404 lines
13 KiB
C
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
// #if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_FOMU_EPTRI)
#if 1
#include "device/dcd.h"
#include "dcd_fomu.h"
#include "csr.h"
#include "irq.h"
void fomu_error(uint32_t line);
void mputs(const char *str);
void mputln(const char *str);
//--------------------------------------------------------------------+
// SIE Command
//--------------------------------------------------------------------+
#define EP_SIZE 64
uint16_t volatile rx_buffer_offset[16];
uint8_t volatile * rx_buffer[16];
uint16_t volatile rx_buffer_max[16];
volatile uint8_t tx_ep;
volatile uint16_t tx_len;
uint8_t volatile * tx_buffer;
volatile uint16_t tx_offset;
volatile uint8_t reset_count;
//--------------------------------------------------------------------+
// PIPE HELPER
//--------------------------------------------------------------------+
static void finish_tx(void) {
// Ignore "ACK" packets where there was no data to send.
if (!tx_buffer) {
return;
}
// If the system isn't idle, then something is very wrong.
uint8_t in_status = usb_in_status_read();
if (!(in_status & (1 << CSR_USB_IN_STATUS_IDLE_OFFSET)))
fomu_error(__LINE__);
tx_offset += EP_SIZE;
if (tx_offset >= tx_len) {
dcd_event_xfer_complete(0, tu_edpt_addr(tx_ep, TUSB_DIR_IN), tx_len, XFER_RESULT_SUCCESS, true);
tx_buffer = NULL;
return;
}
// Send more data
uint8_t added_bytes;
for (added_bytes = 0; (added_bytes < EP_SIZE) && (added_bytes + tx_offset < tx_len); added_bytes++) {
usb_in_data_write(tx_buffer[added_bytes + tx_offset]);
}
// Updating the epno queues the data
usb_in_ctrl_write(tx_ep & 0xf);
return;
}
static void process_rx(bool in_isr) {
// If the OUT handler is still waiting to send, don't do anything.
uint8_t out_status = usb_out_status_read();
if (!(out_status & (1 << CSR_USB_OUT_STATUS_IDLE_OFFSET)))
return;
uint8_t rx_ep = (out_status >> CSR_USB_OUT_STATUS_EPNO_OFFSET) & 0xf;
// If the destination buffer doesn't exist, don't drain the hardware
// fifo. Note that this can cause deadlocks if the host is waiting
// on some other endpoint's data!
if (rx_buffer[rx_ep] == NULL)
return;
uint32_t total_read = 0;
uint32_t current_offset = rx_buffer_offset[rx_ep];
if (current_offset > rx_buffer_max[rx_ep])
fomu_error(__LINE__);
while (usb_out_status_read() & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET)) {
uint8_t c = usb_out_data_read();
total_read++;
if ((rx_buffer_offset[rx_ep] + current_offset) < rx_buffer_max[rx_ep])
rx_buffer[rx_ep][current_offset++] = c;
}
// Strip off the CRC16
rx_buffer_offset[rx_ep] += (total_read - 2);
if (rx_buffer_offset[rx_ep] > rx_buffer_max[rx_ep])
rx_buffer_offset[rx_ep] = rx_buffer_max[rx_ep];
if (rx_buffer_max[rx_ep] == rx_buffer_offset[rx_ep]) {
rx_buffer[rx_ep] = NULL;
uint16_t len = rx_buffer_offset[rx_ep];
dcd_event_xfer_complete(0, tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len, XFER_RESULT_SUCCESS, in_isr);
}
// Acknowledge having received the data, and re-enable data reception
usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET);
}
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
static void dcd_reset(void)
{
reset_count++;
usb_setup_ev_enable_write(0);
usb_in_ev_enable_write(0);
usb_out_ev_enable_write(0);
usb_address_write(0);
// Reset all three FIFO handlers
usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_RESET_OFFSET);
usb_in_ctrl_write(1 << CSR_USB_IN_CTRL_RESET_OFFSET);
usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_RESET_OFFSET);
memset((void *)rx_buffer, 0, sizeof(rx_buffer));
memset((void *)rx_buffer_max, 0, sizeof(rx_buffer_max));
memset((void *)rx_buffer_offset, 0, sizeof(rx_buffer_offset));
tx_len = 0;
tx_buffer = NULL;
tx_offset = 0;
tx_ep = 0;
// Accept incoming data by default.
usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET);
// Enable all event handlers and clear their contents
usb_setup_ev_pending_write(usb_setup_ev_pending_read());
usb_in_ev_pending_write(usb_in_ev_pending_read());
usb_out_ev_pending_write(usb_out_ev_pending_read());
usb_in_ev_enable_write(1);
usb_out_ev_enable_write(1);
usb_setup_ev_enable_write(3);
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// Initializes the USB peripheral for device mode and enables it.
void dcd_init(uint8_t rhport)
{
(void) rhport;
usb_pullup_out_write(0);
// Enable all event handlers and clear their contents
usb_setup_ev_pending_write(usb_setup_ev_pending_read());
usb_in_ev_pending_write(usb_in_ev_pending_read());
usb_out_ev_pending_write(usb_out_ev_pending_read());
usb_in_ev_enable_write(1);
usb_out_ev_enable_write(1);
usb_setup_ev_enable_write(3);
// Turn on the external pullup
usb_pullup_out_write(1);
}
// Enables or disables the USB device interrupt(s). May be used to
// prevent concurrency issues when mutating data structures shared
// between main code and the interrupt handler.
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
irq_setmask(irq_getmask() | (1 << USB_INTERRUPT));
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT));
}
// Called when the device is given a new bus address.
