
q31_t *pData; /**< points to the data of the matrix. */
|
|
} csky_matrix_instance_q31;
|
|
|
|
csky_status csky_mat_add_f32(
|
|
const csky_matrix_instance_f32 * pSrcA,
|
|
const csky_matrix_instance_f32 * pSrcB,
|
|
csky_matrix_instance_f32 * pDst);
|
|
|
|
csky_status csky_mat_add_q15(
|
|
const csky_matrix_instance_q15 * pSrcA,
|
|
const csky_matrix_instance_q15 * pSrcB,
|
|
csky_matrix_instance_q15 * pDst);
|
|
|
|
csky_status csky_mat_add_q31(
|
|
const csky_matrix_instance_q31 * pSrcA,
|
|
const csky_matrix_instance_q31 * pSrcB,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
csky_status csky_mat_cmplx_mult_f32(
|
|
const csky_matrix_instance_f32 * pSrcA,
|
|
const csky_matrix_instance_f32 * pSrcB,
|
|
csky_matrix_instance_f32 * pDst);
|
|
|
|
csky_status csky_mat_cmplx_mult_q15(
|
|
const csky_matrix_instance_q15 * pSrcA,
|
|
const csky_matrix_instance_q15 * pSrcB,
|
|
csky_matrix_instance_q15 * pDst,
|
|
q15_t * pScratch);
|
|
|
|
csky_status csky_mat_cmplx_mult_q31(
|
|
const csky_matrix_instance_q31 * pSrcA,
|
|
const csky_matrix_instance_q31 * pSrcB,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
csky_status csky_mat_trans_f32(
|
|
const csky_matrix_instance_f32 * pSrc,
|
|
csky_matrix_instance_f32 * pDst);
|
|
|
|
csky_status csky_mat_trans_q15(
|
|
const csky_matrix_instance_q15 * pSrc,
|
|
csky_matrix_instance_q15 * pDst);
|
|
|
|
csky_status csky_mat_trans_q31(
|
|
const csky_matrix_instance_q31 * pSrc,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
csky_status csky_mat_mult_f32(
|
|
const csky_matrix_instance_f32 * pSrcA,
|
|
const csky_matrix_instance_f32 * pSrcB,
|
|
csky_matrix_instance_f32 * pDst);
|
|
|
|
csky_status csky_mat_mult_q15(
|
|
const csky_matrix_instance_q15 * pSrcA,
|
|
const csky_matrix_instance_q15 * pSrcB,
|
|
csky_matrix_instance_q15 * pDst,
|
|
q15_t * pState);
|
|
|
|
csky_status csky_mat_mult_fast_q15(
|
|
const csky_matrix_instance_q15 * pSrcA,
|
|
const csky_matrix_instance_q15 * pSrcB,
|
|
csky_matrix_instance_q15 * pDst,
|
|
q15_t * pState);
|
|
|
|
csky_status csky_mat_mult_q31(
|
|
const csky_matrix_instance_q31 * pSrcA,
|
|
const csky_matrix_instance_q31 * pSrcB,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
csky_status csky_mat_mult_fast_q31(
|
|
const csky_matrix_instance_q31 * pSrcA,
|
|
const csky_matrix_instance_q31 * pSrcB,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
csky_status csky_mat_sub_f32(
|
|
const csky_matrix_instance_f32 * pSrcA,
|
|
const csky_matrix_instance_f32 * pSrcB,
|
|
csky_matrix_instance_f32 * pDst);
|
|
|
|
csky_status csky_mat_sub_q15(
|
|
const csky_matrix_instance_q15 * pSrcA,
|
|
const csky_matrix_instance_q15 * pSrcB,
|
|
csky_matrix_instance_q15 * pDst);
|
|
|
|
csky_status csky_mat_sub_q31(
|
|
const csky_matrix_instance_q31 * pSrcA,
|
|
const csky_matrix_instance_q31 * pSrcB,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
csky_status csky_mat_scale_f32(
|
|
const csky_matrix_instance_f32 * pSrc,
|
|
float32_t scale,
|
|
csky_matrix_instance_f32 * pDst);
|
|
|
|
csky_status csky_mat_scale_q15(
|
|
const csky_matrix_instance_q15 * pSrc,
|
|
q15_t scaleFract,
|
|
int32_t shift,
|
|
csky_matrix_instance_q15 * pDst);
|
|
|
|
csky_status csky_mat_scale_q31(
|
|
const csky_matrix_instance_q31 * pSrc,
|
|
q31_t scaleFract,
|
|
int32_t shift,
|
|
csky_matrix_instance_q31 * pDst);
|
|
|
|
void csky_mat_init_q31(
|
|
csky_matrix_instance_q31 * S,
|
|
uint16_t nRows,
|
|
uint16_t nColumns,
|
|
q31_t * pData);
|
|
|
|
void csky_mat_init_q15(
|
|
csky_matrix_instance_q15 * S,
|
|
uint16_t nRows,
|
|
uint16_t nColumns,
|
|
q15_t * pData);
|
|
|
|
void csky_mat_init_f32(
|
|
csky_matrix_instance_f32 * S,
|
|
uint16_t nRows,
|
|
uint16_t nColumns,
|
|
float32_t * pData);
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 PID Control.
|
|
*/
|
|
typedef struct
|
|
{
|
|
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
|
q15_t A1;
|
|
q15_t A2;
|
|
q15_t state[3]; /**< The state array of length 3. */
|
|
q15_t Kp; /**< The proportional gain. */
|
|
q15_t Ki; /**< The integral gain. */
|
|
q15_t Kd; /**< The derivative gain. */
|
|
} csky_pid_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 PID Control.
|
|
*/
|
|
typedef struct
|
|
{
|
|
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
|
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
|
q31_t A2; /**< The derived gain, A2 = Kd . */
|
|
q31_t state[3]; /**< The state array of length 3. */
|
|
q31_t Kp; /**< The proportional gain. */
|
|
q31_t Ki; /**< The integral gain. */
|
|
q31_t Kd; /**< The derivative gain. */
|
|
} csky_pid_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point PID Control.
|
|
*/
|
|
typedef struct
|
|
{
|
|
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
|
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
|
float32_t A2; /**< The derived gain, A2 = Kd . */
|
|
float32_t state[3]; /**< The state array of length 3. */
|
|
float32_t Kp; /**< The proportional gain. */
|
|
float32_t Ki; /**< The integral gain. */
|
|
float32_t Kd; /**< The derivative gain. */
|
|
} csky_pid_instance_f32;
|
|
|
|
void csky_pid_init_f32(
|
|
csky_pid_instance_f32 * S,
|
|
int32_t resetStateFlag);
|
|
|
|
void csky_pid_reset_f32(
|
|
csky_pid_instance_f32 * S);
|
|
|
|
void csky_pid_init_q31(
|
|
csky_pid_instance_q31 * S,
|
|
int32_t resetStateFlag);
|
|
|
|
void csky_pid_reset_q31(
|
|
csky_pid_instance_q31 * S);
|
|
|
|
void csky_pid_init_q15(
|
|
csky_pid_instance_q15 * S,
|
|
int32_t resetStateFlag);
|
|
|
|
void csky_pid_reset_q15(
|
|
csky_pid_instance_q15 * S);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point Linear Interpolate function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32_t nValues; /**< nValues */
|
|
float32_t x1; /**< x1 */
|
|
float32_t xSpacing; /**< xSpacing */
|
|
float32_t *pYData; /**< pointer to the table of Y values */
|
|
} csky_linear_interp_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point bilinear interpolation function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows in the data table. */
|
|
uint16_t numCols; /**< number of columns in the data table. */
|
|
float32_t *pData; /**< points to the data table. */
|
|
} csky_bilinear_interp_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 bilinear interpolation function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows in the data table. */
|
|
uint16_t numCols; /**< number of columns in the data table. */
|
|
q31_t *pData; /**< points to the data table. */
|
|
} csky_bilinear_interp_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 bilinear interpolation function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows in the data table. */
|
|
uint16_t numCols; /**< number of columns in the data table. */
|
|
q15_t *pData; /**< points to the data table. */
|
|
} csky_bilinear_interp_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 bilinear interpolation function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numRows; /**< number of rows in the data table. */
|
|
uint16_t numCols; /**< number of columns in the data table. */
|
|
q7_t *pData; /**< points to the data table. */
|
|
} csky_bilinear_interp_instance_q7;
|
|
|
|
void csky_mult_q7(
|
|
q7_t * pSrcA,
|
|
q7_t * pSrcB,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_mult_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_mult_rnd_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_mult_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_mult_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
|
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
} csky_cfft_radix2_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
} csky_cfft_radix4_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
} csky_cfft_radix2_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
} csky_cfft_radix4_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
float32_t onebyfftLen; /**< value of 1/fftLen. */
|
|
} csky_cfft_radix2_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
float32_t onebyfftLen; /**< value of 1/fftLen. */
|
|
} csky_cfft_radix4_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t bitRevLength; /**< bit reversal table length. */
|
|
} csky_cfft_instance_q15;
|
|
|
|
void csky_cfft_q15(
|
|
const csky_cfft_instance_q15 * S,
|
|
q15_t * p1,
|
|
uint8_t ifftFlag,
|
|
uint8_t bitReverseFlag);
|
|
|
|
/**
|
|
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t bitRevLength; /**< bit reversal table length. */
|
|
} csky_cfft_instance_q31;
|
|
|
|
void csky_cfft_q31(
|
|
const csky_cfft_instance_q31 * S,
|
|
q31_t * p1,
|
|
uint8_t ifftFlag,
|
|
uint8_t bitReverseFlag);
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t fftLen; /**< length of the FFT. */
|
|
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
uint16_t bitRevLength; /**< bit reversal table length. */
|
|
} csky_cfft_instance_f32;
|
|
|
|
void csky_cfft_f32(
|
|
const csky_cfft_instance_f32 * S,
|
|
float32_t * p1,
|
|
uint8_t ifftFlag,
|
|
uint8_t bitReverseFlag);
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 RFFT/RIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32_t fftLenReal; /**< length of the real FFT. */
|
|
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
|
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
|
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
|
const csky_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
|
} csky_rfft_instance_q15;
|
|
|
|
csky_status csky_rfft_init_q15(
|
|
csky_rfft_instance_q15 * S,
|
|
uint32_t fftLenReal,
|
|
uint32_t ifftFlagR,
|
|
uint32_t bitReverseFlag);
|
|
|
|
void csky_rfft_q15(
|
|
const csky_rfft_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst);
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 RFFT/RIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32_t fftLenReal; /**< length of the real FFT. */
|
|
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
|
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
|
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
|
const csky_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
|
} csky_rfft_instance_q31;
|
|
|
|
csky_status csky_rfft_init_q31(
|
|
csky_rfft_instance_q31 * S,
|
|
uint32_t fftLenReal,
|
|
uint32_t ifftFlagR,
|
|
uint32_t bitReverseFlag);
|
|
|
|
void csky_rfft_q31(
|
|
const csky_rfft_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst);
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point RFFT/RIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint32_t fftLenReal; /**< length of the real FFT. */
|
|
uint16_t fftLenBy2; /**< length of the complex FFT. */
|
|
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
|
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
|
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
|
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
|
csky_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
|
} csky_rfft_instance_f32;
|
|
|
|
csky_status csky_rfft_init_f32(
|
|
csky_rfft_instance_f32 * S,
|
|
csky_cfft_radix4_instance_f32 * S_CFFT,
|
|
uint32_t fftLenReal,
|
|
uint32_t ifftFlagR,
|
|
uint32_t bitReverseFlag);
|
|
|
|
void csky_rfft_f32(
|
|
const csky_rfft_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst);
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point RFFT/RIFFT function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
csky_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
|
|
uint16_t fftLenRFFT; /**< length of the real sequence */
|
|
float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
|
|
} csky_rfft_fast_instance_f32 ;
|
|
|
|
csky_status csky_rfft_fast_init_f32 (
|
|
csky_rfft_fast_instance_f32 * S,
|
|
uint16_t fftLen);
|
|
|
|
void csky_rfft_fast_f32(
|
|
csky_rfft_fast_instance_f32 * S,
|
|
float32_t * p, float32_t * pOut,
|
|
uint8_t ifftFlag);
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point DCT4/IDCT4 function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t N; /**< length of the DCT4. */
|
|
uint16_t Nby2; /**< half of the length of the DCT4. */
|
|
float32_t normalize; /**< normalizing factor. */
|
|
float32_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
float32_t *pCosFactor; /**< points to the cosFactor table. */
|
|
csky_rfft_fast_instance_f32 *pRfft; /**< points to the real FFT fast instance. */
|
|
csky_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
|
} csky_dct4_instance_f32;
|
|
|
|
csky_status csky_dct4_init_f32(
|
|
csky_dct4_instance_f32 * S,
|
|
csky_rfft_fast_instance_f32 * S_RFFT,
|
|
csky_cfft_radix4_instance_f32 * S_CFFT,
|
|
uint16_t N,
|
|
uint16_t Nby2,
|
|
float32_t normalize);
|
|
|
|
void csky_dct4_f32(
|
|
const csky_dct4_instance_f32 * S,
|
|
float32_t * pState,
|
|
float32_t * pInlineBuffer);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 DCT4/IDCT4 function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t N; /**< length of the DCT4. */
|
|
uint16_t Nby2; /**< half of the length of the DCT4. */
|
|
q31_t normalize; /**< normalizing factor. */
|
|
q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
q31_t *pCosFactor; /**< points to the cosFactor table. */
|
|
csky_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
|
|
csky_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
|
} csky_dct4_instance_q31;
|
|
|
|
csky_status csky_dct4_init_q31(
|
|
csky_dct4_instance_q31 * S,
|
|
csky_rfft_instance_q31 * S_RFFT,
|
|
csky_cfft_radix4_instance_q31 * S_CFFT,
|
|
uint16_t N,
|
|
uint16_t Nby2,
|
|
q31_t normalize);
|
|
|
|
void csky_dct4_q31(
