tinyusb/src/device/usbd.c

1127 lines
35 KiB
C
Raw Normal View History

2020-01-14 23:30:39 -05:00
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED
#include "tusb.h"
#include "usbd.h"
#include "device/usbd_pvt.h"
#include "dcd.h"
#ifndef CFG_TUD_TASK_QUEUE_SZ
#define CFG_TUD_TASK_QUEUE_SZ 16
#endif
//--------------------------------------------------------------------+
// Device Data
//--------------------------------------------------------------------+
typedef struct {
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
2020-01-14 23:30:39 -05:00
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
uint8_t remote_wakeup_en : 1; // enable/disable by host
uint8_t remote_wakeup_support : 1; // configuration descriptor's attribute
uint8_t self_powered : 1; // configuration descriptor's attribute
};
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[8][2]; // map endpoint to driver ( 0xff is invalid )
struct TU_ATTR_PACKED
{
volatile bool busy : 1;
volatile bool stalled : 1;
// TODO merge ep2drv here, 4-bit should be sufficient
}ep_status[8][2];
}usbd_device_t;
static usbd_device_t _usbd_dev;
// Invalid driver ID in itf2drv[] ep2drv[][] mapping
enum { DRVID_INVALID = 0xFFu };
//--------------------------------------------------------------------+
// Class Driver
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
#define DRIVER_NAME(_name) .name = _name,
#else
#define DRIVER_NAME(_name)
#endif
typedef struct
{
#if CFG_TUSB_DEBUG >= 2
char const* name;
#endif
2020-01-14 23:30:39 -05:00
void (* init ) (void);
void (* reset ) (uint8_t rhport);
uint16_t (* open ) (uint8_t rhport, tusb_desc_interface_t const * desc_intf, uint16_t max_len);
bool (* control_request ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* control_complete ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* xfer_cb ) (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void (* sof ) (uint8_t rhport); /* optional */
2020-01-14 23:30:39 -05:00
} usbd_class_driver_t;
static usbd_class_driver_t const _usbd_driver[] =
{
#if CFG_TUD_CDC
{
DRIVER_NAME("CDC")
2020-01-14 23:30:39 -05:00
.init = cdcd_init,
.reset = cdcd_reset,
.open = cdcd_open,
.control_request = cdcd_control_request,
.control_complete = cdcd_control_complete,
.xfer_cb = cdcd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MSC
{
DRIVER_NAME("MSC")
2020-01-14 23:30:39 -05:00
.init = mscd_init,
.reset = mscd_reset,
.open = mscd_open,
.control_request = mscd_control_request,
.control_complete = mscd_control_complete,
.xfer_cb = mscd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_HID
{
DRIVER_NAME("HID")
2020-01-14 23:30:39 -05:00
.init = hidd_init,
.reset = hidd_reset,
.open = hidd_open,
.control_request = hidd_control_request,
.control_complete = hidd_control_complete,
.xfer_cb = hidd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MIDI
{
DRIVER_NAME("MIDI")
2020-01-14 23:30:39 -05:00
.init = midid_init,
.open = midid_open,
.reset = midid_reset,
.control_request = midid_control_request,
.control_complete = midid_control_complete,
.xfer_cb = midid_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_VENDOR
{
DRIVER_NAME("VENDOR")
2020-01-14 23:30:39 -05:00
.init = vendord_init,
.reset = vendord_reset,
.open = vendord_open,
.control_request = tud_vendor_control_request_cb,
.control_complete = tud_vendor_control_complete_cb,
.xfer_cb = vendord_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_USBTMC
{
DRIVER_NAME("TMC")
2020-01-14 23:30:39 -05:00
.init = usbtmcd_init_cb,
.reset = usbtmcd_reset_cb,
.open = usbtmcd_open_cb,
.control_request = usbtmcd_control_request_cb,
.control_complete = usbtmcd_control_complete_cb,
.xfer_cb = usbtmcd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_DFU_RT
{
DRIVER_NAME("DFU-RT")
2020-01-14 23:30:39 -05:00
.init = dfu_rtd_init,
