tinyusb/hw/bsp/double_m33_express/double_m33_express.c

401 lines
14 KiB
C
Raw Normal View History

2021-01-02 22:53:15 +00:00
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "../board.h"
#include "fsl_device_registers.h"
#include "fsl_gpio.h"
#include "fsl_power.h"
#include "fsl_iocon.h"
#include "fsl_sctimer.h"
2021-01-02 22:53:15 +00:00
//--------------------------------------------------------------------+
// Forward USB interrupt events to TinyUSB IRQ Handler
//--------------------------------------------------------------------+
void USB0_IRQHandler(void)
{
tud_int_handler(0);
}
void USB1_IRQHandler(void)
{
tud_int_handler(1);
}
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
#define LED_PORT 0
#define LED_PIN 1
#define LED_STATE_ON 1
// WAKE button
#define BUTTON_PORT 0
#define BUTTON_PIN 5
#define BUTTON_STATE_ACTIVE 0
// Number of neopixels
#define NEOPIXEL_NUMBER 2
#define NEOPIXEL_PORT 0
#define NEOPIXEL_PIN 27
// UART
#define UART_DEV USART0
2021-01-02 22:53:15 +00:00
// IOCON pin mux
#define IOCON_PIO_DIGITAL_EN 0x0100u /*!<@brief Enables digital function */
#define IOCON_PIO_FUNC0 0x00u /*!<@brief Selects pin function 0 */
#define IOCON_PIO_FUNC1 0x01u /*!<@brief Selects pin function 1 */
#define IOCON_PIO_FUNC4 0x04u /*!<@brief Selects pin function 4 */
2021-01-02 22:53:15 +00:00
#define IOCON_PIO_FUNC7 0x07u /*!<@brief Selects pin function 7 */
#define IOCON_PIO_INV_DI 0x00u /*!<@brief Input function is not inverted */
#define IOCON_PIO_MODE_INACT 0x00u /*!<@brief No addition pin function */
#define IOCON_PIO_OPENDRAIN_DI 0x00u /*!<@brief Open drain is disabled */
#define IOCON_PIO_SLEW_STANDARD 0x00u /*!<@brief Standard mode, output slew rate control is enabled */
#define IOCON_PIO_DIG_FUNC0_EN (IOCON_PIO_DIGITAL_EN | IOCON_PIO_FUNC0) /*!<@brief Digital pin function 0 enabled */
#define IOCON_PIO_DIG_FUNC1_EN (IOCON_PIO_DIGITAL_EN | IOCON_PIO_FUNC1) /*!<@brief Digital pin function 1 enabled */
#define IOCON_PIO_DIG_FUNC4_EN (IOCON_PIO_DIGITAL_EN | IOCON_PIO_FUNC4) /*!<@brief Digital pin function 2 enabled */
#define IOCON_PIO_DIG_FUNC7_EN (IOCON_PIO_DIGITAL_EN | IOCON_PIO_FUNC7) /*!<@brief Digital pin function 2 enabled */
//--------------------------------------------------------------------+
// Neopixel Driver
//--------------------------------------------------------------------+
#define NEO_SCT SCT0
#define NEO_MATCH_PERIOD 0
#define NEO_MATCH_0 1
#define NEO_MATCH_1 2
#define NEO_EVENT_RISE 2
#define NEO_EVENT_FALL_0 0
#define NEO_EVENT_FALL_1 1
#define NEO_EVENT_NEXT 3
#define NEO_EVENT_START 4
#define NEO_SCT_OUTPUT 6
2021-01-03 23:01:18 +00:00