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
// Set address and then acknowledge the SETUP packet
usb_address_write(dev_addr);
// ACK the transfer (sets the address)
usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_HANDLED_OFFSET);
}
// Called when the device received SET_CONFIG request, you can leave this
// empty if your peripheral does not require any specific action.
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
// Called to remote wake up host when suspended (e.g hid keyboard)
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
uint8_t ep_num = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t ep_dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS)
return false; // Not supported
if (ep_dir == TUSB_DIR_OUT) {
rx_buffer_offset[ep_num] = 0;
rx_buffer_max[ep_num] = 0;
rx_buffer[ep_num] = NULL;
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT)
usb_out_stall_write((1 << CSR_USB_OUT_STALL_STALL_OFFSET) | tu_edpt_number(ep_addr));
else {
usb_in_ctrl_write((1 << CSR_USB_IN_CTRL_STALL_OFFSET) | tu_edpt_number(ep_addr));
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT)
usb_out_stall_write((0 << CSR_USB_OUT_STALL_STALL_OFFSET) | tu_edpt_number(ep_addr));
// IN endpoints will get unstalled when more data is written.
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
uint8_t ep_num = tu_edpt_number(ep_addr);
uint8_t ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(tx_ep < 16);
// These sorts of transfers are handled in hardware automatically, so simply inform
// the core that the transfer was processed.
if ((ep_num == 0) && (total_bytes == 0) && (buffer == NULL)) {
dcd_event_xfer_complete(0, ep_addr, total_bytes, XFER_RESULT_SUCCESS, false);
// An IN packet is sent to acknowledge an OUT token. Re-enable OUT after this.
// if (ep_dir == TUSB_DIR_IN) {
// usb_out_ev_enable_write(0);
// process_rx(false);
// usb_out_ev_enable_write(1);
// }
return true;
}
TU_ASSERT(((uint32_t)buffer) >= 0x10000000);
TU_ASSERT(((uint32_t)buffer) <= 0x10020000);
if (ep_dir == TUSB_DIR_IN) {
uint32_t offset;
// Wait for the tx pipe to free up
uint8_t previous_reset_count = reset_count;
while (!((tx_buffer == NULL)
&& (usb_in_status_read() & (1 << CSR_USB_IN_STATUS_IDLE_OFFSET))
&& !(usb_in_status_read() & (1 << CSR_USB_IN_STATUS_HAVE_OFFSET))))
;
// If a reset happens while we're waiting, abort the transfer
if (previous_reset_count != reset_count)
return true;
tx_ep = ep_num;
tx_len = total_bytes;
tx_offset = 0;
tx_buffer = buffer;
for (offset = 0; (offset < EP_SIZE) && (offset < total_bytes); offset++) {
usb_in_data_write(buffer[offset]);
}
// Updating the epno queues the data
usb_in_ctrl_write(ep_num & 0xf);
}
else if (ep_dir == TUSB_DIR_OUT) {
TU_ASSERT(rx_buffer[ep_num] == NULL);
rx_buffer_offset[ep_num] = 0;
rx_buffer_max[ep_num] = total_bytes;
rx_buffer[ep_num] = buffer;
// If there's data in the buffer already, we'll try draining it
// into the current fifo immediately.
usb_out_ev_enable_write(0);
if (usb_out_status_read() & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET))
process_rx(false);
usb_out_ev_enable_write(1);
}
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void hal_dcd_isr(uint8_t rhport)
{
uint8_t setup_pending = usb_setup_ev_pending_read();
uint8_t in_pending = usb_in_ev_pending_read();
uint8_t out_pending = usb_out_ev_pending_read();
usb_setup_ev_pending_write(setup_pending);
usb_in_ev_pending_write(in_pending);
usb_out_ev_pending_write(out_pending);
// This event means a bus reset occurred. Reset everything, and
// abandon any further processing.
if (setup_pending & 2) {
dcd_reset();
return;
}
// An "OUT" transaction just completed so we have new data.
// (But only if we can accept the data)
// if (out_pending) {
if (usb_out_ev_enable_read() && out_pending) {
process_rx(true);
}
// An "IN" transaction just completed.
// Note that due to the way tinyusb's callback system is implemented,
// we must handle IN and OUT packets before we handle SETUP packets.
// This ensures that any responses to SETUP packets aren't overwritten.
// For example, oftentimes a host will request part of a descriptor
// to begin with, then make a subsequent request. If we don't handle
// the IN packets first, then the second request will be truncated.
if (in_pending) {
finish_tx();
}
// We got a SETUP packet. Copy it to the setup buffer and clear
// the "pending" bit.
if (setup_pending & 1) {
// Setup packets are always 8 bytes, plus two bytes of crc16.
uint8_t setup_packet[10];
uint32_t setup_length = 0;
if (!(usb_setup_status_read() & 1))
fomu_error(__LINE__);
while (usb_setup_status_read() & 1) {
uint8_t c = usb_setup_data_read();
if (setup_length < sizeof(setup_packet))
setup_packet[setup_length] = c;
setup_length++;
}
// If we have 10 bytes, that's a full SETUP packet plus CRC16.
// Otherwise, it was an RX error.
if (setup_length == 10) {
dcd_event_setup_received(rhport, setup_packet, true);
// Acknowledge the packet, so long as it isn't a SET_ADDRESS
// packet. If it is, leave it unacknowledged and we'll do this
// in the `dcd_set_address` function instead.
if (!((setup_packet[0] == 0x00) && (setup_packet[1] == 0x05)))
usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_HANDLED_OFFSET);
}
else {
fomu_error(__LINE__);
}
}
}
#endif