/* * MIT License * * Copyright (c) 2021 Ozan Tezcan * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "sc_heap.h" #include #ifndef SC_SIZE_MAX #define SC_SIZE_MAX SIZE_MAX #endif #define SC_CAP_MAX SC_SIZE_MAX / sizeof(struct sc_heap_data) bool sc_heap_init(struct sc_heap *heap, size_t cap) { void *elems; const size_t alloc = cap * sizeof(struct sc_heap_data); *heap = (struct sc_heap){0}; if (cap == 0) { return true; } // Check overflow if (cap > SC_CAP_MAX || (elems = sc_heap_malloc(alloc)) == NULL) { return false; } heap->elems = elems; heap->cap = cap; return true; } void sc_heap_term(struct sc_heap *heap) { sc_heap_free(heap->elems); } size_t sc_heap_size(struct sc_heap *heap) { return heap->size; } void sc_heap_clear(struct sc_heap *heap) { heap->size = 0; } bool sc_heap_add(struct sc_heap *heap, int64_t key, void *data) { size_t i; void *exp; if (++heap->size >= heap->cap) { const size_t cap = heap->cap != 0 ? heap->cap * 2 : 4; const size_t m = cap * 2 * sizeof(struct sc_heap_data); // Check overflow if (heap->cap >= SC_CAP_MAX / 2 || (exp = sc_heap_realloc(heap->elems, m)) == NULL) { return false; } heap->elems = exp; heap->cap = cap; } i = heap->size; while (i != 1 && key < heap->elems[i / 2].key) { heap->elems[i] = heap->elems[i / 2]; i /= 2; } heap->elems[i].key = key; heap->elems[i].data = data; return true; } bool sc_heap_peek(struct sc_heap *heap, int64_t *key, void **data) { if (heap->size == 0) { return false; } // Top element is always at heap->elems[1]. *key = heap->elems[1].key; *data = heap->elems[1].data; return true; } bool sc_heap_pop(struct sc_heap *heap, int64_t *key, void **data) { size_t i = 1, child = 2; struct sc_heap_data last; if (heap->size == 0) { return false; } // Top element is always at heap->elems[1]. *key = heap->elems[1].key; *data = heap->elems[1].data; last = heap->elems[heap->size--]; while (child <= heap->size) { if (child < heap->size && heap->elems[child].key > heap->elems[child + 1].key) { child++; }; if (last.key <= heap->elems[child].key) { break; } heap->elems[i] = heap->elems[child]; i = child; child *= 2; } heap->elems[i] = last; return true; }