mirror of
https://github.com/azure-rtos/threadx
synced 2025-01-30 08:02:57 +08:00
1681 lines
57 KiB
C
1681 lines
57 KiB
C
/**************************************************************************/
|
|
/* */
|
|
/* Copyright (c) Microsoft Corporation. All rights reserved. */
|
|
/* */
|
|
/* This software is licensed under the Microsoft Software License */
|
|
/* Terms for Microsoft Azure RTOS. Full text of the license can be */
|
|
/* found in the LICENSE file at https://aka.ms/AzureRTOS_EULA */
|
|
/* and in the root directory of this software. */
|
|
/* */
|
|
/**************************************************************************/
|
|
|
|
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
/** */
|
|
/** ThreadX Component */
|
|
/** */
|
|
/** Thread */
|
|
/** */
|
|
/**************************************************************************/
|
|
/**************************************************************************/
|
|
|
|
|
|
/**************************************************************************/
|
|
/* */
|
|
/* COMPONENT DEFINITION RELEASE */
|
|
/* */
|
|
/* tx_thread.h PORTABLE SMP */
|
|
/* 6.1 */
|
|
/* AUTHOR */
|
|
/* */
|
|
/* William E. Lamie, Microsoft Corporation */
|
|
/* */
|
|
/* DESCRIPTION */
|
|
/* */
|
|
/* This file defines the ThreadX thread control component, including */
|
|
/* data types and external references. It is assumed that tx_api.h */
|
|
/* and tx_port.h have already been included. */
|
|
/* */
|
|
/* RELEASE HISTORY */
|
|
/* */
|
|
/* DATE NAME DESCRIPTION */
|
|
/* */
|
|
/* 09-30-2020 William E. Lamie Initial Version 6.1 */
|
|
/* */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TX_THREAD_H
|
|
#define TX_THREAD_H
|
|
|
|
|
|
/* Add include files needed for in-line macros. */
|
|
|
|
#include "tx_initialize.h"
|
|
|
|
|
|
/* Define thread control specific data definitions. */
|
|
|
|
#define TX_THREAD_ID ((ULONG) 0x54485244)
|
|
#define TX_THREAD_MAX_BYTE_VALUES 256
|
|
#define TX_THREAD_PRIORITY_GROUP_MASK ((ULONG) 0xFF)
|
|
#define TX_THREAD_PRIORITY_GROUP_SIZE 8
|
|
#define TX_THREAD_EXECUTE_LOG_SIZE ((UINT) 8)
|
|
#define TX_THREAD_SMP_PROTECT_WAIT_LIST_SIZE (TX_THREAD_SMP_MAX_CORES + 1)
|
|
|
|
|
|
/* Define the default thread stack checking. This can be overridden by
|
|
a particular port, which is necessary if the stack growth is from
|
|
low address to high address (the default logic is for stacks that
|
|
grow from high address to low address. */
|
|
|
|
#ifndef TX_THREAD_STACK_CHECK
|
|
#define TX_THREAD_STACK_CHECK(thread_ptr) \
|
|
{ \
|
|
TX_INTERRUPT_SAVE_AREA \
|
|
TX_DISABLE \
|
|
if (((thread_ptr)) && ((thread_ptr) -> tx_thread_id == TX_THREAD_ID)) \
|
|
{ \
|
|
if (((ULONG *) (thread_ptr) -> tx_thread_stack_ptr) < ((ULONG *) (thread_ptr) -> tx_thread_stack_highest_ptr)) \
|
|
{ \
|
|
(thread_ptr) -> tx_thread_stack_highest_ptr = (thread_ptr) -> tx_thread_stack_ptr; \
|
|
} \
|
|
if ((*((ULONG *) (thread_ptr) -> tx_thread_stack_start) != TX_STACK_FILL) || \
|
|
(*((ULONG *) (((UCHAR *) (thread_ptr) -> tx_thread_stack_end) + 1)) != TX_STACK_FILL) || \
|
|
(((ULONG *) (thread_ptr) -> tx_thread_stack_highest_ptr) < ((ULONG *) (thread_ptr) -> tx_thread_stack_start))) \
|
|
{ \
|
|
TX_RESTORE \
|
|
_tx_thread_stack_error_handler((thread_ptr)); \
|
|
TX_DISABLE \
|
|
} \
|
|
if (*(((ULONG *) (thread_ptr) -> tx_thread_stack_highest_ptr) - 1) != TX_STACK_FILL) \
|
|
{ \
|
|
TX_RESTORE \
|
|
_tx_thread_stack_analyze((thread_ptr)); \
|
|
TX_DISABLE \
|
|
} \
|
|
} \
|
|
TX_RESTORE \
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Define default post thread delete macro to whitespace, if it hasn't been defined previously (typically in tx_port.h). */
|
|
|
|
#ifndef TX_THREAD_DELETE_PORT_COMPLETION
|
|
#define TX_THREAD_DELETE_PORT_COMPLETION(t)
|
|
#endif
|
|
|
|
|
|
/* Define default post thread reset macro to whitespace, if it hasn't been defined previously (typically in tx_port.h). */
|
|
|
|
#ifndef TX_THREAD_RESET_PORT_COMPLETION
|
|
#define TX_THREAD_RESET_PORT_COMPLETION(t)
|
|
#endif
|
|
|
|
|
|
/* Define the thread create internal extension macro to whitespace, if it hasn't been defined previously (typically in tx_port.h). */
|
|
|
|
#ifndef TX_THREAD_CREATE_INTERNAL_EXTENSION
|
|
#define TX_THREAD_CREATE_INTERNAL_EXTENSION(t)
|
|
#endif
|
|
|
|
|
|
/* Define internal thread control function prototypes. */
|
|
|
|
VOID _tx_thread_initialize(VOID);
|
|
VOID _tx_thread_schedule(VOID);
|
|
VOID _tx_thread_shell_entry(VOID);
|
|
VOID _tx_thread_stack_analyze(TX_THREAD *thread_ptr);
|
|
VOID _tx_thread_stack_build(TX_THREAD *thread_ptr, VOID (*function_ptr)(VOID));
|
|
VOID _tx_thread_stack_error(TX_THREAD *thread_ptr);
|
|
VOID _tx_thread_stack_error_handler(TX_THREAD *thread_ptr);
|
|
VOID _tx_thread_system_preempt_check(VOID);
|
|
VOID _tx_thread_system_resume(TX_THREAD *thread_ptr);
|
|
VOID _tx_thread_system_ni_resume(TX_THREAD *thread_ptr);
|
|
VOID _tx_thread_system_return(VOID);
|
|
VOID _tx_thread_system_suspend(TX_THREAD *thread_ptr);
|
|
VOID _tx_thread_system_ni_suspend(TX_THREAD *thread_ptr, ULONG timeout);
|
|
VOID _tx_thread_time_slice(VOID);
|
|
VOID _tx_thread_timeout(ULONG timeout_input);
|
|
|
|
|
|
/* Define all internal SMP prototypes. */
|
|
|
|
void _tx_thread_smp_current_state_set(ULONG new_state);
|
|
UINT _tx_thread_smp_find_next_priority(UINT priority);
|
|
void _tx_thread_smp_high_level_initialize(void);
|
|
void _tx_thread_smp_rebalance_execute_list(UINT core_index);
|
|
|
|
|
|
/* Define all internal ThreadX SMP low-level assembly routines. */
|
|
|
|
VOID _tx_thread_smp_core_wait(void);
|
|
void _tx_thread_smp_initialize_wait(void);