|
|
const csky_dct4_instance_q31 * S,
|
|
q31_t * pState,
|
|
q31_t * pInlineBuffer);
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 DCT4/IDCT4 function.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t N; /**< length of the DCT4. */
|
|
uint16_t Nby2; /**< half of the length of the DCT4. */
|
|
q15_t normalize; /**< normalizing factor. */
|
|
q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
q15_t *pCosFactor; /**< points to the cosFactor table. */
|
|
csky_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
|
|
csky_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
|
} csky_dct4_instance_q15;
|
|
|
|
csky_status csky_dct4_init_q15(
|
|
csky_dct4_instance_q15 * S,
|
|
csky_rfft_instance_q15 * S_RFFT,
|
|
csky_cfft_radix4_instance_q15 * S_CFFT,
|
|
uint16_t N,
|
|
uint16_t Nby2,
|
|
q15_t normalize);
|
|
|
|
void csky_dct4_q15(
|
|
const csky_dct4_instance_q15 * S,
|
|
q15_t * pState,
|
|
q15_t * pInlineBuffer);
|
|
|
|
void csky_add_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_add_q7(
|
|
q7_t * pSrcA,
|
|
q7_t * pSrcB,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_add_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_add_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_sub_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_sub_q7(
|
|
q7_t * pSrcA,
|
|
q7_t * pSrcB,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_sub_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_sub_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_scale_f32(
|
|
float32_t * pSrc,
|
|
float32_t scale,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_scale_q7(
|
|
q7_t * pSrc,
|
|
q7_t scaleFract,
|
|
int8_t shift,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_scale_q15(
|
|
q15_t * pSrc,
|
|
q15_t scaleFract,
|
|
int8_t shift,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_scale_q31(
|
|
q31_t * pSrc,
|
|
q31_t scaleFract,
|
|
int8_t shift,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_abs_q7(
|
|
q7_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_abs_f32(
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_abs_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_abs_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_abs_max_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_abs_max_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
|
|
void csky_dot_prod_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
uint32_t blockSize,
|
|
float32_t * result);
|
|
|
|
void csky_dot_prod_q7(
|
|
q7_t * pSrcA,
|
|
q7_t * pSrcB,
|
|
uint32_t blockSize,
|
|
q31_t * result);
|
|
|
|
void csky_dot_prod_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
uint32_t blockSize,
|
|
q63_t * result);
|
|
|
|
void csky_dot_prod_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
uint32_t blockSize,
|
|
q63_t * result);
|
|
|
|
void csky_shift_q7(
|
|
q7_t * pSrc,
|
|
int8_t shiftBits,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_shift_q15(
|
|
q15_t * pSrc,
|
|
int8_t shiftBits,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_shift_q31(
|
|
q31_t * pSrc,
|
|
int8_t shiftBits,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_offset_f32(
|
|
float32_t * pSrc,
|
|
float32_t offset,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_offset_q7(
|
|
q7_t * pSrc,
|
|
q7_t offset,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_offset_q15(
|
|
q15_t * pSrc,
|
|
q15_t offset,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_offset_q31(
|
|
q31_t * pSrc,
|
|
q31_t offset,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_negate_f32(
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_negate_q7(
|
|
q7_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_negate_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_negate_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_copy_f32(
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_copy_q7(
|
|
q7_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_copy_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_copy_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fill_f32(
|
|
float32_t value,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fill_q7(
|
|
q7_t value,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fill_q15(
|
|
q15_t value,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fill_q31(
|
|
q31_t value,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_conv_f32(
|
|
float32_t * pSrcA,
|
|
uint32_t srcALen,
|
|
float32_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
float32_t * pDst);
|
|
|
|
void csky_conv_opt_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
void csky_conv_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst);
|
|
|
|
void csky_conv_fast_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst);
|
|
|
|
void csky_conv_fast_opt_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
void csky_conv_q31(
|
|
q31_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q31_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q31_t * pDst);
|
|
|
|
void csky_conv_fast_q31(
|
|
q31_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q31_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q31_t * pDst);
|
|
|
|
void csky_conv_opt_q7(
|
|
q7_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q7_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q7_t * pDst,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
void csky_conv_q7(
|
|
q7_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q7_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q7_t * pDst);
|
|
|
|
csky_status csky_conv_partial_f32(
|
|
float32_t * pSrcA,
|
|
uint32_t srcALen,
|
|
float32_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
float32_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints);
|
|
|
|
csky_status csky_conv_partial_opt_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
csky_status csky_conv_partial_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints);
|
|
|
|
csky_status csky_conv_partial_fast_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints);
|
|
|
|
csky_status csky_conv_partial_fast_opt_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
csky_status csky_conv_partial_q31(
|
|
q31_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q31_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q31_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints);
|
|
|
|
csky_status csky_conv_partial_fast_q31(
|
|
q31_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q31_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q31_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints);
|
|
|
|
csky_status csky_conv_partial_opt_q7(
|
|
q7_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q7_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q7_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
csky_status csky_conv_partial_q7(
|
|
q7_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q7_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q7_t * pDst,
|
|
uint32_t firstIndex,
|
|
uint32_t numPoints);
|
|
|
|
/**
|
|
* functions for the yunVoice functions.
|
|
*/
|
|
q15_t csky_dsp_lib_vec_max_abs16(
|
|
q15_t * A,
|
|
uint32_t N);
|
|
|
|
q31_t csky_dsp_lib_vec_max_abs32(
|
|
q31_t * A,
|
|
uint32_t N);
|
|
|
|
void csky_dsp_lib_vec_abs16(
|
|
q15_t * A,
|
|
uint32_t N,
|
|
q15_t * C);
|
|
|
|
void csky_dsp_lib_vec_abs32(
|
|
q31_t * A,
|
|
uint32_t N,
|
|
q31_t * C);
|
|
|
|
void csky_dsp_lib_vec_add16(
|
|
q15_t * A,
|
|
q15_t * B,
|
|
uint32_t N,
|
|
q15_t * C);
|
|
|
|
void csky_dsp_lib_vec_add32(
|
|
q31_t * A,
|
|
q31_t * B,
|
|
uint32_t N,
|
|
q31_t * C);
|
|
|
|
void csky_dsp_lib_vec_cx_conj_q15(
|
|
q15_t * A,
|
|
uint32_t N,
|
|
q15_t * B);
|
|
|
|
void csky_dsp_lib_vec_cx_conj_q31(
|
|
q31_t * A,
|
|
uint32_t N,
|
|
q31_t * C);
|
|
|
|
q31_t csky_dsp_lib_vec_dot_q15(
|
|
q15_t * A,
|
|
q15_t * B,
|
|
uint32_t N);
|
|
|
|
q31_t csky_dsp_lib_vec_dot_q31(
|
|
q31_t * A,
|
|
q31_t * B,
|
|
uint32_t N);
|
|
|
|
void csky_dsp_lib_mat_cx_add16(
|
|
cq15_t * A,
|
|
cq15_t * B,
|
|
uint32_t N,
|
|
uint32_t M,
|
|
cq15_t * C);
|
|
|
|
void csky_dsp_lib_mat_cx_add32(
|
|
cq31_t * A,
|
|
cq31_t * B,
|
|
uint32_t N,
|
|
uint32_t M,
|
|
cq31_t * C);
|
|
|
|
void csky_dsp_lib_mat_cx_mul_q15(
|
|
cq15_t * A,
|
|
cq15_t * B,
|
|
uint32_t N,
|
|
uint32_t M,
|
|
uint32_t L,
|
|
cq15_t * C);
|
|
|
|
void csky_dsp_lib_mat_cx_mul_q31(
|
|
cq31_t * A,
|
|
cq31_t * B,
|
|
uint32_t N,
|
|
uint32_t M,
|
|
uint32_t L,
|
|
cq31_t * C);
|
|
|
|
void csky_dsp_lib_mat_cx_sub16(
|
|
cq15_t * A,
|
|
cq15_t * B,
|
|
uint32_t N,
|
|
uint32_t M,
|
|
cq15_t * C);
|
|
|
|
void csky_dsp_lib_mat_cx_sub32(
|
|
cq31_t * A,
|
|
cq31_t * B,
|
|
uint32_t N,
|
|
uint32_t M,
|
|
cq31_t * C);
|
|
|
|
void csky_dsp_lib_vec_mul_q15(
|
|
q15_t * A,
|
|
q15_t * B,
|
|
uint32_t N,
|
|
q15_t * C);
|
|
|
|
void csky_dsp_lib_vec_mul_q31(
|
|
q31_t * A,
|
|
q31_t * B,
|
|
uint32_t N,
|
|
q31_t * C);
|
|
|
|
q31_t csky_dsp_lib_pow_int32(
|
|
q31_t arg_in_x,
|
|
q15_t arg_exp_in_x,
|
|
q31_t arg_in_y,
|
|
q15_t arg_exp_in_y,
|
|
q31_t *arg_exp_out);
|
|
|
|
void csky_dsp_lib_vec_scale_q15(
|
|
q15_t * A,
|
|
q15_t scaleFract,
|
|
int8_t shift,
|
|
q15_t * B,
|
|
uint32_t N);
|
|
|
|
void csky_dsp_lib_vec_scale_q31(
|
|
q31_t * A,
|
|
q31_t scaleFract,
|
|
int8_t shift,
|
|
q31_t * B,
|
|
uint32_t N);
|
|
|
|
void csky_dsp_lib_vec_shf16(
|
|
q15_t * A,
|
|
int8_t shift_val,
|
|
uint32_t N,
|
|
q15_t * C);
|
|
|
|
void csky_dsp_lib_vec_shf32(
|
|
q31_t * A,
|
|
q31_t shift_val,
|
|
uint32_t N,
|
|
q31_t * C);
|
|
|
|
q15_t csky_dsp_lib_sqrt_int32(
|
|
q31_t x,
|
|
uint32_t rnd_flag);
|
|
|
|
void csky_dsp_lib_vec_sub16(
|
|
q15_t * A,
|
|
q15_t * B,
|
|
uint32_t N,
|
|
q15_t * C);
|
|
|
|
void csky_dsp_lib_vec_sub32(
|
|
q31_t * A,
|
|
q31_t * B,
|
|
uint32_t N,
|
|
q31_t * C);
|
|
|
|
q63_t csky_dsp_lib_vec_sum16(
|
|
q15_t * A,
|
|
uint32_t N);
|
|
|
|
q63_t csky_dsp_lib_vec_sum32(
|
|
q31_t * A,
|
|
uint32_t N);
|
|
|
|
void csky_fft_lib_cx16_fft(
|
|
q31_t log2_buf_len,
|
|
q15_t * in_buf,
|
|
q15_t * out_buf,
|
|
const q15_t * twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q15_t * temp_buf,
|
|
q7_t * ScaleShift,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_cx32_fft(
|
|
q31_t log2_buf_len,
|
|
q31_t * in_buf,
|
|
q31_t * out_buf,
|
|
const q31_t * twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q31_t * temp_buf,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_cx16_ifft(
|
|
q31_t log2_buf_len,
|
|
q15_t * in_buf,
|
|
q15_t * out_buf,
|
|
const q15_t * twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q15_t * temp_buf,
|
|
q7_t * ScaleShift,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_cx32_ifft(
|
|
q31_t log2_buf_len,
|
|
q31_t * in_buf,
|
|
q31_t * out_buf,
|
|
const q31_t * twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q31_t * temp_buf,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_int16_fft(
|
|
q31_t log2_buf_len,
|
|
q15_t * in_buf,
|
|
q15_t * out_buf,
|
|
const q15_t * twi_table,
|
|
const q15_t * last_stage_twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q15_t * temp_buf,
|
|
q7_t * ScaleShift,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_int32_fft(
|
|
q31_t log2_buf_len,
|
|
q31_t * in_buf,
|
|
q31_t * out_buf,
|
|
const q31_t * twi_table,
|
|
const q31_t * last_stage_twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q31_t * temp_buf,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_int16_ifft(
|
|
q31_t log2_buf_len,
|
|
q15_t * in_buf,
|
|
q15_t * out_buf,
|
|
const q15_t * twi_table,
|
|
const q15_t * last_stage_twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q15_t * temp_buf,
|
|
q7_t * ScaleShift,
|
|
q31_t br);
|
|
|
|
void csky_fft_lib_int32_ifft(
|
|
q31_t log2_buf_len,
|
|
q31_t * in_buf,
|
|
q31_t * out_buf,
|
|
const q31_t * twi_table,
|
|
const q31_t * last_stage_twi_table,
|
|
const uint16_t * bitrev_tbl,
|
|
q31_t * temp_buf,
|
|
q31_t br);
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 FIR decimator.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t M; /**< decimation factor. */
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
} csky_fir_decimate_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 FIR decimator.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t M; /**< decimation factor. */
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
} csky_fir_decimate_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point FIR decimator.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t M; /**< decimation factor. */
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
} csky_fir_decimate_instance_f32;
|
|
|
|
void csky_fir_decimate_f32(
|
|
const csky_fir_decimate_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_decimate_init_f32(
|
|
csky_fir_decimate_instance_f32 * S,
|
|
uint16_t numTaps,
|
|
uint8_t M,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_decimate_q15(
|
|
const csky_fir_decimate_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_decimate_fast_q15(
|
|
const csky_fir_decimate_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_decimate_init_q15(
|
|
csky_fir_decimate_instance_q15 * S,
|
|
uint16_t numTaps,
|
|
uint8_t M,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_decimate_q31(
|
|
const csky_fir_decimate_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_decimate_fast_q31(
|
|
csky_fir_decimate_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_decimate_init_q31(
|
|
csky_fir_decimate_instance_q31 * S,