.reset = dfu_rtd_reset,
.open = dfu_rtd_open,
.control_request = dfu_rtd_control_request,
.control_complete = dfu_rtd_control_complete,
.xfer_cb = dfu_rtd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_NET
{
DRIVER_NAME("NET")
.init = netd_init,
.reset = netd_reset,
.open = netd_open,
.control_request = netd_control_request,
.control_complete = netd_control_complete,
.xfer_cb = netd_xfer_cb,
.sof = NULL,
},
#endif
#if CFG_TUD_BTH
{
DRIVER_NAME("BTH")
.init = btd_init,
.reset = btd_reset,
.open = btd_open,
.control_request = btd_control_request,
.control_complete = btd_control_complete,
.xfer_cb = btd_xfer_cb,
.sof = NULL
},
#endif
2020-01-14 23:30:39 -05:00
};
enum { USBD_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(_usbd_driver) };
//--------------------------------------------------------------------+
// DCD Event
//--------------------------------------------------------------------+
// Event queue
// OPT_MODE_DEVICE is used by OS NONE for mutex (disable usb isr)
OSAL_QUEUE_DEF(OPT_MODE_DEVICE, _usbd_qdef, CFG_TUD_TASK_QUEUE_SZ, dcd_event_t);
static osal_queue_t _usbd_q;
//--------------------------------------------------------------------+
// Prototypes
//--------------------------------------------------------------------+
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id);
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request);
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request);
void usbd_control_reset(void);
void usbd_control_set_request(tusb_control_request_t const *request);
void usbd_control_set_complete_callback( bool (*fp) (uint8_t, tusb_control_request_t const * ) );
bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
//--------------------------------------------------------------------+
// Debugging
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
static char const* const _usbd_event_str[DCD_EVENT_COUNT] =
{
2020-04-26 22:02:41 +07:00
"Invalid" ,
"Bus Reset" ,
"Unplugged" ,
2020-01-14 23:30:39 -05:00
"SOF" ,
2020-04-26 22:02:41 +07:00
"Suspend" ,
"Resume" ,
"Setup Received" ,
"Xfer Complete" ,
"Func Call"
2020-01-14 23:30:39 -05:00
};
static char const* const _tusb_std_request_str[] =
{
"Get Status" ,
"Clear Feature" ,
"Reserved" ,
"Set Feature" ,
"Reserved" ,
"Set Address" ,
"Get Descriptor" ,
"Set Descriptor" ,
"Get Configuration" ,
"Set Configuration" ,
"Get Interface" ,
"Set Interface" ,
"Synch Frame"
};
2020-04-26 22:02:41 +07:00
// for usbd_control to print the name of control complete driver
void usbd_driver_print_control_complete_name(bool (*control_complete) (uint8_t, tusb_control_request_t const * ))
{
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++)
{
if (_usbd_driver[i].control_complete == control_complete )
{
TU_LOG2(" %s control complete\r\n", _usbd_driver[i].name);
return;
}
}
}
2020-01-14 23:30:39 -05:00
#endif
//--------------------------------------------------------------------+
// Application API
//--------------------------------------------------------------------+
bool tud_mounted(void)
{
return _usbd_dev.configured;
}
bool tud_suspended(void)
{
return _usbd_dev.suspended;
}
bool tud_remote_wakeup(void)
{
// only wake up host if this feature is supported and enabled and we are suspended
TU_VERIFY (_usbd_dev.suspended && _usbd_dev.remote_wakeup_support && _usbd_dev.remote_wakeup_en );
dcd_remote_wakeup(TUD_OPT_RHPORT);
return true;
}
//--------------------------------------------------------------------+
// USBD Task
//--------------------------------------------------------------------+
bool tud_init (void)
{
TU_LOG2("USBD init\r\n");
tu_varclr(&_usbd_dev);
// Init device queue & task
_usbd_q = osal_queue_create(&_usbd_qdef);
TU_ASSERT(_usbd_q != NULL);
// Init class drivers
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++)
{