|
|
void _tx_thread_smp_low_level_initialize(UINT number_of_cores);
|
|
void _tx_thread_smp_core_preempt(UINT core);
|
|
|
|
|
|
/* Thread control component external data declarations follow. */
|
|
|
|
#define THREAD_DECLARE extern
|
|
|
|
|
|
/* Define the pointer that contains the system stack pointer. This is
|
|
utilized when control returns from a thread to the system to reset the
|
|
current stack. This is setup in the low-level initialization function. */
|
|
|
|
THREAD_DECLARE VOID * _tx_thread_system_stack_ptr[TX_THREAD_SMP_MAX_CORES];
|
|
|
|
|
|
/* Define the current thread pointer. This variable points to the currently
|
|
executing thread. If this variable is NULL, no thread is executing. */
|
|
|
|
THREAD_DECLARE TX_THREAD * _tx_thread_current_ptr[TX_THREAD_SMP_MAX_CORES];
|
|
|
|
|
|
/* Define the variable that holds the next thread to execute. It is important
|
|
to remember that this is not necessarily equal to the current thread
|
|
pointer. */
|
|
|
|
THREAD_DECLARE TX_THREAD * _tx_thread_execute_ptr[TX_THREAD_SMP_MAX_CORES];
|
|
|
|
|
|
/* Define the ThreadX SMP scheduling and mapping data structures. */
|
|
|
|
THREAD_DECLARE TX_THREAD * _tx_thread_smp_schedule_list[TX_THREAD_SMP_MAX_CORES];
|
|
THREAD_DECLARE ULONG _tx_thread_smp_reschedule_pending;
|
|
THREAD_DECLARE TX_THREAD_SMP_PROTECT _tx_thread_smp_protection;
|
|
THREAD_DECLARE volatile ULONG _tx_thread_smp_release_cores_flag;
|
|
THREAD_DECLARE ULONG _tx_thread_smp_system_error;
|
|
THREAD_DECLARE ULONG _tx_thread_smp_inter_core_interrupts[TX_THREAD_SMP_MAX_CORES];
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_smp_protect_wait_list_size;
|
|
THREAD_DECLARE ULONG _tx_thread_smp_protect_wait_list[TX_THREAD_SMP_PROTECT_WAIT_LIST_SIZE];
|
|
THREAD_DECLARE ULONG _tx_thread_smp_protect_wait_counts[TX_THREAD_SMP_MAX_CORES];
|
|
THREAD_DECLARE ULONG _tx_thread_smp_protect_wait_list_lock_protect_in_force;
|
|
THREAD_DECLARE ULONG _tx_thread_smp_protect_wait_list_tail;
|
|
THREAD_DECLARE ULONG _tx_thread_smp_protect_wait_list_head;
|
|
|
|
|
|
/* Define logic for conditional dynamic maximum number of cores. */
|
|
|
|
#ifdef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_smp_max_cores;
|
|
THREAD_DECLARE ULONG _tx_thread_smp_detected_cores;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Define the head pointer of the created thread list. */
|
|
|
|
THREAD_DECLARE TX_THREAD * _tx_thread_created_ptr;
|
|
|
|
|
|
/* Define the variable that holds the number of created threads. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_created_count;
|
|
|
|
|
|
/* Define the current state variable. When this value is 0, a thread
|
|
is executing or the system is idle. Other values indicate that
|
|
interrupt or initialization processing is active. This variable is
|
|
initialized to TX_INITIALIZE_IN_PROGRESS to indicate initialization is
|
|
active. */
|
|
|
|
THREAD_DECLARE volatile ULONG _tx_thread_system_state[TX_THREAD_SMP_MAX_CORES];
|
|
|
|
|
|
/* Determine if we need to remap system state to a function call. */
|
|
|
|
#ifndef TX_THREAD_SMP_SOURCE_CODE
|
|
|
|
|
|
/* Yes, remap system state to a function call so we can get the system state for the current core. */
|
|
|
|
#define _tx_thread_system_state _tx_thread_smp_current_state_get()
|
|
|
|
|
|
/* Yes, remap get current thread to a function call so we can get the current thread for the current core. */
|
|
|
|
#define _tx_thread_current_ptr _tx_thread_smp_current_thread_get()
|
|
|
|
#endif
|
|
|
|
|
|
/* Define the 32-bit priority bit-maps. There is one priority bit map for each
|
|
32 priority levels supported. If only 32 priorities are supported there is
|
|
only one bit map. Each bit within a priority bit map represents that one
|
|
or more threads at the associated thread priority are ready. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_priority_maps[TX_MAX_PRIORITIES/32];
|
|
|
|
|
|
/* Define the priority map active bit map that specifies which of the previously
|
|
defined priority maps have something set. This is only necessary if more than
|
|
32 priorities are supported. */
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
THREAD_DECLARE ULONG _tx_thread_priority_map_active;
|
|
#endif
|
|
|
|
|
|
#ifndef TX_DISABLE_PREEMPTION_THRESHOLD
|
|
|
|
/* Define the 32-bit preempt priority bit maps. There is one preempt bit map
|
|
for each 32 priority levels supported. If only 32 priorities are supported
|
|
there is only one bit map. Each set set bit corresponds to a preempted priority
|
|
level that had preemption-threshold active to protect against preemption of a
|
|
range of relatively higher priority threads. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_preempted_maps[TX_MAX_PRIORITIES/32];
|
|
|
|
|
|
/* Define the preempt map active bit map that specifies which of the previously
|
|
defined preempt maps have something set. This is only necessary if more than
|
|
32 priorities are supported. */
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
THREAD_DECLARE ULONG _tx_thread_preempted_map_active;
|
|
#endif
|
|
|
|
|
|
/* Define the array that contains the thread at each priority level that was scheduled with
|
|
preemption-threshold enabled. This will be useful when returning from a nested
|
|
preemption-threshold condition. */
|
|
|
|
THREAD_DECLARE TX_THREAD *_tx_thread_preemption_threshold_list[TX_MAX_PRIORITIES];
|
|
|
|
|
|
#endif
|
|
|
|
|
|
/* Define the last thread scheduled with preemption-threshold. When preemption-threshold is
|
|
disabled, a thread with preemption-threshold set disables all other threads from running.