|
|
uint16_t numTaps,
|
|
uint8_t M,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 FIR interpolator.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t L; /**< upsample factor. */
|
|
uint16_t phaseLength; /**< length of each polyphase filter component. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
|
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
|
|
} csky_fir_interpolate_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 FIR interpolator.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t L; /**< upsample factor. */
|
|
uint16_t phaseLength; /**< length of each polyphase filter component. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
|
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
|
|
} csky_fir_interpolate_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point FIR interpolator.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t L; /**< upsample factor. */
|
|
uint16_t phaseLength; /**< length of each polyphase filter component. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
|
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
|
|
} csky_fir_interpolate_instance_f32;
|
|
|
|
void csky_fir_interpolate_q15(
|
|
const csky_fir_interpolate_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_interpolate_init_q15(
|
|
csky_fir_interpolate_instance_q15 * S,
|
|
uint8_t L,
|
|
uint16_t numTaps,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_interpolate_q31(
|
|
const csky_fir_interpolate_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_interpolate_init_q31(
|
|
csky_fir_interpolate_instance_q31 * S,
|
|
uint8_t L,
|
|
uint16_t numTaps,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_interpolate_f32(
|
|
const csky_fir_interpolate_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
csky_status csky_fir_interpolate_init_f32(
|
|
csky_fir_interpolate_instance_f32 * S,
|
|
uint8_t L,
|
|
uint16_t numTaps,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the high precision Q31 Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
|
|
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
|
|
} csky_biquad_cas_df1_32x64_ins_q31;
|
|
|
|
void csky_biquad_cas_df1_32x64_q31(
|
|
const csky_biquad_cas_df1_32x64_ins_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cas_df1_32x64_init_q31(
|
|
csky_biquad_cas_df1_32x64_ins_q31 * S,
|
|
uint8_t numStages,
|
|
q31_t * pCoeffs,
|
|
q63_t * pState,
|
|
uint8_t postShift);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
|
|
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
} csky_biquad_cascade_df2T_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
|
|
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
} csky_biquad_cascade_stereo_df2T_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
|
|
float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
} csky_biquad_cascade_df2T_instance_f64;
|
|
|
|
void csky_biquad_cascade_df2T_f32(
|
|
const csky_biquad_cascade_df2T_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_stereo_df2T_f32(
|
|
const csky_biquad_cascade_stereo_df2T_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df2T_f64(
|
|
const csky_biquad_cascade_df2T_instance_f64 * S,
|
|
float64_t * pSrc,
|
|
float64_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_biquad_cascade_df2T_init_f32(
|
|
csky_biquad_cascade_df2T_instance_f32 * S,
|
|
uint8_t numStages,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState);
|
|
|
|
void csky_biquad_cascade_stereo_df2T_init_f32(
|
|
csky_biquad_cascade_stereo_df2T_instance_f32 * S,
|
|
uint8_t numStages,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState);
|
|
|
|
|
|
void csky_biquad_cascade_df2T_init_f64(
|
|
csky_biquad_cascade_df2T_instance_f64 * S,
|
|
uint8_t numStages,
|
|
float64_t * pCoeffs,
|
|
float64_t * pState);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 FIR lattice filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numStages; /**< number of filter stages. */
|
|
q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
|
} csky_fir_lattice_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 FIR lattice filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numStages; /**< number of filter stages. */
|
|
q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
|
} csky_fir_lattice_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point FIR lattice filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numStages; /**< number of filter stages. */
|
|
float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
|
} csky_fir_lattice_instance_f32;
|
|
|
|
void csky_fir_lattice_init_q15(
|
|
csky_fir_lattice_instance_q15 * S,
|
|
uint16_t numStages,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState);
|
|
|
|
void csky_fir_lattice_q15(
|
|
const csky_fir_lattice_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_lattice_init_q31(
|
|
csky_fir_lattice_instance_q31 * S,
|
|
uint16_t numStages,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState);
|
|
|
|
void csky_fir_lattice_q31(
|
|
const csky_fir_lattice_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_lattice_init_f32(
|
|
csky_fir_lattice_instance_f32 * S,
|
|
uint16_t numStages,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState);
|
|
|
|
void csky_fir_lattice_f32(
|
|
const csky_fir_lattice_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 IIR lattice filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numStages; /**< number of stages in the filter. */
|
|
q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
|
q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
|
q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
|
} csky_iir_lattice_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 IIR lattice filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numStages; /**< number of stages in the filter. */
|
|
q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
|
q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
|
q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
|
} csky_iir_lattice_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point IIR lattice filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numStages; /**< number of stages in the filter. */
|
|
float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
|
float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
|
float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
|
} csky_iir_lattice_instance_f32;
|
|
|
|
void csky_iir_lattice_f32(
|
|
const csky_iir_lattice_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_iir_lattice_init_f32(
|
|
csky_iir_lattice_instance_f32 * S,
|
|
uint16_t numStages,
|
|
float32_t * pkCoeffs,
|
|
float32_t * pvCoeffs,
|
|
float32_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_iir_lattice_q31(
|
|
const csky_iir_lattice_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_iir_lattice_init_q31(
|
|
csky_iir_lattice_instance_q31 * S,
|
|
uint16_t numStages,
|
|
q31_t * pkCoeffs,
|
|
q31_t * pvCoeffs,
|
|
q31_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
void csky_iir_lattice_q15(
|
|
const csky_iir_lattice_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_iir_lattice_init_q15(
|
|
csky_iir_lattice_instance_q15 * S,
|
|
uint16_t numStages,
|
|
q15_t * pkCoeffs,
|
|
q15_t * pvCoeffs,
|
|
q15_t * pState,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point LMS filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
float32_t mu; /**< step size that controls filter coefficient updates. */
|
|
} csky_lms_instance_f32;
|
|
|
|
void csky_lms_f32(
|
|
const csky_lms_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pRef,
|
|
float32_t * pOut,
|
|
float32_t * pErr,
|
|
uint32_t blockSize);
|
|
|
|
void csky_lms_init_f32(
|
|
csky_lms_instance_f32 * S,
|
|
uint16_t numTaps,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState,
|
|
float32_t mu,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 LMS filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
q15_t mu; /**< step size that controls filter coefficient updates. */
|
|
uint32_t postShift; /**< bit shift applied to coefficients. */
|
|
} csky_lms_instance_q15;
|
|
|
|
void csky_lms_init_q15(
|
|
csky_lms_instance_q15 * S,
|
|
uint16_t numTaps,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
q15_t mu,
|
|
uint32_t blockSize,
|
|
uint32_t postShift);
|
|
|
|
void csky_lms_q15(
|
|
const csky_lms_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pRef,
|
|
q15_t * pOut,
|
|
q15_t * pErr,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 LMS filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
q31_t mu; /**< step size that controls filter coefficient updates. */
|
|
uint32_t postShift; /**< bit shift applied to coefficients. */
|
|
} csky_lms_instance_q31;
|
|
|
|
void csky_lms_q31(
|
|
const csky_lms_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pRef,
|
|
q31_t * pOut,
|
|
q31_t * pErr,
|
|
uint32_t blockSize);
|
|
|
|
void csky_lms_init_q31(
|
|
csky_lms_instance_q31 * S,
|
|
uint16_t numTaps,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
q31_t mu,
|
|
uint32_t blockSize,
|
|
uint32_t postShift);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point normalized LMS filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
float32_t mu; /**< step size that control filter coefficient updates. */
|
|
float32_t energy; /**< saves previous frame energy. */
|
|
float32_t x0; /**< saves previous input sample. */
|
|
} csky_lms_norm_instance_f32;
|
|
|
|
void csky_lms_norm_f32(
|
|
csky_lms_norm_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pRef,
|
|
float32_t * pOut,
|
|
float32_t * pErr,
|
|
uint32_t blockSize);
|
|
|
|
void csky_lms_norm_init_f32(
|
|
csky_lms_norm_instance_f32 * S,
|
|
uint16_t numTaps,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState,
|
|
float32_t mu,
|
|
uint32_t blockSize);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 normalized LMS filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
q31_t mu; /**< step size that controls filter coefficient updates. */
|
|
uint8_t postShift; /**< bit shift applied to coefficients. */
|
|
q31_t *recipTable; /**< points to the reciprocal initial value table. */
|
|
q31_t energy; /**< saves previous frame energy. */
|
|
q31_t x0; /**< saves previous input sample. */
|
|
} csky_lms_norm_instance_q31;
|
|
|
|
void csky_lms_norm_q31(
|
|
csky_lms_norm_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pRef,
|
|
q31_t * pOut,
|
|
q31_t * pErr,
|
|
uint32_t blockSize);
|
|
|
|
void csky_lms_norm_init_q31(
|
|
csky_lms_norm_instance_q31 * S,
|
|
uint16_t numTaps,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
q31_t mu,
|
|
uint32_t blockSize,
|
|
uint8_t postShift);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 normalized LMS filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< Number of coefficients in the filter. */
|
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
q15_t mu; /**< step size that controls filter coefficient updates. */
|
|
uint8_t postShift; /**< bit shift applied to coefficients. */
|
|
q15_t *recipTable; /**< Points to the reciprocal initial value table. */
|
|
q15_t energy; /**< saves previous frame energy. */
|
|
q15_t x0; /**< saves previous input sample. */
|
|
} csky_lms_norm_instance_q15;
|
|
|
|
void csky_lms_norm_q15(
|
|
csky_lms_norm_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pRef,
|
|
q15_t * pOut,
|
|
q15_t * pErr,
|
|
uint32_t blockSize);
|
|
|
|
void csky_lms_norm_init_q15(
|
|
csky_lms_norm_instance_q15 * S,
|
|
uint16_t numTaps,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
q15_t mu,
|
|
uint32_t blockSize,
|
|
uint8_t postShift);
|
|
|
|
void csky_correlate_f32(
|
|
float32_t * pSrcA,
|
|
uint32_t srcALen,
|
|
float32_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
float32_t * pDst);
|
|
|
|
void csky_correlate_opt_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
q15_t * pScratch);
|
|
|
|
void csky_correlate_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst);
|
|
|
|
void csky_correlate_fast_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst);
|
|
|
|
void csky_correlate_fast_opt_q15(
|
|
q15_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q15_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q15_t * pDst,
|
|
q15_t * pScratch);
|
|
|
|
void csky_correlate_q31(
|
|
q31_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q31_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q31_t * pDst);
|
|
|
|
void csky_correlate_fast_q31(
|
|
q31_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q31_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q31_t * pDst);
|
|
|
|
void csky_correlate_opt_q7(
|
|
q7_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q7_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q7_t * pDst,
|
|
q15_t * pScratch1,
|
|
q15_t * pScratch2);
|
|
|
|
void csky_correlate_q7(
|
|
q7_t * pSrcA,
|
|
uint32_t srcALen,
|
|
q7_t * pSrcB,
|
|
uint32_t srcBLen,
|
|
q7_t * pDst);
|
|
|
|
|
|
/**
|
|
* @brief Instance structure for the floating-point sparse FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
} csky_fir_sparse_instance_f32;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q31 sparse FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
} csky_fir_sparse_instance_q31;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q15 sparse FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
} csky_fir_sparse_instance_q15;
|
|
|
|
/**
|
|
* @brief Instance structure for the Q7 sparse FIR filter.