TU_LOG2("%s init\r\n", _usbd_driver[i].name);
2020-01-14 23:30:39 -05:00
_usbd_driver[i].init();
}
// Init device controller driver
dcd_init(TUD_OPT_RHPORT);
2020-04-08 11:51:33 -04:00
tud_connect();
2020-01-14 23:30:39 -05:00
dcd_int_enable(TUD_OPT_RHPORT);
return true;
}
static void usbd_reset(uint8_t rhport)
{
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
usbd_control_reset();
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++)
{
if ( _usbd_driver[i].reset ) _usbd_driver[i].reset( rhport );
}
}
bool tud_task_event_ready(void)
{
// Skip if stack is not initialized
if ( !tusb_inited() ) return false;
return !osal_queue_empty(_usbd_q);
}
2020-01-14 23:30:39 -05:00
/* USB Device Driver task
* This top level thread manages all device controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
application_init();
tusb_init();
while(1) // the mainloop
{
application_code();
tud_task(); // tinyusb device task
}
}
@endcode
*/
void tud_task (void)
{
// Skip if stack is not initialized
if ( !tusb_inited() ) return;
// Loop until there is no more events in the queue
while (1)
{
dcd_event_t event;
if ( !osal_queue_receive(_usbd_q, &event) ) return;
2020-04-26 22:02:41 +07:00
TU_LOG2("USBD %s", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED");
TU_LOG2("%s", (event.event_id != DCD_EVENT_XFER_COMPLETE && event.event_id != DCD_EVENT_SETUP_RECEIVED) ? "\r\n" : " ");
2020-01-14 23:30:39 -05:00
switch ( event.event_id )
{
case DCD_EVENT_BUS_RESET:
usbd_reset(event.rhport);
break;
case DCD_EVENT_UNPLUGGED:
usbd_reset(event.rhport);
// invoke callback
if (tud_umount_cb) tud_umount_cb();
break;
case DCD_EVENT_SETUP_RECEIVED:
TU_LOG2_VAR(&event.setup_received);
TU_LOG2("\r\n");
2020-01-14 23:30:39 -05:00
// Mark as connected after receiving 1st setup packet.
// But it is easier to set it every time instead of wasting time to check then set
_usbd_dev.connected = 1;
// Process control request
if ( !process_control_request(event.rhport, &event.setup_received) )
{
TU_LOG2(" Stall EP0\r\n");
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
}
break;
case DCD_EVENT_XFER_COMPLETE:
{
// Invoke the class callback associated with the endpoint address
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_LOG2("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
2020-01-14 23:30:39 -05:00
_usbd_dev.ep_status[epnum][ep_dir].busy = false;
if ( 0 == epnum )
{
usbd_control_xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
else
{
uint8_t const drv_id = _usbd_dev.ep2drv[epnum][ep_dir];
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT,);
TU_LOG2(" %s xfer callback\r\n", _usbd_driver[drv_id].name);
2020-01-14 23:30:39 -05:00
_usbd_driver[drv_id].xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
}
break;
case DCD_EVENT_SUSPEND:
if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en);
break;
case DCD_EVENT_RESUME:
if (tud_resume_cb) tud_resume_cb();
break;
case DCD_EVENT_SOF:
for ( uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++ )
{
if ( _usbd_driver[i].sof )
{
_usbd_driver[i].sof(event.rhport);
}
}
break;
case USBD_EVENT_FUNC_CALL:
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
default:
TU_BREAKPOINT();
break;
}
}
}
//--------------------------------------------------------------------+
// Control Request Parser & Handling
//--------------------------------------------------------------------+
// Helper to invoke class driver control request handler
static bool invoke_class_control(uint8_t rhport, uint8_t drvid, tusb_control_request_t const * request)
{
usbd_control_set_complete_callback(_usbd_driver[drvid].control_complete);
TU_LOG2(" %s control request\r\n", _usbd_driver[drvid].name);
2020-01-14 23:30:39 -05:00
return _usbd_driver[drvid].control_request(rhport, request);
}
// This handles the actual request and its response.