|
|
Effectively, its preemption-threshold is 0. */
|
|
|
|
THREAD_DECLARE TX_THREAD *_tx_thread_preemption__threshold_scheduled;
|
|
|
|
|
|
/* Define the array of thread pointers. Each entry represents the threads that
|
|
are ready at that priority group. For example, index 10 in this array
|
|
represents the first thread ready at priority 10. If this entry is NULL,
|
|
no threads are ready at that priority. */
|
|
|
|
THREAD_DECLARE TX_THREAD * _tx_thread_priority_list[TX_MAX_PRIORITIES];
|
|
|
|
|
|
/* Define the global preempt disable variable. If this is non-zero, preemption is
|
|
disabled. It is used internally by ThreadX to prevent preemption of a thread in
|
|
the middle of a service that is resuming or suspending another thread. */
|
|
|
|
THREAD_DECLARE volatile UINT _tx_thread_preempt_disable;
|
|
|
|
|
|
/* Define the global function pointer for mutex cleanup on thread completion or
|
|
termination. This pointer is setup during mutex initialization. */
|
|
|
|
THREAD_DECLARE VOID (*_tx_thread_mutex_release)(TX_THREAD *thread_ptr);
|
|
|
|
|
|
/* Define the global build options variable. This contains a bit map representing
|
|
how the ThreadX library was built. The following are the bit field definitions:
|
|
|
|
Bit(s) Meaning
|
|
|
|
31 Reserved
|
|
30 TX_NOT_INTERRUPTABLE defined
|
|
29-24 Priority groups 1 -> 32 priorities
|
|
2 -> 64 priorities
|
|
3 -> 96 priorities
|
|
|
|
...
|
|
|
|
32 -> 1024 priorities
|
|
23 TX_TIMER_PROCESS_IN_ISR defined
|
|
22 TX_REACTIVATE_INLINE defined
|
|
21 TX_DISABLE_STACK_FILLING defined
|
|
20 TX_ENABLE_STACK_CHECKING defined
|
|
19 TX_DISABLE_PREEMPTION_THRESHOLD defined
|
|
18 TX_DISABLE_REDUNDANT_CLEARING defined
|
|
17 TX_DISABLE_NOTIFY_CALLBACKS defined
|
|
16 TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined
|
|
15 TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO defined
|
|
14 TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined
|
|
13 TX_MUTEX_ENABLE_PERFORMANCE_INFO defined
|
|
12 TX_QUEUE_ENABLE_PERFORMANCE_INFO defined
|
|
11 TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined
|
|
10 TX_THREAD_ENABLE_PERFORMANCE_INFO defined
|
|
9 TX_TIMER_ENABLE_PERFORMANCE_INFO defined
|
|
8 TX_ENABLE_EVENT_TRACE | TX_ENABLE_EVENT_LOGGING defined
|
|
7 Reserved
|
|
6 Reserved
|
|
5 Reserved
|
|
4 Reserved
|
|
3 Reserved
|
|
2 Reserved
|
|
1 64-bit FPU Enabled
|
|
0 Reserved */
|
|
|
|
THREAD_DECLARE ULONG _tx_build_options;
|
|
|
|
|
|
#ifdef TX_ENABLE_STACK_CHECKING
|
|
|
|
/* Define the global function pointer for stack error handling. If a stack error is
|
|
detected and the application has registered a stack error handler, it will be
|
|
called via this function pointer. */
|
|
|
|
THREAD_DECLARE VOID (*_tx_thread_application_stack_error_handler)(TX_THREAD *thread_ptr);
|
|
|
|
#endif
|
|
|
|
#ifdef TX_THREAD_ENABLE_PERFORMANCE_INFO
|
|
|
|
/* Define the total number of thread resumptions. Each time a thread enters the
|
|
ready state this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_resume_count;
|
|
|
|
|
|
/* Define the total number of thread suspensions. Each time a thread enters a
|
|
suspended state this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_suspend_count;
|
|
|
|
|
|
/* Define the total number of solicited thread preemptions. Each time a thread is
|
|
preempted by directly calling a ThreadX service, this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_solicited_preemption_count;
|
|
|
|
|
|
/* Define the total number of interrupt thread preemptions. Each time a thread is
|
|
preempted as a result of an ISR calling a ThreadX service, this variable is
|
|
incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_interrupt_preemption_count;
|
|
|
|
|
|
/* Define the total number of priority inversions. Each time a thread is blocked by
|
|
a mutex owned by a lower-priority thread, this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_priority_inversion_count;
|
|
|
|
|
|
/* Define the total number of time-slices. Each time a time-slice operation is
|
|
actually performed (another thread is setup for running) this variable is
|
|
incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_time_slice_count;
|
|
|
|
|
|
/* Define the total number of thread relinquish operations. Each time a thread
|
|
relinquish operation is actually performed (another thread is setup for running)
|
|
this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_relinquish_count;
|
|
|
|
|
|
/* Define the total number of thread timeouts. Each time a thread has a
|
|
timeout this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_timeout_count;
|
|
|
|
|
|
/* Define the total number of thread wait aborts. Each time a thread's suspension
|
|
is lifted by the tx_thread_wait_abort call this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_wait_abort_count;
|
|
|
|
|
|
/* Define the total number of idle system thread returns. Each time a thread returns to
|
|
an idle system (no other thread is ready to run) this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_idle_return_count;
|
|
|
|
|
|
/* Define the total number of non-idle system thread returns. Each time a thread returns to
|
|
a non-idle system (another thread is ready to run) this variable is incremented. */
|
|
|
|
THREAD_DECLARE ULONG _tx_thread_performance_non_idle_return_count;
|
|
|
|
#endif
|
|
|
|
|
|
/* Define macros and helper functions. */
|
|
|
|
/* Define the MOD32 bit set macro that is used to set/clear a priority bit within a specific
|
|
priority group. */
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
#define MAP_INDEX (map_index)
|
|
#ifndef TX_MOD32_BIT_SET
|
|
#define TX_MOD32_BIT_SET(a,b) (b) = (((ULONG) 1) << ((a)%((UINT) 32)));
|
|
#endif
|
|
#else
|
|
#define MAP_INDEX (0)
|
|
#ifndef TX_MOD32_BIT_SET
|
|
#define TX_MOD32_BIT_SET(a,b) (b) = (((ULONG) 1) << ((a)));
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* Define the DIV32 bit set macro that is used to set/clear a priority group bit and is
|
|
only necessary when using priorities greater than 32. */
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
#ifndef TX_DIV32_BIT_SET
|
|
#define TX_DIV32_BIT_SET(a,b) (b) = (((ULONG) 1) << ((a)/((UINT) 32)));
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* Define state change macro that can be used by run-mode debug agents to keep track of thread
|
|
state changes. By default, it is mapped to white space. */
|
|
|
|
#ifndef TX_THREAD_STATE_CHANGE