#define NEO_STATE_IDLE 24
//#define NEO_ARRAY_SIZE (3 * NEOPIXEL_NUMBER)
2021-01-03 23:01:18 +00:00
//volatile uint32_t _neopixel_array[NEO_ARRAY_SIZE] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60};
volatile uint32_t _neopixel_array[NEOPIXEL_NUMBER] = {0x404040, 0x202020};
volatile uint32_t _neopixel_count = 0;
2021-01-03 23:26:54 +00:00
void neopixel_int_handler(void){
uint32_t eventFlag = NEO_SCT->EVFLAG;
if (eventFlag & (1 << NEO_EVENT_NEXT)) {
_neopixel_count += 1;
if (_neopixel_count < (NEOPIXEL_NUMBER)) {
NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0xFFFFFF & (~_neopixel_array[_neopixel_count]);
NEO_SCT->CTRL &= ~(SCT_CTRL_HALT_L_MASK);
}
}
NEO_SCT->EVFLAG = eventFlag;
}
void SCT0_DriverIRQHandler(void){
neopixel_int_handler();
SDK_ISR_EXIT_BARRIER;
}
void neopixel_set(uint32_t pixel, uint32_t color){
if (pixel < NEOPIXEL_NUMBER) {
_neopixel_array[pixel] = color;
}
}
void neopixel_update(void){
// while (NEO_SCT->CTRL & SCT_CTRL_HALT_L_MASK);
_neopixel_count = 0;
NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0xFFFFFF & (~_neopixel_array[0]);
NEO_SCT->CTRL &= ~(SCT_CTRL_HALT_L_MASK);
}
/*
void neopixel_int_handler(void){
uint32_t eventFlag = NEO_SCT->EVFLAG;
2021-01-03 23:01:18 +00:00
// if ((eventFlag & (1 << NEO_EVENT_NEXT)) && (_neopixel_count < (NEO_ARRAY_SIZE))) {
// NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0xFF & (~_neopixel_array[_neopixel_count]);
if ((eventFlag & (1 << NEO_EVENT_NEXT)) && (_neopixel_count < (NEOPIXEL_NUMBER))) {
_neopixel_count += 1;
2021-01-03 23:01:18 +00:00
NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0xFFFFFF & (~_neopixel_array[_neopixel_count]);
NEO_SCT->EVFLAG = eventFlag;
NEO_SCT->CTRL &= ~(SCT_CTRL_HALT_L_MASK);
} else {
NEO_SCT->EVFLAG = eventFlag;
}
}
void SCT0_DriverIRQHandler(void){
neopixel_int_handler();
SDK_ISR_EXIT_BARRIER;
}
void neopixel_update(uint32_t pixel, uint32_t color){
if (pixel < NEOPIXEL_NUMBER) {
2021-01-03 23:01:18 +00:00
_neopixel_array[pixel] = color;
_neopixel_count = 0;
2021-01-03 23:01:18 +00:00
// NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0xFF & (~_neopixel_array[0]);
NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0xFFFFFF & (~_neopixel_array[0]);
NEO_SCT->CTRL &= ~(SCT_CTRL_HALT_L_MASK);
}
}
2021-01-03 23:26:54 +00:00
*/
void neopixel_init(void) {
CLOCK_EnableClock(kCLOCK_Sct0);
RESET_PeripheralReset(kSCT0_RST_SHIFT_RSTn);
NEO_SCT->CONFIG = (
SCT_CONFIG_UNIFY(1) |
SCT_CONFIG_CLKMODE(kSCTIMER_System_ClockMode) |
SCT_CONFIG_NORELOAD_L(1) );
NEO_SCT->CTRL = (
SCT_CTRL_HALT_L(1) |
SCT_CTRL_CLRCTR_L(1) );
NEO_SCT->MATCH[NEO_MATCH_PERIOD] = 120;