// return false will cause its caller to stall control endpoint
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request)
{
usbd_control_set_complete_callback(NULL);
TU_ASSERT(p_request->bmRequestType_bit.type < TUSB_REQ_TYPE_INVALID);
2020-01-14 23:30:39 -05:00
// Vendor request
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR )
{
TU_VERIFY(tud_vendor_control_request_cb);
if (tud_vendor_control_complete_cb) usbd_control_set_complete_callback(tud_vendor_control_complete_cb);
return tud_vendor_control_request_cb(rhport, p_request);
}
#if CFG_TUSB_DEBUG >= 2
2020-01-14 23:30:39 -05:00
if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME)
{
TU_LOG2(" %s", _tusb_std_request_str[p_request->bRequest]);
if (TUSB_REQ_GET_DESCRIPTOR != p_request->bRequest) TU_LOG2("\r\n");
2020-01-14 23:30:39 -05:00
}
#endif
switch ( p_request->bmRequestType_bit.recipient )
{
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type )
{
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
uint8_t const drvid = _usbd_dev.itf2drv[itf];
TU_VERIFY(drvid < USBD_CLASS_DRIVER_COUNT);
// forward to class driver: "non-STD request to Interface"
TU_VERIFY(invoke_class_control(rhport, drvid, p_request));
return true;
}
2020-01-14 23:30:39 -05:00
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
// Non standard request is not supported
TU_BREAKPOINT();
return false;
}
switch ( p_request->bRequest )
{
case TUSB_REQ_SET_ADDRESS:
// Depending on mcu, status phase could be sent either before or after changing device address,
// or even require stack to not response with status at all
// Therefore DCD must take full responsibility to response and include zlp status packet if needed.
usbd_control_set_request(p_request); // set request since DCD has no access to tud_control_status() API
dcd_set_address(rhport, (uint8_t) p_request->wValue);
// skip tud_control_status()
_usbd_dev.addressed = 1;
2020-01-14 23:30:39 -05:00
break;
case TUSB_REQ_GET_CONFIGURATION:
{
uint8_t cfgnum = _usbd_dev.configured ? 1 : 0;
tud_control_xfer(rhport, p_request, &cfgnum, 1);
}
break;
case TUSB_REQ_SET_CONFIGURATION:
{
uint8_t const cfg_num = (uint8_t) p_request->wValue;
if ( !_usbd_dev.configured && cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
_usbd_dev.configured = cfg_num ? 1 : 0;
tud_control_status(rhport, p_request);
}
break;
case TUSB_REQ_GET_DESCRIPTOR:
TU_VERIFY( process_get_descriptor(rhport, p_request) );
break;
case TUSB_REQ_SET_FEATURE:
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
// Host may enable remote wake up before suspending especially HID device
_usbd_dev.remote_wakeup_en = true;
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_CLEAR_FEATURE:
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
// Host may disable remote wake up after resuming
_usbd_dev.remote_wakeup_en = false;
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_GET_STATUS:
{
// Device status bit mask
// - Bit 0: Self Powered
// - Bit 1: Remote Wakeup enabled
uint16_t status = (_usbd_dev.self_powered ? 1 : 0) | (_usbd_dev.remote_wakeup_en ? 2 : 0);
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
}
break;
//------------- Class/Interface Specific Request -------------//
case TUSB_REQ_RCPT_INTERFACE:
{
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
uint8_t const drvid = _usbd_dev.itf2drv[itf];
TU_VERIFY(drvid < USBD_CLASS_DRIVER_COUNT);
// all requests to Interface (STD or Class) is forwarded to class driver.
// notable requests are: GET HID REPORT DESCRIPTOR, SET_INTERFACE, GET_INTERFACE
if ( !invoke_class_control(rhport, drvid, p_request) )
2020-01-14 23:30:39 -05:00
{
2020-04-16 11:13:54 +07:00
// For GET_INTERFACE, it is mandatory to respond even if the class
// driver doesn't use alternate settings.
TU_VERIFY( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type &&
TUSB_REQ_GET_INTERFACE == p_request->bRequest);
2020-01-14 23:30:39 -05:00
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
2020-01-14 23:30:39 -05:00
}
}
break;
//------------- Endpoint Request -------------//
case TUSB_REQ_RCPT_ENDPOINT:
{
uint8_t const ep_addr = tu_u16_low(p_request->wIndex);
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) );
uint8_t const drvid = _usbd_dev.ep2drv[ep_num][ep_dir];
bool ret = false;
// Handle STD request to endpoint
if ( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type )
{
// force return true for standard request
ret = true;
switch ( p_request->bRequest )
{
case TUSB_REQ_GET_STATUS:
{
uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000;
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
case TUSB_REQ_CLEAR_FEATURE:
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
usbd_edpt_clear_stall(rhport, ep_addr);
}
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_SET_FEATURE:
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
usbd_edpt_stall(rhport, ep_addr);
}
tud_control_status(rhport, p_request);
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
}
}
if (drvid < 0xFF) {
TU_ASSERT(drvid < USBD_CLASS_DRIVER_COUNT);
// Some classes such as USBTMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request
// We will forward all request targeted endpoint to class drivers after
// - For class-type requests: driver is fully responsible to reply to host
// - For std-type requests : driver init/re-init internal variable/buffer only, and
// must not call tud_control_status(), driver's return value will have no effect.