|
|
#define TX_THREAD_STATE_CHANGE(a, b)
|
|
#endif
|
|
|
|
|
|
/* Define the macro to set the current thread pointer. This is particularly useful in SMP
|
|
versions of ThreadX to add additional processing. The default implementation is to simply
|
|
access the global current thread pointer directly. */
|
|
|
|
#ifndef TX_THREAD_SET_CURRENT
|
|
#define TX_THREAD_SET_CURRENT(a) TX_MEMSET(&_tx_thread_current_ptr[0], (a), sizeof(_tx_thread_current_ptr));
|
|
#endif
|
|
|
|
|
|
/* Define the get system state macro. By default, it is mapped to white space. */
|
|
|
|
#ifndef TX_THREAD_GET_SYSTEM_STATE
|
|
#define TX_THREAD_GET_SYSTEM_STATE() _tx_thread_smp_current_state_get()
|
|
#endif
|
|
|
|
|
|
/* Define the check for whether or not to call the _tx_thread_system_return function. A non-zero value
|
|
indicates that _tx_thread_system_return should not be called. */
|
|
|
|
#ifndef TX_THREAD_SYSTEM_RETURN_CHECK
|
|
#define TX_THREAD_SYSTEM_RETURN_CHECK(c) (c) = (ULONG) _tx_thread_preempt_disable; (c) = (c) | TX_THREAD_GET_SYSTEM_STATE();
|
|
#endif
|
|
|
|
|
|
/* Define the timeout setup macro used in _tx_thread_create. */
|
|
|
|
#ifndef TX_THREAD_CREATE_TIMEOUT_SETUP
|
|
#define TX_THREAD_CREATE_TIMEOUT_SETUP(t) (t) -> tx_thread_timer.tx_timer_internal_timeout_function = &(_tx_thread_timeout); \
|
|
(t) -> tx_thread_timer.tx_timer_internal_timeout_param = TX_POINTER_TO_ULONG_CONVERT((t));
|
|
#endif
|
|
|
|
|
|
/* Define the thread timeout pointer setup macro used in _tx_thread_timeout. */
|
|
|
|
#ifndef TX_THREAD_TIMEOUT_POINTER_SETUP
|
|
#define TX_THREAD_TIMEOUT_POINTER_SETUP(t) (t) = TX_ULONG_TO_THREAD_POINTER_CONVERT(timeout_input);
|
|
#endif
|
|
|
|
|
|
#ifdef TX_THREAD_SMP_SOURCE_CODE
|
|
|
|
|
|
/* Determine if the in-line capability has been disabled. */
|
|
|
|
#ifndef TX_DISABLE_INLINE
|
|
|
|
|
|
/* Define the inline option, which is compiler specific. If not defined, it will be resolved as
|
|
"inline". */
|
|
|
|
#ifndef INLINE_DECLARE
|
|
#define INLINE_DECLARE inline
|
|
#endif
|
|
|
|
|
|
/* Define the lowest bit set macro. Note, that this may be overridden
|
|
by a port specific definition if there is supporting assembly language
|
|
instructions in the architecture. */
|
|
|
|
#ifndef TX_LOWEST_SET_BIT_CALCULATE
|
|
|
|
static INLINE_DECLARE UINT _tx_thread_lowest_set_bit_calculate(ULONG map)
|
|
{
|
|
UINT bit_set;
|
|
|
|
if ((map & ((ULONG) 0x1)) != ((ULONG) 0))
|
|
{
|
|
bit_set = ((UINT) 0);
|
|
}
|
|
else
|
|
{
|
|
map = map & (ULONG) ((~map) + ((ULONG) 1));
|
|
if (map < ((ULONG) 0x100))
|
|
{
|
|
bit_set = ((UINT) 1);
|
|
}
|
|
else if (map < ((ULONG) 0x10000))
|
|
{
|
|
bit_set = ((UINT) 9);
|
|
map = map >> ((UINT) 8);
|
|
}
|
|
else if (map < ((ULONG) 0x01000000))
|
|
{
|
|
bit_set = ((UINT) 17);
|
|
map = map >> ((UINT) 16);
|
|
}
|
|
else
|
|
{
|
|
bit_set = ((UINT) 25);
|
|
map = map >> ((UINT) 24);
|
|
}
|
|
if (map >= ((ULONG) 0x10))
|
|
{
|
|
map = map >> ((UINT) 4);
|
|
bit_set = bit_set + ((UINT) 4);
|
|
}
|
|
if (map >= ((ULONG) 0x4))
|
|
{
|
|
map = map >> ((UINT) 2);
|
|
bit_set = bit_set + ((UINT) 2);
|
|
}
|
|
bit_set = bit_set - (UINT) (map & (ULONG) 0x1);
|
|
}
|
|
|
|
return(bit_set);
|
|
}
|
|
|
|
|
|
#define TX_LOWEST_SET_BIT_CALCULATE(m, b) (b) = _tx_thread_lowest_set_bit_calculate((m));
|
|
|
|
#endif
|
|
|
|
|
|
/* Define the next priority macro. Note, that this may be overridden
|
|
by a port specific definition. */
|
|
|
|
#ifndef TX_NEXT_PRIORITY_FIND
|
|
#if TX_MAX_PRIORITIES > 32
|
|
static INLINE_DECLARE UINT _tx_thread_smp_next_priority_find(UINT priority)
|
|
{
|
|
ULONG map_index;
|
|
ULONG local_priority_map_active;
|
|
ULONG local_priority_map;
|
|
ULONG priority_bit;
|
|
ULONG first_bit_set;
|
|
ULONG found_priority;
|
|
|
|
found_priority = ((UINT) TX_MAX_PRIORITIES);
|
|
if (priority < ((UINT) TX_MAX_PRIORITIES))
|
|
{
|
|
map_index = priority/((UINT) 32);
|
|
local_priority_map = _tx_thread_priority_maps[map_index];
|
|
priority_bit = (((ULONG) 1) << (priority % ((UINT) 32)));
|
|
local_priority_map = local_priority_map & ~(priority_bit - ((UINT)1));
|
|
if (local_priority_map != ((ULONG) 0))
|
|
{
|
|
TX_LOWEST_SET_BIT_CALCULATE(local_priority_map, first_bit_set)
|
|
found_priority = (map_index * ((UINT) 32)) + first_bit_set;
|
|
}
|
|
else
|
|
{
|
|
/* Move to next map index. */
|
|
map_index++;
|
|
if (map_index < (((UINT) TX_MAX_PRIORITIES)/((UINT) 32)))
|
|
{
|
|
priority_bit = (((ULONG) 1) << (map_index));
|
|
local_priority_map_active = _tx_thread_priority_map_active & ~(priority_bit - ((UINT) 1));
|
|
if (local_priority_map_active != ((ULONG) 0))
|
|
{
|
|
TX_LOWEST_SET_BIT_CALCULATE(local_priority_map_active, map_index)
|
|
local_priority_map = _tx_thread_priority_maps[map_index];
|
|
TX_LOWEST_SET_BIT_CALCULATE(local_priority_map, first_bit_set)
|
|
found_priority = (map_index * ((UINT) 32)) + first_bit_set;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return(found_priority);
|
|
}
|
|
#else
|
|
|
|
static INLINE_DECLARE UINT _tx_thread_smp_next_priority_find(UINT priority)
|
|
{
|
|
UINT first_bit_set;
|
|
ULONG local_priority_map;
|
|
UINT next_priority;
|
|
|
|
local_priority_map = _tx_thread_priority_maps[0];
|
|
local_priority_map = local_priority_map >> priority;
|
|
next_priority = priority;
|
|
if (local_priority_map == ((ULONG) 0))
|
|
{
|
|
next_priority = ((UINT) TX_MAX_PRIORITIES);
|
|
}
|
|
else
|
|
{
|
|
if (next_priority >= ((UINT) TX_MAX_PRIORITIES))
|
|
{
|
|
next_priority = ((UINT) TX_MAX_PRIORITIES);
|
|
}
|
|
else
|
|
{
|
|
TX_LOWEST_SET_BIT_CALCULATE(local_priority_map, first_bit_set)
|
|
next_priority = priority + first_bit_set;
|
|
}
|
|
}
|
|
|
|
return(next_priority);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static INLINE_DECLARE void _tx_thread_smp_schedule_list_clear(void)
|
|
{
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
UINT i;
|
|
#endif
|
|
|
|
|
|
/* Clear the schedule list. */
|
|
_tx_thread_smp_schedule_list[0] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
_tx_thread_smp_schedule_list[1] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
_tx_thread_smp_schedule_list[2] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
_tx_thread_smp_schedule_list[3] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
_tx_thread_smp_schedule_list[4] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
_tx_thread_smp_schedule_list[5] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to clear the remainder of the schedule list. */