NEO_SCT->MATCH[NEO_MATCH_0] = 30;
NEO_SCT->MATCH[NEO_MATCH_1] = 60;
NEO_SCT->EV[NEO_EVENT_START].STATE = (1 << NEO_STATE_IDLE);
NEO_SCT->EV[NEO_EVENT_START].CTRL = (
kSCTIMER_OutputLowEvent | SCT_EV_CTRL_IOSEL(NEO_SCT_OUTPUT) |
2021-01-03 23:01:18 +00:00
SCT_EV_CTRL_STATELD(1) | SCT_EV_CTRL_STATEV(23));
// NEO_SCT->EV[NEO_EVENT_RISE].STATE = 0xFE;
NEO_SCT->EV[NEO_EVENT_RISE].STATE = 0xFFFFFE;
NEO_SCT->EV[NEO_EVENT_RISE].CTRL = (
kSCTIMER_MatchEventOnly | SCT_EV_CTRL_MATCHSEL(NEO_MATCH_PERIOD) |
SCT_EV_CTRL_STATELD(0) | SCT_EV_CTRL_STATEV(31));
NEO_SCT->EV[NEO_EVENT_FALL_0].STATE = 0x0;
NEO_SCT->EV[NEO_EVENT_FALL_0].CTRL = (
kSCTIMER_MatchEventOnly | SCT_EV_CTRL_MATCHSEL(NEO_MATCH_0) |
2021-01-03 23:01:18 +00:00
SCT_EV_CTRL_STATELD(0) );
// NEO_SCT->EV[NEO_EVENT_FALL_1].STATE = 0xFF;
NEO_SCT->EV[NEO_EVENT_FALL_1].STATE = 0xFFFFFF;
NEO_SCT->EV[NEO_EVENT_FALL_1].CTRL = (
kSCTIMER_MatchEventOnly | SCT_EV_CTRL_MATCHSEL(NEO_MATCH_1) |
2021-01-03 23:01:18 +00:00
SCT_EV_CTRL_STATELD(0) );
NEO_SCT->EV[NEO_EVENT_NEXT].STATE = 0x1;
NEO_SCT->EV[NEO_EVENT_NEXT].CTRL = (
kSCTIMER_MatchEventOnly | SCT_EV_CTRL_MATCHSEL(NEO_MATCH_PERIOD) |
SCT_EV_CTRL_STATELD(1) | SCT_EV_CTRL_STATEV(NEO_STATE_IDLE));
2021-01-03 23:01:18 +00:00
NEO_SCT->LIMIT = (1 << NEO_EVENT_START) | (1 << NEO_EVENT_RISE) | (1 << NEO_EVENT_NEXT);
NEO_SCT->HALT = (1 << NEO_EVENT_NEXT);
NEO_SCT->START = (1 << NEO_EVENT_START);
NEO_SCT->OUT[NEO_SCT_OUTPUT].SET = (1 << NEO_EVENT_START) | (1 << NEO_EVENT_RISE);
2021-01-03 23:01:18 +00:00
NEO_SCT->OUT[NEO_SCT_OUTPUT].CLR = (1 << NEO_EVENT_FALL_0) | (1 << NEO_EVENT_FALL_1) | (1 << NEO_EVENT_NEXT);
NEO_SCT->STATE = NEO_STATE_IDLE;
NEO_SCT->OUTPUT = 0x0;
NEO_SCT->RES = SCT_RES_O6RES(0x2);
NEO_SCT->EVEN = (1 << NEO_EVENT_NEXT);
EnableIRQ(SCT0_IRQn);
2021-01-03 23:26:54 +00:00
neopixel_set(0, 0x101000);
neopixel_set(1, 0x101000);
neopixel_update();
}
2021-01-02 22:53:15 +00:00
/****************************************************************
name: BOARD_BootClockFROHF96M
outputs:
- {id: SYSTICK_clock.outFreq, value: 96 MHz}
- {id: System_clock.outFreq, value: 96 MHz}
settings:
- {id: SYSCON.MAINCLKSELA.sel, value: SYSCON.fro_hf}
sources:
- {id: SYSCON.fro_hf.outFreq, value: 96 MHz}
******************************************************************/
void BootClockFROHF96M(void)
{
/*!< Set up the clock sources */
/*!< Set up FRO */
POWER_DisablePD(kPDRUNCFG_PD_FRO192M); /*!< Ensure FRO is on */
CLOCK_SetupFROClocking(12000000U); /*!< Set up FRO to the 12 MHz, just for sure */
CLOCK_AttachClk(kFRO12M_to_MAIN_CLK); /*!< Switch to FRO 12MHz first to ensure we can change voltage without