// EP state has already affected (stalled/cleared)
if ( invoke_class_control(rhport, drvid, p_request) ) ret = true;
}
if ( TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type )
{
// Set complete callback = NULL since it can also stall the request.
usbd_control_set_complete_callback(NULL);
}
return ret;
}
break;
// Unknown recipient
default: TU_BREAKPOINT(); return false;
}
return true;
}
// Process Set Configure Request
// This function parse configuration descriptor & open drivers accordingly
static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
{
tusb_desc_configuration_t const * desc_cfg = (tusb_desc_configuration_t const *) tud_descriptor_configuration_cb(cfg_num-1); // index is cfg_num-1
TU_ASSERT(desc_cfg != NULL && desc_cfg->bDescriptorType == TUSB_DESC_CONFIGURATION);
// Parse configuration descriptor
_usbd_dev.remote_wakeup_support = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP) ? 1 : 0;
_usbd_dev.self_powered = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_SELF_POWERED) ? 1 : 0;
// Parse interface descriptor
uint8_t const * p_desc = ((uint8_t const*) desc_cfg) + sizeof(tusb_desc_configuration_t);
uint8_t const * desc_end = ((uint8_t const*) desc_cfg) + desc_cfg->wTotalLength;
while( p_desc < desc_end )
{
tusb_desc_interface_assoc_t const * desc_itf_assoc = NULL;
// Class will always starts with Interface Association (if any) and then Interface descriptor
2020-01-14 23:30:39 -05:00
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
desc_itf_assoc = (tusb_desc_interface_assoc_t const *) p_desc;
p_desc = tu_desc_next(p_desc); // next to Interface
}
2020-01-14 23:30:39 -05:00
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
2020-01-14 23:30:39 -05:00
tusb_desc_interface_t const * desc_itf = (tusb_desc_interface_t const*) p_desc;
uint16_t const remaining_len = desc_end-p_desc;
uint8_t drv_id;
uint16_t drv_len;
for (drv_id = 0; drv_id < USBD_CLASS_DRIVER_COUNT; drv_id++)
{
usbd_class_driver_t const *driver = &_usbd_driver[drv_id];
2020-01-14 23:30:39 -05:00
drv_len = driver->open(rhport, desc_itf, remaining_len);
if ( drv_len > 0 )
2020-01-14 23:30:39 -05:00
{
// Open successfully, check if length is correct
TU_ASSERT( sizeof(tusb_desc_interface_t) <= drv_len && drv_len <= remaining_len);
// Interface number must not be used already
TU_ASSERT( DRVID_INVALID == _usbd_dev.itf2drv[desc_itf->bInterfaceNumber] );
2020-01-14 23:30:39 -05:00
TU_LOG2(" %s opened\r\n", driver->name);
_usbd_dev.itf2drv[desc_itf->bInterfaceNumber] = drv_id;
2020-01-14 23:30:39 -05:00
// If IAD exist, assign all interfaces to the same driver
if (desc_itf_assoc)
{
// IAD's first interface number and class/subclass/protocol should match with opened interface
TU_ASSERT(desc_itf_assoc->bFirstInterface == desc_itf->bInterfaceNumber &&
desc_itf_assoc->bFunctionClass == desc_itf->bInterfaceClass);
2020-01-14 23:30:39 -05:00
for(uint8_t i=1; i<desc_itf_assoc->bInterfaceCount; i++)
{
_usbd_dev.itf2drv[desc_itf->bInterfaceNumber+i] = drv_id;
}
}
2020-01-14 23:30:39 -05:00
break;
}
2020-01-14 23:30:39 -05:00
}
// Failed if cannot find supported driver
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT);
mark_interface_endpoint(_usbd_dev.ep2drv, p_desc, drv_len, drv_id); // TODO refactor
2020-01-14 23:30:39 -05:00
p_desc += drv_len; // next interface
2020-01-14 23:30:39 -05:00
}
// invoke callback
if (tud_mount_cb) tud_mount_cb();
return true;
}
// Helper marking endpoint of interface belongs to class driver
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id)
{
uint16_t len = 0;
while( len < desc_len )
{
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
uint8_t const ep_addr = ((tusb_desc_endpoint_t const*) p_desc)->bEndpointAddress;
ep2drv[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)] = driver_id;
}
len = (uint16_t)(len + tu_desc_len(p_desc));
p_desc = tu_desc_next(p_desc);
}
}
// return descriptor's buffer and update desc_len
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request)
{
tusb_desc_type_t const desc_type = (tusb_desc_type_t) tu_u16_high(p_request->wValue);
uint8_t const desc_index = tu_u16_low( p_request->wValue );
switch(desc_type)
{
case TUSB_DESC_DEVICE:
{
TU_LOG2(" Device\r\n");
uint16_t len = sizeof(tusb_desc_device_t);
// Only send up to EP0 Packet Size if not addressed
// This only happens with the very first get device descriptor and EP0 size = 8 or 16.