|
|
i = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
|
|
while (i < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (i < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
/* Clear entry in schedule list. */
|
|
_tx_thread_smp_schedule_list[i] = TX_NULL;
|
|
|
|
/* Move to next index. */
|
|
i++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static INLINE_DECLARE VOID _tx_thread_smp_execute_list_clear(void)
|
|
{
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
UINT j;
|
|
#endif
|
|
|
|
/* Clear the execute list. */
|
|
_tx_thread_execute_ptr[0] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
_tx_thread_execute_ptr[1] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
_tx_thread_execute_ptr[2] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
_tx_thread_execute_ptr[3] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
_tx_thread_execute_ptr[4] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
_tx_thread_execute_ptr[5] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to clear the remainder of the execute list. */
|
|
j = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
|
|
while (j < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (j < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Clear entry in execute list. */
|
|
_tx_thread_execute_ptr[j] = TX_NULL;
|
|
|
|
/* Move to next index. */
|
|
j++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
|
|
static INLINE_DECLARE VOID _tx_thread_smp_schedule_list_setup(void)
|
|
{
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
UINT j;
|
|
#endif
|
|
|
|
_tx_thread_smp_schedule_list[0] = _tx_thread_execute_ptr[0];
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
_tx_thread_smp_schedule_list[1] = _tx_thread_execute_ptr[1];
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
_tx_thread_smp_schedule_list[2] = _tx_thread_execute_ptr[2];
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
_tx_thread_smp_schedule_list[3] = _tx_thread_execute_ptr[3];
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
_tx_thread_smp_schedule_list[4] = _tx_thread_execute_ptr[4];
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
_tx_thread_smp_schedule_list[5] = _tx_thread_execute_ptr[5];
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to setup the remainder of the schedule list. */
|
|
j = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
while (j < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (j < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Setup entry in schedule list. */
|
|
_tx_thread_smp_schedule_list[j] = _tx_thread_execute_ptr[j];
|
|
|
|
/* Move to next index. */
|
|
j++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef TX_THREAD_SMP_INTER_CORE_INTERRUPT
|
|
static INLINE_DECLARE VOID _tx_thread_smp_core_interrupt(TX_THREAD *thread_ptr, UINT current_core, UINT target_core)
|
|
{
|
|
|
|
TX_THREAD *current_thread;
|
|
|
|
|
|
/* Make sure this is a different core, since there is no need to interrupt the current core for
|
|
a scheduling change. */
|
|
if (current_core != target_core)
|
|
{
|
|
|
|
/* Yes, a different core is present. */
|
|
|
|
/* Pickup the currently executing thread. */
|
|
current_thread = _tx_thread_current_ptr[target_core];
|
|
|
|
/* Determine if they are the same. */
|
|
if ((current_thread != TX_NULL) && (thread_ptr != current_thread))
|
|
{
|
|
|
|
/* Not the same and not NULL... determine if the core is running at thread level. */
|
|
if (_tx_thread_system_state[target_core] < TX_INITIALIZE_IN_PROGRESS)
|
|
{
|
|
|
|
/* Preempt the mapped thread. */
|
|
_tx_thread_smp_core_preempt(target_core);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
|
|
/* Define to whitespace. */
|
|
#define _tx_thread_smp_core_interrupt(a,b,c)
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef TX_THREAD_SMP_WAKEUP_LOGIC
|
|
static INLINE_DECLARE VOID _tx_thread_smp_core_wakeup(UINT current_core, UINT target_core)
|
|
{
|
|
|
|
/* Determine if the core specified is not the current core - no need to wakeup the
|
|
current core. */
|
|
if (target_core != current_core)
|
|
{
|
|
|
|
/* Wakeup based on application's macro. */
|
|
TX_THREAD_SMP_WAKEUP(target_core);
|
|
}
|
|
}
|
|
#else
|
|
|
|
/* Define to whitespace. */
|
|
#define _tx_thread_smp_core_wakeup(a,b)
|
|
|
|
#endif
|
|
|
|
|
|
static INLINE_DECLARE VOID _tx_thread_smp_execute_list_setup(UINT core_index)
|
|
{
|
|
|
|
TX_THREAD *schedule_thread;
|
|
UINT i;
|
|
|
|
|
|
/* Loop to copy the schedule list into the execution list. */
|
|
i = ((UINT) 0);
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
|
|
while (i < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (i < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Pickup the thread to schedule. */
|
|
schedule_thread = _tx_thread_smp_schedule_list[i];
|
|
|
|
/* Copy the schedule list into the execution list. */
|
|
_tx_thread_execute_ptr[i] = schedule_thread;
|
|
|
|
/* If necessary, interrupt the core with the new thread to schedule. */
|
|
_tx_thread_smp_core_interrupt(schedule_thread, core_index, i);
|
|
|
|
#ifdef TX_THREAD_SMP_WAKEUP_LOGIC
|
|
|
|
/* Does this need to be waked up? */
|
|
if ((i != core_index) && (schedule_thread != TX_NULL))
|
|
{
|
|
|
|
/* Wakeup based on application's macro. */
|
|
TX_THREAD_SMP_WAKEUP(i);
|
|
}
|
|
#endif
|
|
/* Move to next index. */
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
static INLINE_DECLARE ULONG _tx_thread_smp_available_cores_get(void)
|
|
{
|
|
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
UINT j;
|
|
#endif
|
|
ULONG available_cores;
|
|
|
|
available_cores = ((ULONG) 0);
|
|
if (_tx_thread_execute_ptr[0] == TX_NULL)
|
|
{
|
|
available_cores = ((ULONG) 1);
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
if (_tx_thread_execute_ptr[1] == TX_NULL)
|
|
{
|
|
available_cores = available_cores | ((ULONG) 2);
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
if (_tx_thread_execute_ptr[2] == TX_NULL)
|
|
{
|
|
available_cores = available_cores | ((ULONG) 4);
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
if (_tx_thread_execute_ptr[3] == TX_NULL)
|
|
{
|
|
available_cores = available_cores | ((ULONG) 8);
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
if (_tx_thread_execute_ptr[4] == TX_NULL)
|
|
{
|
|
available_cores = available_cores | ((ULONG) 0x10);
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
if (_tx_thread_execute_ptr[5] == TX_NULL)
|
|
{
|
|