accidentally being below the voltage for current speed */
CLOCK_SetupFROClocking(96000000U); /*!< Set up high frequency FRO output to selected frequency */
POWER_SetVoltageForFreq(96000000U); /*!< Set voltage for the one of the fastest clock outputs: System clock output */
CLOCK_SetFLASHAccessCyclesForFreq(96000000U); /*!< Set FLASH wait states for core */
/*!< Set up dividers */
CLOCK_SetClkDiv(kCLOCK_DivAhbClk, 1U, false); /*!< Set AHBCLKDIV divider to value 1 */
/*!< Set up clock selectors - Attach clocks to the peripheries */
CLOCK_AttachClk(kFRO_HF_to_MAIN_CLK); /*!< Switch MAIN_CLK to FRO_HF */
/*!< Set SystemCoreClock variable. */
SystemCoreClock = 96000000U;
}
void board_init(void)
{
// Enable IOCON clock
CLOCK_EnableClock(kCLOCK_Iocon);
// Init 96 MHz clock
BootClockFROHF96M();
#if CFG_TUSB_OS == OPT_OS_NONE
// 1ms tick timer
SysTick_Config(SystemCoreClock / 1000);
#elif CFG_TUSB_OS == OPT_OS_FREERTOS
// If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher )
NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
#endif
GPIO_PortInit(GPIO, 0);
GPIO_PortInit(GPIO, 1);
2021-01-02 22:53:15 +00:00
// LED
/* PORT0 PIN1 configured as PIO0_1 */
IOCON_PinMuxSet(IOCON, 0U, 1U, IOCON_PIO_DIG_FUNC0_EN);
gpio_pin_config_t const led_config = { kGPIO_DigitalOutput, 1};
2021-01-02 22:53:15 +00:00
GPIO_PinInit(GPIO, LED_PORT, LED_PIN, &led_config);
// Neopixel
/* PORT0 PIN27 configured as SCT0_OUT6 */
IOCON_PinMuxSet(IOCON, NEOPIXEL_PORT, NEOPIXEL_PIN, IOCON_PIO_DIG_FUNC4_EN);
neopixel_init();
2021-01-02 22:53:15 +00:00
// Button
/* PORT0 PIN5 configured as PIO0_5 */
IOCON_PinMuxSet(IOCON, BUTTON_PORT, BUTTON_PIN, IOCON_PIO_DIG_FUNC0_EN);
2021-01-02 22:53:15 +00:00
gpio_pin_config_t const button_config = { kGPIO_DigitalInput, 0};
GPIO_PinInit(GPIO, BUTTON_PORT, BUTTON_PIN, &button_config);
// UART
/* PORT0 PIN29 (coords: 92) is configured as FC0_RXD_SDA_MOSI_DATA */
IOCON_PinMuxSet(IOCON, 0U, 29U, IOCON_PIO_DIG_FUNC1_EN);
/* PORT0 PIN30 (coords: 94) is configured as FC0_TXD_SCL_MISO_WS */
IOCON_PinMuxSet(IOCON, 0U, 30U, IOCON_PIO_DIG_FUNC1_EN);
#if defined(UART_DEV) && CFG_TUSB_DEBUG
// Enable UART when debug log is on
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM0);
usart_config_t uart_config;
USART_GetDefaultConfig(&uart_config);
uart_config.baudRate_Bps = BOARD_UART_BAUDRATE;
uart_config.enableTx = true;
uart_config.enableRx = true;
USART_Init(UART_DEV, &uart_config, 12000000);
#endif
2021-01-02 22:53:15 +00:00
// USB VBUS
/* PORT0 PIN22 configured as USB0_VBUS */
IOCON_PinMuxSet(IOCON, 0U, 22U, IOCON_PIO_DIG_FUNC7_EN);
2021-01-02 22:53:15 +00:00
// USB Controller