if ((CFG_TUD_ENDPOINT0_SIZE < sizeof(tusb_desc_device_t)) && !_usbd_dev.addressed)
{
len = CFG_TUD_ENDPOINT0_SIZE;
// Hack here: we modify the request length to prevent usbd_control response with zlp
((tusb_control_request_t*) p_request)->wLength = CFG_TUD_ENDPOINT0_SIZE;
}
return tud_control_xfer(rhport, p_request, (void*) tud_descriptor_device_cb(), len);
}
2020-01-14 23:30:39 -05:00
break;
case TUSB_DESC_BOS:
{
TU_LOG2(" BOS\r\n");
2020-01-14 23:30:39 -05:00
// requested by host if USB > 2.0 ( i.e 2.1 or 3.x )
if (!tud_descriptor_bos_cb) return false;
tusb_desc_bos_t const* desc_bos = (tusb_desc_bos_t const*) tud_descriptor_bos_cb();
uint16_t total_len;
memcpy(&total_len, &desc_bos->wTotalLength, 2); // possibly mis-aligned memory
return tud_control_xfer(rhport, p_request, (void*) desc_bos, total_len);
}
break;
case TUSB_DESC_CONFIGURATION:
{
TU_LOG2(" Configuration[%u]\r\n", desc_index);
2020-01-14 23:30:39 -05:00
tusb_desc_configuration_t const* desc_config = (tusb_desc_configuration_t const*) tud_descriptor_configuration_cb(desc_index);
TU_ASSERT(desc_config);
2020-01-14 23:30:39 -05:00
uint16_t total_len;
memcpy(&total_len, &desc_config->wTotalLength, 2); // possibly mis-aligned memory
return tud_control_xfer(rhport, p_request, (void*) desc_config, total_len);
}
break;
case TUSB_DESC_STRING:
TU_LOG2(" String[%u]\r\n", desc_index);
2020-01-14 23:30:39 -05:00
// String Descriptor always uses the desc set from user
if ( desc_index == 0xEE )
{
// The 0xEE index string is a Microsoft OS Descriptors.
// https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
return false;
2020-04-20 16:00:21 -04:00
}
else
2020-01-14 23:30:39 -05:00
{
uint8_t const* desc_str = (uint8_t const*) tud_descriptor_string_cb(desc_index, p_request->wIndex);
TU_ASSERT(desc_str);
2020-01-14 23:30:39 -05:00
// first byte of descriptor is its size
return tud_control_xfer(rhport, p_request, (void*) desc_str, desc_str[0]);
}
break;
case TUSB_DESC_DEVICE_QUALIFIER:
TU_LOG2(" Device Qualifier\r\n");
2020-05-28 23:16:16 +07:00
// Host sends this request to ask why our device with USB BCD from 2.0
// but is running at Full/Low Speed. If not highspeed capable stall this request,
// otherwise return the descriptor that could work in highspeed mode
if ( tud_descriptor_device_qualifier_cb )
{
uint8_t const* desc_qualifier = tud_descriptor_device_qualifier_cb();
TU_ASSERT(desc_qualifier);
// first byte of descriptor is its size
return tud_control_xfer(rhport, p_request, (void*) desc_qualifier, desc_qualifier[0]);
}else
{
return false;
}
break;
case TUSB_DESC_OTHER_SPEED_CONFIG:
TU_LOG2(" Other Speed Configuration\r\n");
// After Device Qualifier descriptor is received host will ask for this descriptor
return false; // not supported
2020-01-14 23:30:39 -05:00
break;
default: return false;
}
return true;
}
//--------------------------------------------------------------------+
// DCD Event Handler
//--------------------------------------------------------------------+
void dcd_event_handler(dcd_event_t const * event, bool in_isr)
{
switch (event->event_id)
{
case DCD_EVENT_UNPLUGGED:
_usbd_dev.connected = 0;
_usbd_dev.addressed = 0;
2020-01-14 23:30:39 -05:00
_usbd_dev.configured = 0;
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_SOF:
return; // skip SOF event for now
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and can accidentally meet the
// SUSPEND condition ( Idle for 3ms ). Some MCUs such as SAMD doesn't distinguish suspend vs disconnect as well.