|
|
*/
|
|
typedef struct
|
|
{
|
|
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
} csky_fir_sparse_instance_q7;
|
|
|
|
void csky_fir_sparse_f32(
|
|
csky_fir_sparse_instance_f32 * S,
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
float32_t * pScratchIn,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_init_f32(
|
|
csky_fir_sparse_instance_f32 * S,
|
|
uint16_t numTaps,
|
|
float32_t * pCoeffs,
|
|
float32_t * pState,
|
|
int32_t * pTapDelay,
|
|
uint16_t maxDelay,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_q31(
|
|
csky_fir_sparse_instance_q31 * S,
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
q31_t * pScratchIn,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_init_q31(
|
|
csky_fir_sparse_instance_q31 * S,
|
|
uint16_t numTaps,
|
|
q31_t * pCoeffs,
|
|
q31_t * pState,
|
|
int32_t * pTapDelay,
|
|
uint16_t maxDelay,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_q15(
|
|
csky_fir_sparse_instance_q15 * S,
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
q15_t * pScratchIn,
|
|
q31_t * pScratchOut,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_init_q15(
|
|
csky_fir_sparse_instance_q15 * S,
|
|
uint16_t numTaps,
|
|
q15_t * pCoeffs,
|
|
q15_t * pState,
|
|
int32_t * pTapDelay,
|
|
uint16_t maxDelay,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_q7(
|
|
csky_fir_sparse_instance_q7 * S,
|
|
q7_t * pSrc,
|
|
q7_t * pDst,
|
|
q7_t * pScratchIn,
|
|
q31_t * pScratchOut,
|
|
uint32_t blockSize);
|
|
|
|
void csky_fir_sparse_init_q7(
|
|
csky_fir_sparse_instance_q7 * S,
|
|
uint16_t numTaps,
|
|
q7_t * pCoeffs,
|
|
q7_t * pState,
|
|
int32_t * pTapDelay,
|
|
uint16_t maxDelay,
|
|
uint32_t blockSize);
|
|
|
|
void csky_sin_cos_f32(
|
|
float32_t theta,
|
|
float32_t * pSinVal,
|
|
float32_t * pCosVal);
|
|
|
|
void csky_sin_cos_q31(
|
|
q31_t theta,
|
|
q31_t * pSinVal,
|
|
q31_t * pCosVal);
|
|
|
|
void csky_cmplx_conj_f32(
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_conj_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_conj_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mag_squared_f32(
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mag_squared_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mag_squared_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
/**
|
|
* @ingroup groupController
|
|
*/
|
|
|
|
/**
|
|
* @defgroup PID PID Motor Control
|
|
*
|
|
* A Proportional Integral Derivative (PID) controller is a generic feedback control
|
|
* loop mechanism widely used in industrial control systems.
|
|
* A PID controller is the most commonly used type of feedback controller.
|
|
*
|
|
* This set of functions implements (PID) controllers
|
|
* for Q15, Q31, and floating-point data types. The functions operate on a single sample
|
|
* of data and each call to the function returns a single processed value.
|
|
* <code>S</code> points to an instance of the PID control data structure. <code>in</code>
|
|
* is the input sample value. The functions return the output value.
|
|
*
|
|
* \par Algorithm:
|
|
* <pre>
|
|
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
|
|
* A0 = Kp + Ki + Kd
|
|
* A1 = (-Kp ) - (2 * Kd )
|
|
* A2 = Kd </pre>
|
|
*
|
|
* \par
|
|
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
|
|
*
|
|
* \par
|
|
* \image html PID.gif "Proportional Integral Derivative Controller"
|
|
*
|
|
* \par
|
|
* The PID controller calculates an "error" value as the difference between
|
|
* the measured output and the reference input.
|
|
* The controller attempts to minimize the error by adjusting the process control inputs.
|
|
* The proportional value determines the reaction to the current error,
|
|
* the integral value determines the reaction based on the sum of recent errors,
|
|
* and the derivative value determines the reaction based on the rate at which the error has been changing.
|
|
*
|
|
* \par Instance Structure
|
|
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
|
|
* A separate instance structure must be defined for each PID Controller.
|
|
* There are separate instance structure declarations for each of the 3 supported data types.
|
|
*
|
|
* \par Reset Functions
|
|
* There is also an associated reset function for each data type which clears the state array.
|
|
*
|
|
* \par Initialization Functions
|
|
* There is also an associated initialization function for each data type.
|
|
* The initialization function performs the following operations:
|
|
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
|
|
* - Zeros out the values in the state buffer.
|
|
*
|
|
* \par
|
|
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
|
|
*
|
|
* \par Fixed-Point Behavior
|
|
* Care must be taken when using the fixed-point versions of the PID Controller functions.
|
|
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
|
|
* Refer to the function specific documentation below for usage guidelines.
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup PID
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Process function for the floating-point PID Control.
|
|
* @param[in,out] S is an instance of the floating-point PID Control structure
|
|
* @param[in] in input sample to process
|
|
* @return out processed output sample.
|
|
*/
|
|
__STATIC_INLINE float32_t csky_pid_f32(
|
|
csky_pid_instance_f32 * S,
|
|
float32_t in)
|
|
{
|
|
float32_t out;
|
|
|
|
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
|
|
out = (S->A0 * in) +
|
|
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
|
|
|
|
/* Update state */
|
|
S->state[1] = S->state[0];
|
|
S->state[0] = in;
|
|
S->state[2] = out;
|
|
|
|
/* return to application */
|
|
return (out);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of PID group
|
|
|
|
|
|
/**
|
|
* @addtogroup PID
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Process function for the Q31 PID Control.
|
|
* @param[in,out] S points to an instance of the Q31 PID Control structure
|
|
* @param[in] in input sample to process
|
|
* @return out processed output sample.
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is implemented using an internal 64-bit accumulator.
|
|
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
|
* Thus, if the accumulator result overflows it wraps around rather than clip.
|
|
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
|
|
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
|
|
*/
|
|
__STATIC_INLINE q31_t csky_pid_q31(
|
|
csky_pid_instance_q31 * S,
|
|
q31_t in)
|
|
{
|
|
q63_t acc;
|
|
q31_t out;
|
|
|
|
#ifdef CSKY_SIMD
|
|
/* acc = A0 * x[n] */
|
|
acc = mult_32x32_keep64(S->A0, in);
|
|
|
|
/* acc += A1 * x[n-1] */
|
|
acc = multAcc_32x32_keep64(acc, S->A1, S->state[0]);
|
|
|
|
/* acc += A2 * x[n-2] */
|
|
acc = multAcc_32x32_keep64(acc, S->A2, S->state[1]);
|
|
|
|
/* convert output to 1.31 format to add y[n-1] */
|
|
out = dext_31(acc);
|
|
#else
|
|
/* acc = A0 * x[n] */
|
|
acc = (q63_t) S->A0 * in;
|
|
|
|
/* acc += A1 * x[n-1] */
|
|
acc += (q63_t) S->A1 * S->state[0];
|
|
|
|
/* acc += A2 * x[n-2] */
|
|
acc += (q63_t) S->A2 * S->state[1];
|
|
|
|
/* convert output to 1.31 format to add y[n-1] */
|
|
out = (q31_t) (acc >> 31u);
|
|
#endif
|
|
|
|
/* out += y[n-1] */
|
|
out += S->state[2];
|
|
|
|
/* Update state */
|
|
S->state[1] = S->state[0];
|
|
S->state[0] = in;
|
|
S->state[2] = out;
|
|
|
|
/* return to application */
|
|
return (out);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of PID group
|
|
|
|
/**
|
|
* @addtogroup PID
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Process function for the Q15 PID Control.
|
|
* @param[in,out] S points to an instance of the Q15 PID Control structure
|
|
* @param[in] in input sample to process
|
|
* @return out processed output sample.
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is implemented using a 64-bit internal accumulator.
|
|
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
|
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
|
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
|
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
|
|
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
|
|
*/
|
|
__STATIC_INLINE q15_t csky_pid_q15(
|
|
csky_pid_instance_q15 * S,
|
|
q15_t in)
|
|
{
|
|
q63_t acc;
|
|
q15_t out;
|
|
|
|
/* acc = A0 * x[n] */
|
|
acc = ((q31_t) S->A0) * in;
|
|
|
|
/* acc += A1 * x[n-1] + A2 * x[n-2] */
|
|
acc += (q31_t) S->A1 * S->state[0];
|
|
acc += (q31_t) S->A2 * S->state[1];
|
|
|
|
/* acc += y[n-1] */
|
|
acc += (q31_t) S->state[2] << 15;
|
|
|
|
/* saturate the output */
|
|
out = (q15_t) (__SSAT_16((acc >> 15)));
|
|
|
|
/* Update state */
|
|
S->state[1] = S->state[0];
|
|
S->state[0] = in;
|
|
S->state[2] = out;
|
|
|
|
/* return to application */
|
|
return (out);
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of PID group
|
|
|
|
csky_status csky_mat_inverse_f32(
|
|
const csky_matrix_instance_f32 * src,
|
|
csky_matrix_instance_f32 * dst);
|
|
|
|
csky_status csky_mat_inverse_f64(
|
|
const csky_matrix_instance_f64 * src,
|
|
csky_matrix_instance_f64 * dst);
|
|
|
|
/**
|
|
* @ingroup groupController
|
|
*/
|
|
|
|
/**
|
|
* @defgroup clarke Vector Clarke Transform
|
|
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
|
|
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
|
|
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
|
|
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
|
|
* \image html clarke.gif Stator current space vector and its components in (a,b).
|
|
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
|
|
* can be calculated using only <code>Ia</code> and <code>Ib</code>.
|
|
*
|
|
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
* The library provides separate functions for Q31 and floating-point data types.
|
|
* \par Algorithm
|
|
* \image html clarkeFormula.gif
|
|
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
|
|
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
|
|
* \par Fixed-Point Behavior
|
|
* Care must be taken when using the Q31 version of the Clarke transform.
|
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
* Refer to the function specific documentation below for usage guidelines.