POWER_DisablePD(kPDRUNCFG_PD_USB0_PHY); /*Turn on USB0 Phy */
POWER_DisablePD(kPDRUNCFG_PD_USB1_PHY); /*< Turn on USB1 Phy */
/* reset the IP to make sure it's in reset state. */
RESET_PeripheralReset(kUSB0D_RST_SHIFT_RSTn);
RESET_PeripheralReset(kUSB0HSL_RST_SHIFT_RSTn);
RESET_PeripheralReset(kUSB0HMR_RST_SHIFT_RSTn);
RESET_PeripheralReset(kUSB1H_RST_SHIFT_RSTn);
RESET_PeripheralReset(kUSB1D_RST_SHIFT_RSTn);
RESET_PeripheralReset(kUSB1_RST_SHIFT_RSTn);
RESET_PeripheralReset(kUSB1RAM_RST_SHIFT_RSTn);
#if (defined CFG_TUSB_RHPORT1_MODE) && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE)
2021-01-02 22:53:15 +00:00
CLOCK_EnableClock(kCLOCK_Usbh1);
/* Put PHY powerdown under software control */
USBHSH->PORTMODE = USBHSH_PORTMODE_SW_PDCOM_MASK;
2021-01-02 22:53:15 +00:00
/* According to reference mannual, device mode setting has to be set by access usb host register */
USBHSH->PORTMODE |= USBHSH_PORTMODE_DEV_ENABLE_MASK;
2021-01-02 22:53:15 +00:00
/* enable usb1 host clock */
CLOCK_DisableClock(kCLOCK_Usbh1);
#endif
#if (defined CFG_TUSB_RHPORT0_MODE) && (CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE)
// Enable USB Clock Adjustments to trim the FRO for the full speed controller
ANACTRL->FRO192M_CTRL |= ANACTRL_FRO192M_CTRL_USBCLKADJ_MASK;
2021-01-02 22:53:15 +00:00
CLOCK_SetClkDiv(kCLOCK_DivUsb0Clk, 1, false);
CLOCK_AttachClk(kFRO_HF_to_USB0_CLK);
/* enable usb0 host clock */
CLOCK_EnableClock(kCLOCK_Usbhsl0);
/*According to reference mannual, device mode setting has to be set by access usb host register */
USBFSH->PORTMODE |= USBFSH_PORTMODE_DEV_ENABLE_MASK;
2021-01-02 22:53:15 +00:00
/* disable usb0 host clock */
CLOCK_DisableClock(kCLOCK_Usbhsl0);
CLOCK_EnableUsbfs0DeviceClock(kCLOCK_UsbfsSrcFro, CLOCK_GetFreq(kCLOCK_FroHf)); /* enable USB Device clock */
#endif
2021-01-02 22:53:15 +00:00
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state)
{
GPIO_PinWrite(GPIO, LED_PORT, LED_PIN, state ? LED_STATE_ON : (1-LED_STATE_ON));
2021-01-03 23:26:54 +00:00
if (state) {
neopixel_set(0, 0x100000);
neopixel_set(1, 0x101010);
} else {
neopixel_set(0, 0x001000);
neopixel_set(1, 0x000010);
}
neopixel_update();
2021-01-02 22:53:15 +00:00
}
uint32_t board_button_read(void)
{
// active low
return BUTTON_STATE_ACTIVE == GPIO_PinRead(GPIO, BUTTON_PORT, BUTTON_PIN);
}
int board_uart_read(uint8_t* buf, int len)
{
(void) buf; (void) len;
return 0;
}
int board_uart_write(void const * buf, int len)
{
(void) buf; (void) len;
return 0;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler(void)
{
system_ticks++;
}
uint32_t board_millis(void)
{
return system_ticks;
}
#endif