available_cores = available_cores | ((ULONG) 0x20);
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to setup the remainder of the schedule list. */
|
|
j = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
while (j < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (j < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Determine if this core is available. */
|
|
if (_tx_thread_execute_ptr[j] == TX_NULL)
|
|
{
|
|
available_cores = available_cores | (((ULONG) 1) << j);
|
|
}
|
|
|
|
/* Move to next core. */
|
|
j++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
return(available_cores);
|
|
}
|
|
|
|
|
|
static INLINE_DECLARE ULONG _tx_thread_smp_possible_cores_get(void)
|
|
{
|
|
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
UINT j;
|
|
#endif
|
|
ULONG possible_cores;
|
|
TX_THREAD *thread_ptr;
|
|
|
|
possible_cores = ((ULONG) 0);
|
|
thread_ptr = _tx_thread_execute_ptr[0];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
thread_ptr = _tx_thread_execute_ptr[1];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
thread_ptr = _tx_thread_execute_ptr[2];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
thread_ptr = _tx_thread_execute_ptr[3];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
thread_ptr = _tx_thread_execute_ptr[4];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
thread_ptr = _tx_thread_execute_ptr[5];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to setup the remainder of the schedule list. */
|
|
j = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
while (j < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (j < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Determine if this core is available. */
|
|
thread_ptr = _tx_thread_execute_ptr[j];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
}
|
|
|
|
/* Move to next core. */
|
|
j++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
return(possible_cores);
|
|
}
|
|
|
|
|
|
static INLINE_DECLARE UINT _tx_thread_smp_lowest_priority_get(void)
|
|
{
|
|
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
UINT j;
|
|
#endif
|
|
TX_THREAD *thread_ptr;
|
|
UINT lowest_priority;
|
|
|
|
lowest_priority = ((UINT) 0);
|
|
thread_ptr = _tx_thread_execute_ptr[0];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
thread_ptr = _tx_thread_execute_ptr[1];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
thread_ptr = _tx_thread_execute_ptr[2];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
thread_ptr = _tx_thread_execute_ptr[3];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
thread_ptr = _tx_thread_execute_ptr[4];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
thread_ptr = _tx_thread_execute_ptr[5];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to setup the remainder of the schedule list. */
|
|
j = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
while (j < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (j < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Determine if this core has a thread scheduled. */
|
|
thread_ptr = _tx_thread_execute_ptr[j];
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
|
|
/* Is this the new lowest priority? */
|
|
if (thread_ptr -> tx_thread_priority > lowest_priority)
|
|
{
|
|
lowest_priority = thread_ptr -> tx_thread_priority;
|
|
}
|
|
}
|
|
|
|
/* Move to next core. */
|
|
j++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
return(lowest_priority);
|
|
}
|
|
|
|
|
|
static INLINE_DECLARE UINT _tx_thread_smp_remap_solution_find(TX_THREAD *schedule_thread, ULONG available_cores, ULONG thread_possible_cores, ULONG test_possible_cores)
|
|
{
|
|
|
|
UINT core;
|
|
UINT previous_core;
|
|
ULONG test_cores;
|
|
ULONG last_thread_cores;
|
|
UINT queue_first, queue_last;
|
|
UINT core_queue[TX_THREAD_SMP_MAX_CORES-1];
|
|
TX_THREAD *thread_ptr;
|
|
TX_THREAD *last_thread;
|
|
TX_THREAD *thread_remap_list[TX_THREAD_SMP_MAX_CORES];
|
|
|
|
|
|
/* Clear the last thread cores in the search. */
|
|
last_thread_cores = ((ULONG) 0);
|
|
|
|
/* Set the last thread pointer to NULL. */
|
|
last_thread = TX_NULL;
|
|
|
|
/* Setup the core queue indices. */
|
|
queue_first = ((UINT) 0);
|
|
queue_last = ((UINT) 0);
|
|
|
|
/* Build a list of possible cores for this thread to execute on, starting
|
|
with the previously mapped core. */
|
|
core = schedule_thread -> tx_thread_smp_core_mapped;
|
|
if ((thread_possible_cores & (((ULONG) 1) << core)) != ((ULONG) 0))
|
|
{
|
|
|
|
/* Remember this potential mapping. */
|
|
thread_remap_list[core] = schedule_thread;
|
|
core_queue[queue_last] = core;
|
|
|
|
/* Move to next slot. */
|
|
queue_last++;
|
|
|
|
/* Clear this core. */
|
|
thread_possible_cores = thread_possible_cores & ~(((ULONG) 1) << core);
|
|
}
|
|
|
|
/* Loop to add additional possible cores. */
|
|
while (thread_possible_cores != ((ULONG) 0))
|
|
{
|
|
|
|
/* Determine the first possible core. */
|
|
test_cores = thread_possible_cores;
|
|
TX_LOWEST_SET_BIT_CALCULATE(test_cores, core)
|
|
|
|
/* Clear this core. */
|
|
thread_possible_cores = thread_possible_cores & ~(((ULONG) 1) << core);
|
|
|
|
/* Remember this potential mapping. */
|
|
thread_remap_list[core] = schedule_thread;
|
|
core_queue[queue_last] = core;
|
|
|
|
/* Move to next slot. */
|
|
queue_last++;
|
|
}
|
|
|
|
/* Loop to evaluate the potential thread mappings, against what is already mapped. */
|
|
do
|
|
{
|
|
|
|
/* Pickup the next entry. */
|
|
core = core_queue[queue_first];
|
|
|
|
/* Move to next slot. */
|
|
queue_first++;
|
|
|
|
/* Retrieve the thread from the current mapping. */
|
|
thread_ptr = _tx_thread_smp_schedule_list[core];
|
|
|
|
/* Determine if there is a thread currently mapped to this core. */
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
|
|
/* Determine the cores available for this thread. */
|
|
thread_possible_cores = thread_ptr -> tx_thread_smp_cores_allowed;
|
|
thread_possible_cores = test_possible_cores & thread_possible_cores;
|
|
|
|
/* Are there any possible cores for this thread? */
|
|
if (thread_possible_cores != ((ULONG) 0))
|
|
{
|
|
|
|
/* Determine if there are cores available for this thread. */
|
|
if ((thread_possible_cores & available_cores) != ((ULONG) 0))
|
|
{
|
|
|
|
/* Yes, remember the final thread and cores that are valid for this thread. */
|
|
last_thread_cores = thread_possible_cores & available_cores;
|
|
last_thread = thread_ptr;
|
|
|
|
/* We are done - get out of the loop! */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Remove cores that will be added to the list. */