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup clarke
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
*
|
|
* @brief Floating-point Clarke transform
|
|
* @param[in] Ia input three-phase coordinate a
|
|
* @param[in] Ib input three-phase coordinate b
|
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
*/
|
|
__STATIC_INLINE void csky_clarke_f32(
|
|
float32_t Ia,
|
|
float32_t Ib,
|
|
float32_t * pIalpha,
|
|
float32_t * pIbeta)
|
|
{
|
|
/* Calculate pIalpha using the equation, pIalpha = Ia */
|
|
*pIalpha = Ia;
|
|
|
|
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
|
|
*pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of clarke group
|
|
|
|
|
|
/**
|
|
* @addtogroup clarke
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Clarke transform for Q31 version
|
|
* @param[in] Ia input three-phase coordinate a
|
|
* @param[in] Ib input three-phase coordinate b
|
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is implemented using an internal 32-bit accumulator.
|
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
* There is saturation on the addition, hence there is no risk of overflow.
|
|
*/
|
|
__STATIC_INLINE void csky_clarke_q31(
|
|
q31_t Ia,
|
|
q31_t Ib,
|
|
q31_t * pIalpha,
|
|
q31_t * pIbeta)
|
|
{
|
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
|
|
/* Calculating pIalpha from Ia by equation pIalpha = Ia */
|
|
*pIalpha = Ia;
|
|
|
|
#ifdef CSKY_SIMD
|
|
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
|
|
product1 = mult_32x32_dext_30(Ia, 0x24F34E8B);
|
|
|
|
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */
|
|
product2 = mult_32x32_dext_30(Ib, 0x49E69D16);
|
|
#else
|
|
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
|
|
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
|
|
|
|
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */
|
|
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
|
|
#endif
|
|
|
|
/* pIbeta is calculated by adding the intermediate products */
|
|
*pIbeta = __QADD(product1, product2);
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of clarke group
|
|
|
|
void csky_q7_to_q31(
|
|
q7_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
/**
|
|
* @ingroup groupController
|
|
*/
|
|
/**
|
|
* @defgroup inv_clarke Vector Inverse Clarke Transform
|
|
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
|
|
*
|
|
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
* The library provides separate functions for Q31 and floating-point data types.
|
|
* \par Algorithm
|
|
* \image html clarkeInvFormula.gif
|
|
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
|
|
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
|
|
* \par Fixed-Point Behavior
|
|
* Care must be taken when using the Q31 version of the Clarke transform.
|
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
* Refer to the function specific documentation below for usage guidelines.
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup inv_clarke
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Floating-point Inverse Clarke transform
|
|
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
|
* @param[in] Ibeta input two-phase orthogonal vector axis beta
|
|
* @param[out] pIa points to output three-phase coordinate <code>a</code>
|
|
* @param[out] pIb points to output three-phase coordinate <code>b</code>
|
|
*/
|
|
__STATIC_INLINE void csky_inv_clarke_f32(
|
|
float32_t Ialpha,
|
|
float32_t Ibeta,
|
|
float32_t * pIa,
|
|
float32_t * pIb)
|
|
{
|
|
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
|
*pIa = Ialpha;
|
|
|
|
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
|
|
*pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of inv_clarke group
|
|
|
|
/**
|
|
* @addtogroup inv_clarke
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Inverse Clarke transform for Q31 version
|
|
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
|
* @param[in] Ibeta input two-phase orthogonal vector axis beta
|
|
* @param[out] pIa points to output three-phase coordinate <code>a</code>
|
|
* @param[out] pIb points to output three-phase coordinate <code>b</code>
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is implemented using an internal 32-bit accumulator.
|
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
* There is saturation on the subtraction, hence there is no risk of overflow.
|
|
*/
|
|
__STATIC_INLINE void csky_inv_clarke_q31(
|
|
q31_t Ialpha,
|
|
q31_t Ibeta,
|
|
q31_t * pIa,
|
|
q31_t * pIb)
|
|
{
|
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
|
|
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
|
*pIa = Ialpha;
|
|
|
|
#ifdef CSKY_SIMD
|
|
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
|
|
product1 = mult_32x32_dext_31(Ialpha, 0x40000000);
|
|
|
|
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */
|
|
product2 = mult_32x32_dext_31(Ibeta, 0x6ED9EBA1);
|
|
#else
|
|
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
|
|
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
|
|
|
|
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */
|
|
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
|
|
#endif
|
|
|
|
/* pIb is calculated by subtracting the products */
|
|
*pIb = __QSUB(product2, product1);
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of inv_clarke group
|
|
|
|
void csky_q7_to_q15(
|
|
q7_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
/**
|
|
* @ingroup groupController
|
|
*/
|
|
/**
|
|
* @defgroup park Vector Park Transform
|
|
*
|
|
* Forward Park transform converts the input two-coordinate vector to flux and torque components.
|
|
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
|
|
* from the stationary to the moving reference frame and control the spatial relationship between
|
|
* the stator vector current and rotor flux vector.
|
|
* If we consider the d axis aligned with the rotor flux, the diagram below shows the
|
|
* current vector and the relationship from the two reference frames:
|
|
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
|
|
*
|
|
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
* The library provides separate functions for Q31 and floating-point data types.
|
|
* \par Algorithm
|
|
* \image html parkFormula.gif
|
|
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
|
|
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
|
* cosine and sine values of theta (rotor flux position).
|
|
* \par Fixed-Point Behavior
|
|
* Care must be taken when using the Q31 version of the Park transform.
|
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
* Refer to the function specific documentation below for usage guidelines.
|
|
*/
|
|
/**
|
|
* @addtogroup park
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Floating-point Park transform
|
|
* @param[in] Ialpha input two-phase vector coordinate alpha
|
|
* @param[in] Ibeta input two-phase vector coordinate beta
|
|
* @param[out] pId points to output rotor reference frame d
|
|
* @param[out] pIq points to output rotor reference frame q
|
|
* @param[in] sinVal sine value of rotation angle theta
|
|
* @param[in] cosVal cosine value of rotation angle theta
|
|
*
|
|
* The function implements the forward Park transform.
|
|
*
|
|
*/
|
|
__STATIC_INLINE void csky_park_f32(
|
|
float32_t Ialpha,
|
|
float32_t Ibeta,
|
|
float32_t * pId,
|
|
float32_t * pIq,
|
|
float32_t sinVal,
|
|
float32_t cosVal)
|
|
{
|
|
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
|
|
*pId = Ialpha * cosVal + Ibeta * sinVal;
|
|
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
|
|
*pIq = -Ialpha * sinVal + Ibeta * cosVal;
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of park group
|
|
|
|
/**
|
|
* @addtogroup park
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Park transform for Q31 version
|
|
* @param[in] Ialpha input two-phase vector coordinate alpha
|
|
* @param[in] Ibeta input two-phase vector coordinate beta
|
|
* @param[out] pId points to output rotor reference frame d
|
|
* @param[out] pIq points to output rotor reference frame q
|
|
* @param[in] sinVal sine value of rotation angle theta
|
|
* @param[in] cosVal cosine value of rotation angle theta
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is implemented using an internal 32-bit accumulator.
|
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
* There is saturation on the addition and subtraction, hence there is no risk of overflow.
|
|
*/
|
|
__STATIC_INLINE void csky_park_q31(
|
|
q31_t Ialpha,
|
|
q31_t Ibeta,
|
|
q31_t * pId,
|
|
q31_t * pIq,
|
|
q31_t sinVal,
|
|
q31_t cosVal)
|
|
{
|
|
#ifdef CSKY_SIMD
|
|
__ASM volatile(
|
|
"rmul.s32.h t0, %0, %3\n\t"
|
|
"rmul.s32.h t1, %1, %2\n\t"
|
|
"add.s32.s t0, t0, t1\n\t"
|
|
"st.w t0, (%4, 0x0)\n\t"
|
|
"rmul.s32.h t0, %0, %2\n\t"
|
|
"rmul.s32.h t1, %1, %3\n\t"
|
|
"sub.s32.s t1, t1, t0\n\t"
|
|
"st.w t1, (%5, 0x0)\n\t"
|
|
::"r"(Ialpha),"r"(Ibeta),"r"(sinVal),"r"(cosVal),"r"(pId),"r"(pIq)
|
|
:"t0","t1", "memory");
|
|
#else
|
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
|
/* Intermediate product is calculated by (Ialpha * cosVal) */
|
|
product1 = clip_q63_to_q31 (((q63_t) (Ialpha) * (cosVal)) >> 31);
|
|
/* Intermediate product is calculated by (Ibeta * sinVal) */
|
|
product2 = clip_q63_to_q31 (((q63_t) (Ibeta) * (sinVal)) >> 31);
|
|
/* Intermediate product is calculated by (Ialpha * sinVal) */
|
|
product3 = clip_q63_to_q31 (((q63_t) (Ialpha) * (sinVal)) >> 31);
|
|
/* Intermediate product is calculated by (Ibeta * cosVal) */
|
|
product4 = clip_q63_to_q31 (((q63_t) (Ibeta) * (cosVal)) >> 31);
|
|
/* Calculate pId by adding the two intermediate products 1 and 2 */
|
|
*pId = __QADD(product1, product2);
|
|
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */
|
|
*pIq = __QSUB(product4, product3);
|
|
#endif
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of park group
|
|
|
|
void csky_q7_to_float(
|
|
q7_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
/**
|
|
* @ingroup groupController
|
|
*/
|
|
/**
|
|
* @defgroup inv_park Vector Inverse Park transform
|
|
* Inverse Park transform converts the input flux and torque components to two-coordinate vector.
|
|
*
|
|
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
* The library provides separate functions for Q31 and floating-point data types.
|
|
* \par Algorithm
|
|
* \image html parkInvFormula.gif
|
|
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
|
|
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
|
* cosine and sine values of theta (rotor flux position).
|
|
* \par Fixed-Point Behavior
|
|
* Care must be taken when using the Q31 version of the Park transform.
|
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
* Refer to the function specific documentation below for usage guidelines.
|
|
*/
|
|
/**
|
|
* @addtogroup inv_park
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Floating-point Inverse Park transform
|
|
* @param[in] Id input coordinate of rotor reference frame d
|
|
* @param[in] Iq input coordinate of rotor reference frame q
|
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
* @param[in] sinVal sine value of rotation angle theta
|
|
* @param[in] cosVal cosine value of rotation angle theta
|
|
*/
|
|
__STATIC_INLINE void csky_inv_park_f32(
|
|
float32_t Id,
|
|
float32_t Iq,
|
|
float32_t * pIalpha,
|
|
float32_t * pIbeta,
|
|
float32_t sinVal,
|
|
float32_t cosVal)
|
|
{
|
|
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
|
|
*pIalpha = Id * cosVal - Iq * sinVal;
|
|
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
|
|
*pIbeta = Id * sinVal + Iq * cosVal;
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of inv_park group
|
|
|
|
/**
|
|
* @addtogroup inv_park
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Inverse Park transform for Q31 version
|
|
* @param[in] Id input coordinate of rotor reference frame d
|
|
* @param[in] Iq input coordinate of rotor reference frame q
|
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
* @param[in] sinVal sine value of rotation angle theta
|
|
* @param[in] cosVal cosine value of rotation angle theta
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is implemented using an internal 32-bit accumulator.
|
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
* There is saturation on the addition, hence there is no risk of overflow.
|
|
*/
|
|
__STATIC_INLINE void csky_inv_park_q31(
|
|
q31_t Id,
|
|
q31_t Iq,
|
|
q31_t * pIalpha,
|
|
q31_t * pIbeta,
|
|
q31_t sinVal,
|
|
q31_t cosVal)
|
|
{
|
|
#ifdef CSKY_SIMD
|
|
__ASM volatile(
|
|
"rmul.s32.h t0, %0, %3\n\t"
|
|
"rmul.s32.h t1, %1, %2\n\t"
|
|
"sub.s32.s t0, t0, t1\n\t"
|
|
"st.w t0, (%4, 0x0)\n\t"
|
|
"rmul.s32.h t0, %0, %2\n\t"
|
|
"rmul.s32.h t1, %1, %3\n\t"
|
|
"add.s32.s t0, t0, t1\n\t"
|
|
"st.w t0, (%5, 0x0)\n\t"
|
|
::"r"(Id),"r"(Iq),"r"(sinVal),"r"(cosVal),"r"(pIalpha),"r"(pIbeta)
|
|
:"t0","t1", "memory");
|
|
|
|
#else
|
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
|
/* Intermediate product is calculated by (Id * cosVal) */
|
|
product1 = clip_q63_to_q31 (((q63_t) (Id) * (cosVal)) >> 31);
|
|
/* Intermediate product is calculated by (Iq * sinVal) */
|
|
product2 = clip_q63_to_q31 (((q63_t) (Iq) * (sinVal)) >> 31);
|
|
/* Intermediate product is calculated by (Id * sinVal) */
|
|
product3 = clip_q63_to_q31 (((q63_t) (Id) * (sinVal)) >> 31);
|
|
/* Intermediate product is calculated by (Iq * cosVal) */
|
|
product4 = clip_q63_to_q31 (((q63_t) (Iq) * (cosVal)) >> 31);
|
|
/* Calculate pIalpha by using the two intermediate products 1 and 2 */
|
|
*pIalpha = __QSUB(product1, product2);
|
|
/* Calculate pIbeta by using the two intermediate products 3 and 4 */
|
|
*pIbeta = __QADD(product4, product3);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of inv_park group
|
|
|
|
void csky_q31_to_float(
|
|
q31_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
/**
|
|
* @ingroup groupInterpolation
|
|
*/
|
|
/**
|
|
* @defgroup LinearInterpolate Linear Interpolation
|
|
*
|
|
* Linear interpolation is a method of curve fitting using linear polynomials.