// We will skip handling SUSPEND/RESUME event if not currently connected
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 1;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_RESUME:
// skip event if not connected (especially required for SAMD)
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
default:
osal_queue_send(_usbd_q, event, in_isr);
break;
}
}
void dcd_event_bus_signal (uint8_t rhport, dcd_eventid_t eid, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = eid, };
dcd_event_handler(&event, in_isr);
}
void dcd_event_setup_received(uint8_t rhport, uint8_t const * setup, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_SETUP_RECEIVED };
memcpy(&event.setup_received, setup, 8);
dcd_event_handler(&event, in_isr);
}
void dcd_event_xfer_complete (uint8_t rhport, uint8_t ep_addr, uint32_t xferred_bytes, uint8_t result, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_XFER_COMPLETE };
event.xfer_complete.ep_addr = ep_addr;
event.xfer_complete.len = xferred_bytes;
event.xfer_complete.result = result;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
// Parse consecutive endpoint descriptors (IN & OUT)
bool usbd_open_edpt_pair(uint8_t rhport, uint8_t const* p_desc, uint8_t ep_count, uint8_t xfer_type, uint8_t* ep_out, uint8_t* ep_in)
{
for(int i=0; i<ep_count; i++)
{
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc;
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && xfer_type == desc_ep->bmAttributes.xfer);
TU_ASSERT(usbd_edpt_open(rhport, desc_ep));
2020-01-14 23:30:39 -05:00
if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN )
{
(*ep_in) = desc_ep->bEndpointAddress;
}else
{
(*ep_out) = desc_ep->bEndpointAddress;
}
p_desc = tu_desc_next(p_desc);
}
return true;
}
// Helper to defer an isr function
void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr)
{
dcd_event_t event =
{
.rhport = 0,
.event_id = USBD_EVENT_FUNC_CALL,
};
event.func_call.func = func;
event.func_call.param = param;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// USBD Endpoint API
//--------------------------------------------------------------------+
bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
{
TU_LOG2(" Open EP %02X with Size = %u\r\n", desc_ep->bEndpointAddress, desc_ep->wMaxPacketSize.size);
return dcd_edpt_open(rhport, desc_ep);
}
2020-01-14 23:30:39 -05:00
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_LOG2(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes);
2020-04-29 11:31:27 +07:00
// Set busy first since the actual transfer can be complete before dcd_edpt_xfer() could return
// and usbd task can preempt and clear the busy
2020-01-14 23:30:39 -05:00
_usbd_dev.ep_status[epnum][dir].busy = true;
2020-04-29 11:31:27 +07:00
if ( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) )
{
TU_LOG2("OK\r\n");
return true;
}else
{
_usbd_dev.ep_status[epnum][dir].busy = false;
TU_LOG2("failed\r\n");
TU_BREAKPOINT();
return false;
}
2020-01-14 23:30:39 -05:00
}
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].busy;
}
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = true;
_usbd_dev.ep_status[epnum][dir].busy = true;
}
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = false;
_usbd_dev.ep_status[epnum][dir].busy = false;
}
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].stalled;
}
/**
* usbd_edpt_close will disable an endpoint.
2020-04-13 09:25:16 -04:00
*
* In progress transfers on this EP may be delivered after this call.
*
*/
2020-04-13 09:25:16 -04:00
void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
TU_ASSERT(dcd_edpt_close, /**/);
TU_LOG2(" CLOSING Endpoint: 0x%02X\r\n", ep_addr);
dcd_edpt_close(rhport, ep_addr);
return;
}
2020-01-14 23:30:39 -05:00
#endif