|
|
test_possible_cores = test_possible_cores & ~(thread_possible_cores);
|
|
|
|
/* Loop to add this thread to the potential mapping list. */
|
|
do
|
|
{
|
|
|
|
/* Calculate the core. */
|
|
test_cores = thread_possible_cores;
|
|
TX_LOWEST_SET_BIT_CALCULATE(test_cores, core)
|
|
|
|
/* Clear this core. */
|
|
thread_possible_cores = thread_possible_cores & ~(((ULONG) 1) << core);
|
|
|
|
/* Remember this thread for remapping. */
|
|
thread_remap_list[core] = thread_ptr;
|
|
|
|
/* Remember this core. */
|
|
core_queue[queue_last] = core;
|
|
|
|
/* Move to next slot. */
|
|
queue_last++;
|
|
|
|
} while (thread_possible_cores != ((ULONG) 0));
|
|
}
|
|
}
|
|
}
|
|
} while (queue_first != queue_last);
|
|
|
|
/* Was a remapping solution found? */
|
|
if (last_thread != TX_NULL)
|
|
{
|
|
|
|
/* Pickup the core of the last thread to remap. */
|
|
core = last_thread -> tx_thread_smp_core_mapped;
|
|
|
|
/* Pickup the thread from the remapping list. */
|
|
thread_ptr = thread_remap_list[core];
|
|
|
|
/* Loop until we arrive at the thread we have been trying to map. */
|
|
while (thread_ptr != schedule_thread)
|
|
{
|
|
|
|
/* Move this thread in the schedule list. */
|
|
_tx_thread_smp_schedule_list[core] = thread_ptr;
|
|
|
|
/* Remember the previous core. */
|
|
previous_core = core;
|
|
|
|
/* Pickup the core of thread to remap. */
|
|
core = thread_ptr -> tx_thread_smp_core_mapped;
|
|
|
|
/* Save the new core mapping for this thread. */
|
|
thread_ptr -> tx_thread_smp_core_mapped = previous_core;
|
|
|
|
/* Move the next thread. */
|
|
thread_ptr = thread_remap_list[core];
|
|
}
|
|
|
|
/* Save the remaining thread in the updated schedule list. */
|
|
_tx_thread_smp_schedule_list[core] = thread_ptr;
|
|
|
|
/* Update this thread's core mapping. */
|
|
thread_ptr -> tx_thread_smp_core_mapped = core;
|
|
|
|
/* Finally, setup the last thread in the remapping solution. */
|
|
test_cores = last_thread_cores;
|
|
TX_LOWEST_SET_BIT_CALCULATE(test_cores, core)
|
|
|
|
/* Setup the last thread. */
|
|
_tx_thread_smp_schedule_list[core] = last_thread;
|
|
|
|
/* Remember the core mapping for this thread. */
|
|
last_thread -> tx_thread_smp_core_mapped = core;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Set core to the maximum value in order to signal a remapping solution was not found. */
|
|
core = ((UINT) TX_THREAD_SMP_MAX_CORES);
|
|
}
|
|
|
|
/* Return core to the caller. */
|
|
return(core);
|
|
}
|
|
|
|
|
|
static INLINE_DECLARE ULONG _tx_thread_smp_preemptable_threads_get(UINT priority, TX_THREAD *possible_preemption_list[])
|
|
{
|
|
|
|
UINT i, j, k;
|
|
TX_THREAD *thread_ptr;
|
|
TX_THREAD *next_thread;
|
|
TX_THREAD *search_thread;
|
|
TX_THREAD *list_head;
|
|
ULONG possible_cores = ((ULONG) 0);
|
|
|
|
|
|
/* Clear the possible preemption list. */
|
|
possible_preemption_list[0] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 1
|
|
possible_preemption_list[1] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 2
|
|
possible_preemption_list[2] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 3
|
|
possible_preemption_list[3] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 4
|
|
possible_preemption_list[4] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 5
|
|
possible_preemption_list[5] = TX_NULL;
|
|
#if TX_THREAD_SMP_MAX_CORES > 6
|
|
|
|
/* Loop to clear the remainder of the possible preemption list. */
|
|
j = ((UINT) 6);
|
|
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
|
|
while (j < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (j < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Clear entry in possible preemption list. */
|
|
possible_preemption_list[j] = TX_NULL;
|
|
|
|
/* Move to next core. */
|
|
j++;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
/* Loop to build a list of threads of less priority. */
|
|
i = ((UINT) 0);
|
|
j = ((UINT) 0);
|
|
#ifndef TX_THREAD_SMP_DYNAMIC_CORE_MAX
|
|
while (i < ((UINT) TX_THREAD_SMP_MAX_CORES))
|
|
#else
|
|
|
|
while (i < _tx_thread_smp_max_cores)
|
|
#endif
|
|
{
|
|
|
|
/* Pickup the currently mapped thread. */
|
|
thread_ptr = _tx_thread_execute_ptr[i];
|
|
|
|
/* Is there a thread scheduled for this core? */
|
|
if (thread_ptr != TX_NULL)
|
|
{
|
|
|
|
/* Update the possible cores bit map. */
|
|
possible_cores = possible_cores | thread_ptr -> tx_thread_smp_cores_allowed;
|
|
|
|
/* Can this thread be preempted? */
|
|
if (priority < thread_ptr -> tx_thread_priority)
|
|
{
|
|
|
|
/* Thread that can be added to the preemption possible list. */
|
|
|
|
/* Yes, this scheduled thread is lower priority, so add it to the preemption possible list. */
|
|
possible_preemption_list[j] = thread_ptr;
|
|
|
|
/* Move to next entry in preemption possible list. */
|
|
j++;
|
|
}
|
|
}
|
|
|
|
/* Move to next core. */
|
|
i++;
|
|
}
|
|
|
|
/* Check to see if there are more than 2 threads that can be preempted. */
|
|
if (j > ((UINT) 1))
|
|
{
|
|
|
|
/* Yes, loop through the preemption possible list and sort by priority. */
|
|
i = ((UINT) 0);
|
|
do
|
|
{
|
|
|
|
/* Pickup preemptable thread. */
|
|
thread_ptr = possible_preemption_list[i];
|
|
|
|
/* Initialize the search index. */
|
|
k = i + ((UINT) 1);
|
|
|
|
/* Loop to get the lowest priority thread at the front of the list. */
|
|
while (k < j)
|
|
{
|
|
|
|
/* Pickup the next thread to evaluate. */
|
|
next_thread = possible_preemption_list[k];
|
|
|
|
/* Is this thread lower priority? */
|
|
if (next_thread -> tx_thread_priority > thread_ptr -> tx_thread_priority)
|
|
{
|
|
|
|
/* Yes, swap the threads. */
|
|
possible_preemption_list[i] = next_thread;
|
|
possible_preemption_list[k] = thread_ptr;
|
|
thread_ptr = next_thread;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Compare the thread priorities. */
|
|
if (next_thread -> tx_thread_priority == thread_ptr -> tx_thread_priority)
|
|
{
|
|
|
|
/* Equal priority threads... see which is in the ready list first. */
|
|
search_thread = thread_ptr -> tx_thread_ready_next;
|
|
|
|
/* Pickup the list head. */
|
|
list_head = _tx_thread_priority_list[thread_ptr -> tx_thread_priority];
|
|
|
|
/* Now loop to see if the next thread is after the current thread preemption. */
|
|
while (search_thread != list_head)
|
|
{
|
|
|
|
/* Have we found the next thread? */
|
|
if (search_thread == next_thread)
|
|
{
|
|
|
|
/* Yes, swap the threads. */
|
|