|
|
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
|
|
*
|
|
* \par
|
|
* \image html LinearInterp.gif "Linear interpolation"
|
|
*
|
|
* \par
|
|
* A Linear Interpolate function calculates an output value(y), for the input(x)
|
|
* using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
|
|
*
|
|
* \par Algorithm:
|
|
* <pre>
|
|
* y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
|
|
* where x0, x1 are nearest values of input x
|
|
* y0, y1 are nearest values to output y
|
|
* </pre>
|
|
*
|
|
* \par
|
|
* This set of functions implements Linear interpolation process
|
|
* for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
|
|
* sample of data and each call to the function returns a single processed value.
|
|
* <code>S</code> points to an instance of the Linear Interpolate function data structure.
|
|
* <code>x</code> is the input sample value. The functions returns the output value.
|
|
*
|
|
* \par
|
|
* if x is outside of the table boundary, Linear interpolation returns first value of the table
|
|
* if x is below input range and returns last value of table if x is above range.
|
|
*/
|
|
/**
|
|
* @addtogroup LinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Process function for the floating-point Linear Interpolation Function.
|
|
* @param[in,out] S is an instance of the floating-point Linear Interpolation structure
|
|
* @param[in] x input sample to process
|
|
* @return y processed output sample.
|
|
*
|
|
*/
|
|
__STATIC_INLINE float32_t csky_linear_interp_f32(
|
|
csky_linear_interp_instance_f32 * S,
|
|
float32_t x)
|
|
{
|
|
float32_t y;
|
|
float32_t x0, x1; /* Nearest input values */
|
|
float32_t y0, y1; /* Nearest output values */
|
|
float32_t xSpacing = S->xSpacing; /* spacing between input values */
|
|
int32_t i; /* Index variable */
|
|
float32_t *pYData = S->pYData; /* pointer to output table */
|
|
/* Calculation of index */
|
|
i = (int32_t) ((x - S->x1) / xSpacing);
|
|
if(i < 0)
|
|
{
|
|
/* Iniatilize output for below specified range as least output value of table */
|
|
y = pYData[0];
|
|
}
|
|
else if((uint32_t)i >= S->nValues)
|
|
{
|
|
/* Iniatilize output for above specified range as last output value of table */
|
|
y = pYData[S->nValues - 1];
|
|
}
|
|
else
|
|
{
|
|
/* Calculation of nearest input values */
|
|
x0 = S->x1 + i * xSpacing;
|
|
x1 = S->x1 + (i + 1) * xSpacing;
|
|
/* Read of nearest output values */
|
|
y0 = pYData[i];
|
|
y1 = pYData[i + 1];
|
|
/* Calculation of output */
|
|
y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
|
|
}
|
|
/* returns output value */
|
|
return (y);
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of LinearInterpolate group
|
|
|
|
/**
|
|
* @addtogroup LinearInterpolate
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Process function for the Q31 Linear Interpolation Function.
|
|
* @param[in] pYData pointer to Q31 Linear Interpolation table
|
|
* @param[in] x input sample to process
|
|
* @param[in] nValues number of table values
|
|
* @return y processed output sample.
|
|
*
|
|
* \par
|
|
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
|
* This function can support maximum of table size 2^12.
|
|
*
|
|
*/
|
|
__STATIC_INLINE q31_t csky_linear_interp_q31(
|
|
q31_t * pYData,
|
|
q31_t x,
|
|
uint32_t nValues)
|
|
{
|
|
q31_t y; /* output */
|
|
q31_t y0, y1; /* Nearest output values */
|
|
q31_t fract; /* fractional part */
|
|
int32_t index; /* Index to read nearest output values */
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
index = ((x & (q31_t)0xFFF00000) >> 20);
|
|
if(index >= (int32_t)(nValues - 1))
|
|
{
|
|
return (pYData[nValues - 1]);
|
|
}
|
|
else if(index < 0)
|
|
{
|
|
return (pYData[0]);
|
|
}
|
|
else
|
|
{
|
|
/* 20 bits for the fractional part */
|
|
/* shift left by 11 to keep fract in 1.31 format */
|
|
fract = (x & 0x000FFFFF) << 11;
|
|
/* Read two nearest output values from the index in 1.31(q31) format */
|
|
y0 = pYData[index];
|
|
y1 = pYData[index + 1];
|
|
#ifdef CSKY_SIMD
|
|
/* Calculation of y0 * (1-fract) and y is in 2.30 format */
|
|
y = mult_32x32_keep32(y0, (0x7FFFFFFF - fract));
|
|
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
|
|
y = multAcc_32x32_keep32(y, y1, fract);
|
|
#else
|
|
/* Calculation of y0 * (1-fract) and y is in 2.30 format */
|
|
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
|
|
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
|
|
y += ((q31_t) (((q63_t) y1 * fract) >> 32));
|
|
#endif
|
|
/* Convert y to 1.31 format */
|
|
return (y << 1u);
|
|
}
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of LinearInterpolate group
|
|
|
|
/**
|
|
* @addtogroup LinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
*
|
|
* @brief Process function for the Q15 Linear Interpolation Function.
|
|
* @param[in] pYData pointer to Q15 Linear Interpolation table
|
|
* @param[in] x input sample to process
|
|
* @param[in] nValues number of table values
|
|
* @return y processed output sample.
|
|
*
|
|
* \par
|
|
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
|
* This function can support maximum of table size 2^12.
|
|
*
|
|
*/
|
|
__STATIC_INLINE q15_t csky_linear_interp_q15(
|
|
q15_t * pYData,
|
|
q31_t x,
|
|
uint32_t nValues)
|
|
{
|
|
q63_t y; /* output */
|
|
q15_t y0, y1; /* Nearest output values */
|
|
q31_t fract; /* fractional part */
|
|
int32_t index; /* Index to read nearest output values */
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
index = ((x & (int32_t)0xFFF00000) >> 20);
|
|
if(index >= (int32_t)(nValues - 1))
|
|
{
|
|
return (pYData[nValues - 1]);
|
|
}
|
|
else if(index < 0)
|
|
{
|
|
return (pYData[0]);
|
|
}
|
|
else
|
|
{
|
|
/* 20 bits for the fractional part */
|
|
/* fract is in 12.20 format */
|
|
fract = (x & 0x000FFFFF);
|
|
/* Read two nearest output values from the index */
|
|
y0 = pYData[index];
|
|
y1 = pYData[index + 1];
|
|
#ifdef CSKY_SIMD
|
|
/* Calculation of y0 * (1-fract) and y is in 13.35 format */
|
|
y = mult_32x32_keep64(y0, (0xFFFFF - fract));
|
|
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
|
|
y = multAcc_32x32_keep64(y, y1, (fract));
|
|
#else
|
|
/* Calculation of y0 * (1-fract) and y is in 13.35 format */
|
|
y = ((q63_t) y0 * (0xFFFFF - fract));
|
|
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
|
|
y += ((q63_t) y1 * (fract));
|
|
#endif
|
|
/* convert y to 1.15 format */
|
|
return (q15_t) (y >> 20);
|
|
}
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of LinearInterpolate group
|
|
|
|
/**
|
|
* @addtogroup LinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
*
|
|
* @brief Process function for the Q7 Linear Interpolation Function.
|
|
* @param[in] pYData pointer to Q7 Linear Interpolation table
|
|
* @param[in] x input sample to process
|
|
* @param[in] nValues number of table values
|
|
* @return y processed output sample.
|
|
*
|
|
* \par
|
|
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
|
* This function can support maximum of table size 2^12.
|
|
*/
|
|
__STATIC_INLINE q7_t csky_linear_interp_q7(
|
|
q7_t * pYData,
|
|
q31_t x,
|
|
uint32_t nValues)
|
|
{
|
|
q31_t y; /* output */
|
|
q7_t y0, y1; /* Nearest output values */
|
|
q31_t fract; /* fractional part */
|
|
uint32_t index; /* Index to read nearest output values */
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
if (x < 0)
|
|
{
|
|
return (pYData[0]);
|
|
}
|
|
index = (x >> 20) & 0xfff;
|
|
if(index >= (nValues - 1))
|
|
{
|
|
return (pYData[nValues - 1]);
|
|
}
|
|
else
|
|
{
|
|
/* 20 bits for the fractional part */
|
|
/* fract is in 12.20 format */
|
|
fract = (x & 0x000FFFFF);
|
|
/* Read two nearest output values from the index and are in 1.7(q7) format */
|
|
y0 = pYData[index];
|
|
y1 = pYData[index + 1];
|
|
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
|
|
y = ((y0 * (0xFFFFF - fract)));
|
|
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
|
|
y += (y1 * fract);
|
|
/* convert y to 1.7(q7) format */
|
|
return (q7_t) (y >> 20);
|
|
}
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of LinearInterpolate group
|
|
|
|
float32_t csky_sin_f32(
|
|
float32_t x);
|
|
|
|
q31_t csky_sin_q31(
|
|
q31_t x);
|
|
|
|
q15_t csky_sin_q15(
|
|
q15_t x);
|
|
|
|
float32_t csky_cos_f32(
|
|
float32_t x);
|
|
|
|
q31_t csky_cos_q31(
|
|
q31_t x);
|
|
|
|
q15_t csky_cos_q15(
|
|
q15_t x);
|
|
|
|
csky_status csky_sqrt_f32(
|
|
float32_t in,
|
|
float32_t * pOut);
|
|
|
|
csky_status csky_sqrt_q31(
|
|
q31_t in,
|
|
q31_t * pOut);
|
|
|
|
csky_status csky_sqrt_q15(
|
|
q15_t in,
|
|
q15_t * pOut);
|
|
|
|
/*double format*/
|
|
typedef union _myNumber
|
|
{
|
|
q31_t i[2];
|
|
float64_t x;
|
|
}mynumber;
|
|
|
|
/* the coefficient for log2 table looh up*/
|
|
typedef union
|
|
{
|
|
q31_t i[5800];
|
|
float64_t x[2900];
|
|
}log2_cof1;
|
|
|
|
typedef union
|
|
{
|
|
q31_t i[4350];
|
|
float64_t x[2175];
|
|
}log2_cof2;
|
|
|
|
/* the coefficient for exp table looh up*/
|
|
typedef union
|
|
{
|
|
q31_t i[1424];
|
|
float64_t x[712];
|
|
}exp_cof1;
|
|
|
|
typedef union
|
|
{
|
|
q31_t i[2048];
|
|
float64_t x[1024];
|
|
}exp_cof2;
|
|
|
|
union ieee754_double
|
|
{
|
|
float64_t d;
|
|
|
|
struct
|
|
{
|
|
unsigned int mantissa1:32;
|
|
unsigned int mantissa0:20;
|
|
unsigned int exponent:11;
|
|
unsigned int negative:1;
|
|
} ieee;
|
|
struct
|
|
{
|
|
unsigned int mantissa1:32;
|
|
unsigned int mantissa0:19;
|
|
unsigned int quiet_nan:1;
|
|
unsigned int exponent:11;
|
|
unsigned int negative:1;
|
|
} ieee_nan;
|
|
};
|
|
|
|
typedef struct
|
|
{
|
|
q31_t e;
|
|
long d[40];
|
|
}mp_no;
|
|
|
|
float64_t csky_pow_f64(
|
|
float64_t x,
|
|
float64_t y);
|
|
|
|
float64_t csky_log_f64(
|
|
float64_t x);
|
|
|
|
float64_t csky_exp_f64(
|
|
float64_t x);
|
|
|
|
float64_t csky_pow2_f64(
|
|
float64_t x);
|
|
|
|
float64_t csky_log2_f64(
|
|
float64_t x);
|
|
|
|
float64_t csky_log10_f64(
|
|
float64_t x);
|
|
|
|
void csky_power_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q63_t * pResult);
|
|
|
|
void csky_power_int32(
|
|
int32_t * pSrc,
|
|
uint32_t blockSize,
|
|
q63_t * pResult);
|
|
|
|
void csky_power_int32(
|
|
int32_t * pSrc,
|
|
uint32_t blockSize,
|
|
q63_t * pResult);
|
|
|
|
void csky_power_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult);
|
|
|
|
void csky_power_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q63_t * pResult);
|
|
|
|
void csky_power_q7(
|
|
q7_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult);
|
|
|
|
void csky_mean_q7(
|
|
q7_t * pSrc,
|
|
uint32_t blockSize,
|
|
q7_t * pResult);
|
|
|
|
void csky_mean_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q15_t * pResult);
|
|
|
|
void csky_mean_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult);
|
|
|
|
void csky_mean_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult);
|
|
|
|
void csky_var_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult);
|
|
|
|
void csky_var_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult);
|
|
|
|
void csky_var_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q15_t * pResult);
|
|
|
|
void csky_rms_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult);
|
|
|
|
void csky_rms_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult);
