tinyusb/src/class/bth/bth_device.c

256 lines
9.5 KiB
C
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jerzy Kasenberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_BTH)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "bth_device.h"
#include <common/tusb_types.h>
#include <device/usbd_pvt.h>
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_ev;
uint8_t ep_acl_in;
uint8_t ep_acl_out;
uint8_t ep_voice[2]; // Not used yet
uint8_t ep_voice_size[2][CFG_TUD_BTH_ISO_ALT_COUNT];
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN bt_hci_cmd_t hci_cmd;
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_BTH_DATA_EPSIZE];
} btd_interface_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION btd_interface_t _btd_itf;
static bool bt_tx_data(uint8_t ep, void *data, uint16_t len)
{
// skip if previous transfer not complete
TU_VERIFY(!usbd_edpt_busy(TUD_OPT_RHPORT, ep));
TU_ASSERT(usbd_edpt_xfer(TUD_OPT_RHPORT, ep, data, len));
return true;
}
//--------------------------------------------------------------------+
// READ API
//--------------------------------------------------------------------+
//--------------------------------------------------------------------+
// WRITE API
//--------------------------------------------------------------------+
bool tud_bt_event_send(void *event, uint16_t event_len)
{
return bt_tx_data(_btd_itf.ep_ev, event, event_len);
}
bool tud_bt_acl_data_send(void *event, uint16_t event_len)
{
return bt_tx_data(_btd_itf.ep_acl_in, event, event_len);
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void btd_init(void)
{
tu_memclr(&_btd_itf, sizeof(_btd_itf));
}
void btd_reset(uint8_t rhport)
{
(void)rhport;
}
uint16_t btd_open(uint8_t rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
tusb_desc_endpoint_t const *desc_ep;
uint16_t drv_len = 0;
// Size of single alternative of ISO interface
const uint16_t iso_alt_itf_size = sizeof(tusb_desc_interface_t) + 2 * sizeof(tusb_desc_endpoint_t);
// Size of hci interface
const uint16_t hci_itf_size = sizeof(tusb_desc_interface_t) + 3 * sizeof(tusb_desc_endpoint_t);
// Ensure this is BT Primary Controller
TU_VERIFY(TUSB_CLASS_WIRELESS_CONTROLLER == itf_desc->bInterfaceClass &&
TUD_BT_APP_SUBCLASS == itf_desc->bInterfaceSubClass &&
TUD_BT_PROTOCOL_PRIMARY_CONTROLLER == itf_desc->bInterfaceProtocol, 0);
// Distinguish interface by number of endpoints, as both interface have same class, subclass and protocol
if (itf_desc->bNumEndpoints == 3 && max_len >= hci_itf_size)
{
_btd_itf.itf_num = itf_desc->bInterfaceNumber;
desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer, 0);
2020-08-11 22:09:16 +07:00
TU_ASSERT(usbd_edpt_open(rhport, desc_ep), 0);
_btd_itf.ep_ev = desc_ep->bEndpointAddress;
// Open endpoint pair
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(desc_ep), 2, TUSB_XFER_BULK, &_btd_itf.ep_acl_out,
&_btd_itf.ep_acl_in), 0);
// Prepare for incoming data from host
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE), 0);
drv_len = hci_itf_size;
}
else if (itf_desc->bNumEndpoints == 2 && max_len >= iso_alt_itf_size)
{
uint8_t dir;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(itf_desc);
TU_ASSERT(itf_desc->bAlternateSetting < CFG_TUD_BTH_ISO_ALT_COUNT, 0);
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT, 0);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
_btd_itf.ep_voice[dir] = desc_ep->bEndpointAddress;
// Store endpoint size for alternative
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT, 0);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
_btd_itf.ep_voice[dir] = desc_ep->bEndpointAddress;
// Store endpoint size for alternative
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
drv_len += iso_alt_itf_size;
for (int i = 1; i < CFG_TUD_BTH_ISO_ALT_COUNT && drv_len + iso_alt_itf_size <= max_len; ++i) {
// Make sure rest of alternatives matches
itf_desc = (tusb_desc_interface_t const *)tu_desc_next(desc_ep);
if (itf_desc->bDescriptorType != TUSB_DESC_INTERFACE ||
TUSB_CLASS_WIRELESS_CONTROLLER != itf_desc->bInterfaceClass ||
TUD_BT_APP_SUBCLASS != itf_desc->bInterfaceSubClass ||
TUD_BT_PROTOCOL_PRIMARY_CONTROLLER != itf_desc->bInterfaceProtocol)
{
// Not an Iso interface instance
break;
}
TU_ASSERT(itf_desc->bAlternateSetting < CFG_TUD_BTH_ISO_ALT_COUNT, 0);
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(itf_desc);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
// Verify that alternative endpoint are same as first ones
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT &&
_btd_itf.ep_voice[dir] == desc_ep->bEndpointAddress, 0);
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
// Verify that alternative endpoint are same as first ones
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT &&
_btd_itf.ep_voice[dir] == desc_ep->bEndpointAddress, 0);
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
drv_len += iso_alt_itf_size;
}
}
return drv_len;
}
2020-11-20 16:30:03 +07:00
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool btd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request)
{
(void)rhport;
if ( stage == CONTROL_STAGE_SETUP )
{
if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS &&
request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE)
{
// HCI command packet addressing for single function Primary Controllers
TU_VERIFY(request->bRequest == 0 && request->wValue == 0 && request->wIndex == 0);
}
else if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE)
{
if (request->bRequest == TUSB_REQ_SET_INTERFACE && _btd_itf.itf_num + 1 == request->wIndex)
{
// TODO: Set interface it would involve changing size of endpoint size
}
else
{
// HCI command packet for Primary Controller function in a composite device
TU_VERIFY(request->bRequest == 0 && request->wValue == 0 && request->wIndex == _btd_itf.itf_num);
}
}
else return false;
return tud_control_xfer(rhport, request, &_btd_itf.hci_cmd, request->wLength);
}
else if ( stage == CONTROL_STAGE_DATA )
{
// Handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
if (tud_bt_hci_cmd_cb) tud_bt_hci_cmd_cb(&_btd_itf.hci_cmd, request->wLength);
}
return true;
}
bool btd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void)result;
// received new data from host
if (ep_addr == _btd_itf.ep_acl_out)
{
if (tud_bt_acl_data_received_cb) tud_bt_acl_data_received_cb(_btd_itf.epout_buf, xferred_bytes);
// prepare for next data
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE));
}
else if (ep_addr == _btd_itf.ep_ev)
{
if (tud_bt_event_sent_cb) tud_bt_event_sent_cb((uint16_t)xferred_bytes);
}
else if (ep_addr == _btd_itf.ep_acl_in)
{
if (tud_bt_acl_data_sent_cb) tud_bt_acl_data_sent_cb((uint16_t)xferred_bytes);
}
return true;
}
#endif