possible_preemption_list[i] = next_thread;
|
|
possible_preemption_list[k] = thread_ptr;
|
|
thread_ptr = next_thread;
|
|
break;
|
|
}
|
|
|
|
/* Move to the next thread. */
|
|
search_thread = search_thread -> tx_thread_ready_next;
|
|
}
|
|
}
|
|
|
|
/* Move to examine the next possible preemptable thread. */
|
|
k++;
|
|
}
|
|
}
|
|
|
|
/* We have found the lowest priority thread to preempt, now find the next lowest. */
|
|
i++;
|
|
}
|
|
while (i < (j-((UINT) 1)));
|
|
}
|
|
|
|
/* Return the possible cores. */
|
|
return(possible_cores);
|
|
}
|
|
|
|
static INLINE_DECLARE VOID _tx_thread_smp_simple_priority_change(TX_THREAD *thread_ptr, UINT new_priority)
|
|
{
|
|
|
|
UINT priority;
|
|
ULONG priority_bit;
|
|
TX_THREAD *head_ptr;
|
|
TX_THREAD *tail_ptr;
|
|
#if TX_MAX_PRIORITIES > 32
|
|
UINT map_index;
|
|
#endif
|
|
|
|
/* Pickup the priority. */
|
|
priority = thread_ptr -> tx_thread_priority;
|
|
|
|
/* Determine if there are other threads at this priority that are
|
|
ready. */
|
|
if (thread_ptr -> tx_thread_ready_next != thread_ptr)
|
|
{
|
|
|
|
/* Yes, there are other threads at this priority ready. */
|
|
|
|
/* Just remove this thread from the priority list. */
|
|
(thread_ptr -> tx_thread_ready_next) -> tx_thread_ready_previous = thread_ptr -> tx_thread_ready_previous;
|
|
(thread_ptr -> tx_thread_ready_previous) -> tx_thread_ready_next = thread_ptr -> tx_thread_ready_next;
|
|
|
|
/* Determine if this is the head of the priority list. */
|
|
if (_tx_thread_priority_list[priority] == thread_ptr)
|
|
{
|
|
|
|
/* Update the head pointer of this priority list. */
|
|
_tx_thread_priority_list[priority] = thread_ptr -> tx_thread_ready_next;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/* This is the only thread at this priority ready to run. Set the head
|
|
pointer to NULL. */
|
|
_tx_thread_priority_list[priority] = TX_NULL;
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
|
|
/* Calculate the index into the bit map array. */
|
|
map_index = priority/((UINT) 32);
|
|
#endif
|
|
|
|
/* Clear this priority bit in the ready priority bit map. */
|
|
TX_MOD32_BIT_SET(priority, priority_bit)
|
|
_tx_thread_priority_maps[MAP_INDEX] = _tx_thread_priority_maps[MAP_INDEX] & (~(priority_bit));
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
|
|
/* Determine if there are any other bits set in this priority map. */
|
|
if (_tx_thread_priority_maps[MAP_INDEX] == ((ULONG) 0))
|
|
{
|
|
|
|
/* No, clear the active bit to signify this priority map has nothing set. */
|
|
TX_DIV32_BIT_SET(priority, priority_bit)
|
|
_tx_thread_priority_map_active = _tx_thread_priority_map_active & (~(priority_bit));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Determine if the actual thread priority should be setup, which is the
|
|
case if the new priority is higher than the priority inheritance. */
|
|
if (new_priority < thread_ptr -> tx_thread_inherit_priority)
|
|
{
|
|
|
|
/* Change thread priority to the new user's priority. */
|
|
thread_ptr -> tx_thread_priority = new_priority;
|
|
thread_ptr -> tx_thread_preempt_threshold = new_priority;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Change thread priority to the priority inheritance. */
|
|
thread_ptr -> tx_thread_priority = thread_ptr -> tx_thread_inherit_priority;
|
|
thread_ptr -> tx_thread_preempt_threshold = thread_ptr -> tx_thread_inherit_priority;
|
|
}
|
|
|
|
/* Now, place the thread at the new priority level. */
|
|
|
|
/* Determine if there are other threads at this priority that are
|
|
ready. */
|
|
head_ptr = _tx_thread_priority_list[new_priority];
|
|
if (head_ptr != TX_NULL)
|
|
{
|
|
|
|
/* Yes, there are other threads at this priority already ready. */
|
|
|
|
/* Just add this thread to the priority list. */
|
|
tail_ptr = head_ptr -> tx_thread_ready_previous;
|
|
tail_ptr -> tx_thread_ready_next = thread_ptr;
|
|
head_ptr -> tx_thread_ready_previous = thread_ptr;
|
|
thread_ptr -> tx_thread_ready_previous = tail_ptr;
|
|
thread_ptr -> tx_thread_ready_next = head_ptr;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* First thread at this priority ready. Add to the front of the list. */
|
|
_tx_thread_priority_list[new_priority] = thread_ptr;
|
|
thread_ptr -> tx_thread_ready_next = thread_ptr;
|
|
thread_ptr -> tx_thread_ready_previous = thread_ptr;
|
|
|
|
#if TX_MAX_PRIORITIES > 32
|
|
|
|
/* Calculate the index into the bit map array. */
|
|
map_index = new_priority/((UINT) 32);
|
|
|
|
/* Set the active bit to remember that the priority map has something set. */
|
|
TX_DIV32_BIT_SET(new_priority, priority_bit)
|
|
_tx_thread_priority_map_active = _tx_thread_priority_map_active | priority_bit;
|
|
#endif
|
|
|
|
/* Or in the thread's priority bit. */
|
|
TX_MOD32_BIT_SET(new_priority, priority_bit)
|
|
_tx_thread_priority_maps[MAP_INDEX] = _tx_thread_priority_maps[MAP_INDEX] | priority_bit;
|
|
}
|
|
}
|
|
#else
|
|
|
|
/* In-line was disabled. All of the above helper fuctions must be defined as actual functions. */
|
|
|
|
UINT _tx_thread_lowest_set_bit_calculate(ULONG map);
|
|
#define TX_LOWEST_SET_BIT_CALCULATE(m, b) (b) = _tx_thread_lowest_set_bit_calculate((m));
|
|
|
|
UINT _tx_thread_smp_next_priority_find(UINT priority);
|
|
VOID _tx_thread_smp_schedule_list_clear(void);
|
|
VOID _tx_thread_smp_execute_list_clear(void);
|
|
VOID _tx_thread_smp_schedule_list_setup(void);
|
|
|
|
#ifdef TX_THREAD_SMP_INTER_CORE_INTERRUPT
|
|
VOID _tx_thread_smp_core_interrupt(TX_THREAD *thread_ptr, UINT current_core, UINT target_core);
|
|
#else
|
|
/* Define to whitespace. */
|
|
#define _tx_thread_smp_core_interrupt(a,b,c)
|
|
#endif
|
|
|
|
#ifdef TX_THREAD_SMP_WAKEUP_LOGIC
|
|
VOID _tx_thread_smp_core_wakeup(UINT current_core, UINT target_core);
|
|
#else
|
|
/* Define to whitespace. */
|
|
#define _tx_thread_smp_core_wakeup(a,b)
|
|
#endif
|
|
|
|
VOID _tx_thread_smp_execute_list_setup(UINT core_index);
|
|
ULONG _tx_thread_smp_available_cores_get(void);
|
|
ULONG _tx_thread_smp_possible_cores_get(void);
|
|
UINT _tx_thread_smp_lowest_priority_get(void);
|
|
UINT _tx_thread_smp_remap_solution_find(TX_THREAD *schedule_thread, ULONG available_cores, ULONG thread_possible_cores, ULONG test_possible_cores);
|
|
ULONG _tx_thread_smp_preemptable_threads_get(UINT priority, TX_THREAD *possible_preemption_list[]);
|
|
VOID _tx_thread_smp_simple_priority_change(TX_THREAD *thread_ptr, UINT new_priority);
|
|
|
|
#endif
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|