|
|
|
|
void csky_rms_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q15_t * pResult);
|
|
|
|
void csky_std_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult);
|
|
|
|
void csky_std_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult);
|
|
|
|
void csky_std_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q15_t * pResult);
|
|
|
|
void csky_cmplx_mag_f32(
|
|
float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mag_q31(
|
|
q31_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mag_q15(
|
|
q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_dot_prod_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
uint32_t numSamples,
|
|
q31_t * realResult,
|
|
q31_t * imagResult);
|
|
|
|
void csky_cmplx_dot_prod_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
uint32_t numSamples,
|
|
q63_t * realResult,
|
|
q63_t * imagResult);
|
|
|
|
void csky_cmplx_dot_prod_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
uint32_t numSamples,
|
|
float32_t * realResult,
|
|
float32_t * imagResult);
|
|
|
|
void csky_cmplx_mult_real_q15(
|
|
q15_t * pSrcCmplx,
|
|
q15_t * pSrcReal,
|
|
q15_t * pCmplxDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_real_q31(
|
|
q31_t * pSrcCmplx,
|
|
q31_t * pSrcReal,
|
|
q31_t * pCmplxDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_real_f32(
|
|
float32_t * pSrcCmplx,
|
|
float32_t * pSrcReal,
|
|
float32_t * pCmplxDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_min_q7(
|
|
q7_t * pSrc,
|
|
uint32_t blockSize,
|
|
q7_t * result,
|
|
uint32_t * index);
|
|
|
|
void csky_min_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q15_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_min_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_min_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_max_q7(
|
|
q7_t * pSrc,
|
|
uint32_t blockSize,
|
|
q7_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_max_q15(
|
|
q15_t * pSrc,
|
|
uint32_t blockSize,
|
|
q15_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_max_q31(
|
|
q31_t * pSrc,
|
|
uint32_t blockSize,
|
|
q31_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_max_f32(
|
|
float32_t * pSrc,
|
|
uint32_t blockSize,
|
|
float32_t * pResult,
|
|
uint32_t * pIndex);
|
|
|
|
void csky_cmplx_mult_cmplx_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
q15_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_cmplx_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
q31_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_cmplx_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
float32_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_cmplx_re_q15(
|
|
q15_t * pSrcA,
|
|
q15_t * pSrcB,
|
|
q15_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_cmplx_re_q31(
|
|
q31_t * pSrcA,
|
|
q31_t * pSrcB,
|
|
q31_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
void csky_cmplx_mult_cmplx_re_f32(
|
|
float32_t * pSrcA,
|
|
float32_t * pSrcB,
|
|
float32_t * pDst,
|
|
uint32_t numSamples);
|
|
|
|
|
|
void csky_float_to_q31(
|
|
float32_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_float_to_q15(
|
|
float32_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_float_to_q7(
|
|
float32_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_q31_to_q15(
|
|
q31_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_q31_to_q7(
|
|
q31_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_q15_to_float(
|
|
q15_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_q15_to_q31(
|
|
q15_t * pSrc,
|
|
q31_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
void csky_q15_to_q7(
|
|
q15_t * pSrc,
|
|
q7_t * pDst,
|
|
uint32_t blockSize);
|
|
|
|
/**
|
|
* @ingroup groupInterpolation
|
|
*/
|
|
/**
|
|
* @defgroup BilinearInterpolate Bilinear Interpolation
|
|
*
|
|
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
|
|
* The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
|
|
* determines values between the grid points.
|
|
* Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
|
|
* Bilinear interpolation is often used in image processing to rescale images.
|
|
* The CSI DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
|
|
*
|
|
* <b>Algorithm</b>
|
|
* \par
|
|
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
|
|
* For floating-point, the instance structure is defined as:
|
|
* <pre>
|
|
* typedef struct
|
|
* {
|
|
* uint16_t numRows;
|
|
* uint16_t numCols;
|
|
* float32_t *pData;
|
|
* } csky_bilinear_interp_instance_f32;
|
|
* </pre>
|
|
*
|
|
* \par
|
|
* where <code>numRows</code> specifies the number of rows in the table;
|
|
* <code>numCols</code> specifies the number of columns in the table;
|
|
* and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
|
|
* The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
|
|
* That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
|
|
*
|
|
* \par
|
|
* Let <code>(x, y)</code> specify the desired interpolation point. Then define:
|
|
* <pre>
|
|
* XF = floor(x)
|
|
* YF = floor(y)
|
|
* </pre>
|
|
* \par
|
|
* The interpolated output point is computed as:
|
|
* <pre>
|
|
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
|
|
* + f(XF+1, YF) * (x-XF)*(1-(y-YF))
|
|
* + f(XF, YF+1) * (1-(x-XF))*(y-YF)
|
|
* + f(XF+1, YF+1) * (x-XF)*(y-YF)
|
|
* </pre>
|
|
* Note that the coordinates (x, y) contain integer and fractional components.
|
|
* The integer components specify which portion of the table to use while the
|
|
* fractional components control the interpolation processor.
|
|
*
|
|
* \par
|
|
* if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
|
|
*/
|
|
/**
|
|
* @addtogroup BilinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
*
|
|
* @brief Floating-point bilinear interpolation.
|
|
* @param[in,out] S points to an instance of the interpolation structure.
|
|
* @param[in] X interpolation coordinate.
|
|
* @param[in] Y interpolation coordinate.
|
|
* @return out interpolated value.
|
|
*/
|
|
__STATIC_INLINE float32_t csky_bilinear_interp_f32(
|
|
const csky_bilinear_interp_instance_f32 * S,
|
|
float32_t X,
|
|
float32_t Y)
|
|
{
|
|
float32_t out;
|
|
float32_t f00, f01, f10, f11;
|
|
float32_t *pData = S->pData;
|
|
int32_t xIndex, yIndex, index;
|
|
float32_t xdiff, ydiff;
|
|
float32_t b1, b2, b3, b4;
|
|
xIndex = (int32_t) X;
|
|
yIndex = (int32_t) Y;
|
|
/* Care taken for table outside boundary */
|
|
/* Returns zero output when values are outside table boundary */
|
|
if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
|
|
{
|
|
return (0);
|
|
}
|
|
/* Calculation of index for two nearest points in X-direction */
|
|
index = (xIndex - 1) + (yIndex - 1) * S->numCols;
|
|
/* Read two nearest points in X-direction */
|
|
f00 = pData[index];
|
|
f01 = pData[index + 1];
|
|
/* Calculation of index for two nearest points in Y-direction */
|
|
index = (xIndex - 1) + (yIndex) * S->numCols;
|
|
/* Read two nearest points in Y-direction */
|
|
f10 = pData[index];
|
|
f11 = pData[index + 1];
|
|
/* Calculation of intermediate values */
|
|
b1 = f00;
|
|
b2 = f01 - f00;
|
|
b3 = f10 - f00;
|
|
b4 = f00 - f01 - f10 + f11;
|
|
/* Calculation of fractional part in X */
|
|
xdiff = X - xIndex;
|
|
/* Calculation of fractional part in Y */
|
|
ydiff = Y - yIndex;
|
|
/* Calculation of bi-linear interpolated output */
|
|
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
|
|
/* return to application */
|
|
return (out);
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of BilinearInterpolate group
|
|
|
|
/**
|
|
* @addtogroup BilinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
*
|
|
* @brief Q31 bilinear interpolation.
|
|
* @param[in,out] S points to an instance of the interpolation structure.
|
|
* @param[in] X interpolation coordinate in 12.20 format.
|
|
* @param[in] Y interpolation coordinate in 12.20 format.
|
|
* @return out interpolated value.
|
|
*/
|
|
__STATIC_INLINE q31_t csky_bilinear_interp_q31(
|
|
csky_bilinear_interp_instance_q31 * S,
|
|
q31_t X,
|
|
q31_t Y)
|
|
{
|
|
q31_t out; /* Temporary output */
|
|
q31_t acc = 0; /* output */
|
|
q31_t xfract, yfract; /* X, Y fractional parts */
|
|
q31_t x1, x2, y1, y2; /* Nearest output values */
|
|
int32_t rI, cI; /* Row and column indices */
|
|
q31_t *pYData = S->pData; /* pointer to output table values */
|
|
uint32_t nCols = S->numCols; /* num of rows */
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
rI = ((X & (q31_t)0xFFF00000) >> 20);
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
|
/* Care taken for table outside boundary */
|
|
/* Returns zero output when values are outside table boundary */
|
|
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
|
{
|
|
return (0);
|
|
}
|
|
/* 20 bits for the fractional part */
|
|
/* shift left xfract by 11 to keep 1.31 format */
|
|
xfract = (X & 0x000FFFFF) << 11u;
|
|
/* Read two nearest output values from the index */
|
|
x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
|
|
x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
|
|
/* 20 bits for the fractional part */
|
|
/* shift left yfract by 11 to keep 1.31 format */
|
|
yfract = (Y & 0x000FFFFF) << 11u;
|
|
/* Read two nearest output values from the index */
|
|
y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
|
|
y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
|
|
#ifdef CSKY_SIMD
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
|
|
out = mult_32x32_keep32(x1, (0x7FFFFFFF - xfract));
|
|
acc = mult_32x32_keep32(out, (0x7FFFFFFF - yfract));
|
|
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
|
|
out = mult_32x32_keep32(x2, (0x7FFFFFFF - yfract));
|
|
acc = multAcc_32x32_keep32(acc, out, xfract);
|
|
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
|
|
out = mult_32x32_keep32(y1, (0x7FFFFFFF - xfract));
|
|
acc = multAcc_32x32_keep32(acc, out, yfract);
|
|
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
|
|
out = mult_32x32_keep32(y2, xfract);
|
|
acc = multAcc_32x32_keep32(acc, out, yfract);
|
|
#else
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
|
|
out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
|
|
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
|
|
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
|
|
out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
|
|
acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
|
|
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
|
|
out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
|
|
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
|
|
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
|
|
out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
|
|
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
|
|
#endif
|
|
/* Convert acc to 1.31(q31) format */
|
|
return ((q31_t)(acc << 2));
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of BilinearInterpolate group
|
|
|
|
/**
|
|
* @addtogroup BilinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Q15 bilinear interpolation.
|
|
* @param[in,out] S points to an instance of the interpolation structure.
|
|
* @param[in] X interpolation coordinate in 12.20 format.
|
|
* @param[in] Y interpolation coordinate in 12.20 format.
|
|
* @return out interpolated value.
|
|
*/
|
|
__STATIC_INLINE q15_t csky_bilinear_interp_q15(
|
|
csky_bilinear_interp_instance_q15 * S,
|
|
q31_t X,
|
|
q31_t Y)
|
|
{
|
|
q63_t acc = 0; /* output */
|
|
q31_t out; /* Temporary output */
|
|
q15_t x1, x2, y1, y2; /* Nearest output values */
|
|
q31_t xfract, yfract; /* X, Y fractional parts */
|
|
int32_t rI, cI; /* Row and column indices */
|
|
q15_t *pYData = S->pData; /* pointer to output table values */
|
|
uint32_t nCols = S->numCols; /* num of rows */
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
rI = ((X & (q31_t)0xFFF00000) >> 20);
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
|
/* Care taken for table outside boundary */
|
|
/* Returns zero output when values are outside table boundary */
|
|
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
|
{
|
|
return (0);
|
|
}
|
|
/* 20 bits for the fractional part */
|
|
/* xfract should be in 12.20 format */
|
|
xfract = (X & 0x000FFFFF);
|
|
/* Read two nearest output values from the index */
|
|
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
|
|
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
|
|
/* 20 bits for the fractional part */
|
|
/* yfract should be in 12.20 format */
|
|
yfract = (Y & 0x000FFFFF);
|
|
/* Read two nearest output values from the index */
|
|
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
|
|
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
|
|
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
|
|
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
|
|
#ifdef CSKY_SIMD
|
|
out = mult_32x32_dext_4(x1, (0xFFFFF - xfract));
|
|
acc = mult_32x32_keep64(out, (0xFFFFF - yfract));
|
|
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
|
|
out = mult_32x32_dext_4(x2, (0xFFFFF - yfract));
|
|
acc = multAcc_32x32_keep64(acc, out, (xfract));
|
|
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
|
|
out = mult_32x32_dext_4(y1, (0xFFFFF - xfract));
|
|
acc = multAcc_32x32_keep64(acc, out, (yfract));
|
|
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
|
|
out = mult_32x32_dext_4(y2, (xfract));
|
|
acc = multAcc_32x32_keep64(acc, out, (yfract));
|
|
#else
|
|
out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
|
|
acc = ((q63_t) out * (0xFFFFF - yfract));
|
|
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
|
|
out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
|
|
acc += ((q63_t) out * (xfract));
|
|
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
|
|
out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
|
|
acc += ((q63_t) out * (yfract));
|
|
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
|
|
out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
|
|
acc += ((q63_t) out * (yfract));
|
|
#endif
|
|
/* acc is in 13.51 format and down shift acc by 36 times */
|
|
/* Convert out to 1.15 format */
|
|
return ((q15_t)(acc >> 36));
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of BilinearInterpolate group
|
|
|
|
void test(q7_t *pSrc, q7_t *pDst);
|
|
|
|
/**
|
|
* @addtogroup BilinearInterpolate
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Q7 bilinear interpolation.
|
|
* @param[in,out] S points to an instance of the interpolation structure.
|
|
* @param[in] X interpolation coordinate in 12.20 format.
|
|
* @param[in] Y interpolation coordinate in 12.20 format.
|
|
* @return out interpolated value.
|
|
*/
|
|
__STATIC_INLINE q7_t csky_bilinear_interp_q7(
|
|
csky_bilinear_interp_instance_q7 * S,
|
|
q31_t X,
|
|
q31_t Y)
|
|
{
|
|
q63_t acc = 0; /* output */
|
|
q31_t out; /* Temporary output */
|
|
q31_t xfract, yfract; /* X, Y fractional parts */
|
|
q7_t x1, x2, y1, y2; /* Nearest output values */
|
|
int32_t rI, cI; /* Row and column indices */
|
|
q7_t *pYData = S->pData; /* pointer to output table values */
|
|
uint32_t nCols = S->numCols; /* num of rows */
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
rI = ((X & (q31_t)0xFFF00000) >> 20);
|
|
/* Input is in 12.20 format */
|
|
/* 12 bits for the table index */
|
|
/* Index value calculation */
|
|
cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
|
/* Care taken for table outside boundary */
|
|
/* Returns zero output when values are outside table boundary */
|
|
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
|
{
|
|
return (0);
|
|
}
|
|
/* 20 bits for the fractional part */
|
|
/* xfract should be in 12.20 format */
|
|
xfract = (X & (q31_t)0x000FFFFF);
|
|
/* Read two nearest output values from the index */
|
|
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
|
|
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
|
|
/* 20 bits for the fractional part */
|
|
/* yfract should be in 12.20 format */
|
|
yfract = (Y & (q31_t)0x000FFFFF);
|
|
/* Read two nearest output values from the index */
|
|
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
|
|
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
|
|
out = ((x1 * (0xFFFFF - xfract)));
|
|
#ifdef CSKY_SIMD
|
|
acc = multAcc_32x32_keep64(acc, out, (0xFFFFF - yfract));
|
|
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
|
|
out = ((x2 * (0xFFFFF - yfract)));
|
|
acc = multAcc_32x32_keep64(acc, out, xfract);
|
|
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
|
|
out = ((y1 * (0xFFFFF - xfract)));
|
|
acc = multAcc_32x32_keep64(acc, out, yfract);
|
|
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
|
|
out = ((y2 * (yfract)));
|
|
acc = multAcc_32x32_keep64(acc, out, xfract);
|
|
#else
|
|
acc = (((q63_t) out * (0xFFFFF - yfract)));
|
|
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
|
|
out = ((x2 * (0xFFFFF - yfract)));
|
|
acc += (((q63_t) out * (xfract)));
|
|
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
|
|
out = ((y1 * (0xFFFFF - xfract)));
|
|
acc += (((q63_t) out * (yfract)));
|
|
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
|
|
out = ((y2 * (yfract)));
|
|
acc += (((q63_t) out * (xfract)));
|
|
#endif
|
|
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
|
|
return ((q7_t)(acc >> 40));
|
|
}
|
|
/**
|
|
* @}
|
|
*/ // end of BilinearInterpolate group
|
|
|
|
/**
|
|
* @ingroup groupMath
|
|
*/
|
|
|
|
/**
|
|
* @defgroup ShiftRight Right Shift
|
|
*
|
|
* Shift the input value to right with appointed bits, its basic format is:
|
|
* <pre>
|
|
* a = (a) >> (shift), 1 =< shift <= bitof(a) - 1.
|
|
* </pre>
|
|
* The basic format is only designed for q31.
|
|
*
|
|
* and the extended format should be rounding to +inf:
|
|
* <pre>
|
|
* a = (a + (1<<(shift - 1)) >> (shift), 1 =< shift <= bitof(a) - 1.
|
|
* </pre>
|
|
*
|
|
* which are designed for q31, q31 positive and q63.
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup ShiftRight
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief right shift Q31 version
|
|
* @param[in] a input value to be shift.
|
|
* @param[in] shift input positive value, the number of bits to be shift.
|
|
* @param[out] result the shifted a.
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is only used for right shift. So, the value of shift is
|
|
* between[1,31].
|
|
*/
|
|
__STATIC_INLINE q31_t csky_shr_q31(
|
|
q31_t a,
|
|
q31_t shift)
|
|
{
|
|
q31_t res;
|
|
#ifdef CSKY_SIMD
|
|
__ASM volatile(
|
|
"asr %0, %1, %2\n\t"
|
|
:"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift));
|
|
#else
|
|
res = ((a) >> (shift));
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
#define SHR(a, shift) csky_shr_q31(a, shift)
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of ShiftRight group
|
|
|
|
|
|
/**
|
|
* @addtogroup ShiftRight
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief right shift Q31 version
|
|
* @param[in] a input value to be shift.
|
|
* @param[in] shift input positive value, the number of bits to be shift.
|
|
* @param[out] result the shifted a.
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is only used for right shift. So, the value of shift is
|
|
* between[1,31]. And the output value is rounding to +inf.
|
|
*/
|
|
__STATIC_INLINE q31_t csky_pshr_q31(
|
|
q31_t a,
|
|
q31_t shift)
|
|
{
|
|
q31_t res;
|
|
#ifdef CSKY_SIMD
|
|
__ASM volatile(
|
|
"asr.s32.r %0, %1, %2\n\t"
|
|
:"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift));
|
|
#else
|
|
res = (a >= 0?(SHR((a) + (1<<(shift - 1)), shift))\
|
|
:(SHR((a) + ((1<<shift)>>1) -1, shift)));
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of ShiftRight group
|
|
|
|
|
|
/**
|
|
* @addtogroup ShiftRight
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief right shift Q31 version
|
|
* @param[in] a input positive value to be shift.
|
|
* @param[in] shift input positive value, the number of bits to be shift.
|
|
* @param[out] result the shifted a.
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is only used for right shift. So, the value of shift is
|
|
* between[1,31]. And the output value is rounding to +inf.
|
|
*/
|
|
__STATIC_INLINE q31_t csky_pshr_pos_q31(
|
|
q31_t a,
|
|
q31_t shift)
|
|
{
|
|
q31_t res;
|
|
#ifdef CSKY_SIMD
|
|
__ASM volatile(
|
|
"asr.s32.r %0, %1, %2\n\t"
|
|
:"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift));
|
|
#else
|
|
res = SHR((a) + (1<<(shift - 1)), shift);
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of ShiftRight group
|
|
|
|
|
|
/**
|
|
* @addtogroup ShiftRight
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief right shift Q63 version
|
|
* @param[in] a input value to be shift.
|
|
* @param[in] shift input positive value, the number of bits to be shift.
|
|
* @param[out] result the shifted a.
|
|
*
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
* \par
|
|
* The function is only used for right shift. So, the value of shift is
|
|
* between[1,63]. And the output value is rounding to +inf.
|
|
*/
|
|
__STATIC_INLINE q63_t csky_pshr_q63(
|
|
q63_t a,
|
|
q31_t shift)
|
|
{
|
|
q63_t res;
|
|
#ifdef CSKY_SIMD
|
|
__ASM volatile(
|
|
"subi t0, %2, 1\n\t"
|
|
"cmphsi t0, 32\n\t"
|
|
"bt 1f\n\t"
|
|
"movi t1, 1\n\t"
|
|
"lsl t0, t1, t0\n\t"
|
|
"movi t1, 0\n\t"
|
|
"add.s64.s %1, %1, t0\n\t"
|
|
"dext %0, %1, %R1, %2\n\t"
|
|
"asr %R0, %R1, %2\n\t"
|
|
"br 2f\n\t"
|
|
"1:\n\t"
|
|
"subi %2, %2, 32\n\t"
|
|
"subi t0, t0, 32\n\t"
|
|
"movi t1, 1\n\t"
|
|
"lsl t1, t1, t0\n\t"
|
|
"add.s32.s %R1, %R1, t1\n\t"
|
|
"asr %0, %R1, %2\n\t"
|
|
"asri %R0, %R1, 31\n\t"
|
|
"2:\n\t"
|
|
:"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift):"t0", "t1");
|
|
#else
|
|
res = (a >= 0?(SHR((a) + ((q63_t)1<<(shift - 1)), shift))\
|
|
:(SHR((a) + (((q63_t)1<<shift)>>1) -1, shift)));
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/ // end of ShiftRight group
|
|
|
|
//#define SHR(a, shift) csky_shr_q31(a, shift)
|
|
#define PSHR(a, shift) csky_pshr_q31(a, shift)
|
|
#define PSHR_POSITIVE(a, shift) csky_pshr_pos_q31(a, shift)
|
|
#define PSHR64(a, shift) csky_pshr_q63(a, shift)
|
|
|
|
|
|
#ifdef CSKY_SIMD
|
|
#else
|
|
/* SMMLAR */
|
|
#define multAcc_32x32_keep32_R(a, x, y) \
|
|
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
|
|
|
/* SMMLSR */
|
|
#define multSub_32x32_keep32_R(a, x, y) \
|
|
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
|
|
|
/* SMMULR */
|
|
#define mult_32x32_keep32_R(a, x, y) \
|
|
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
|
|
|
|
/* SMMLA */
|
|
#define multAcc_32x32_keep32(a, x, y) \
|
|
a += (q31_t) (((q63_t) x * y) >> 32)
|
|
|
|
/* SMMLS */
|
|
#define multSub_32x32_keep32(a, x, y) \
|
|
a -= (q31_t) (((q63_t) x * y) >> 32)
|
|
|
|
/* SMMUL */
|
|
#define mult_32x32_keep32(a, x, y) \
|
|
a = (q31_t) (((q63_t) x * y ) >> 32)
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _CSKY_MATH_H */
|
|
|
|
/**
|
|
*
|
|
* End of file.
|
|
*/
|