tinyusb/hw/bsp/tm4c123/family.c

179 lines
4.6 KiB
C
Raw Normal View History

#include "TM4C123.h"
#include "bsp/board.h"
#include "board.h"
2021-11-08 16:41:08 +07:00
//--------------------------------------------------------------------+
// Forward USB interrupt events to TinyUSB IRQ Handler
//--------------------------------------------------------------------+
void USB0_Handler(void)
{
#if CFG_TUH_ENABLED
tuh_int_handler(0);
#endif
#if CFG_TUD_ENABLED
2021-11-08 16:41:08 +07:00
tud_int_handler(0);
#endif
2021-11-08 16:41:08 +07:00
}
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
2021-11-08 16:41:08 +07:00
static void board_uart_init (void)
{
SYSCTL->RCGCUART |= (1 << 0); // Enable the clock to UART0
SYSCTL->RCGCGPIO |= (1 << 0); // Enable the clock to GPIOA
2021-11-08 16:41:08 +07:00
GPIOA->AFSEL |= (1 << 1) | (1 << 0); // Enable the alternate function on pin PA0 & PA1
GPIOA->PCTL |= (1 << 0) | (1 << 4); // Configure the GPIOPCTL register to select UART0 in PA0 and PA1
GPIOA->DEN |= (1 << 0) | (1 << 1); // Enable the digital functionality in PA0 and PA1
// BAUDRATE = 115200, with SystemCoreClock = 50 Mhz refer manual for calculation
// - BRDI = SystemCoreClock / (16* baud)
// - BRDF = int(fraction*64 + 0.5)
2021-11-08 16:41:08 +07:00
UART0->CTL &= ~(1 << 0); // Disable UART0 by clearing UARTEN bit in the UARTCTL register
UART0->IBRD = 27; // Write the integer portion of the BRD to the UARTIRD register
UART0->FBRD = 8; // Write the fractional portion of the BRD to the UARTFBRD registerer
2021-11-08 16:41:08 +07:00
UART0->LCRH = (0x3 << 5); // 8-bit, no parity, 1 stop bit
UART0->CC = 0x0; // Configure the UART clock source as system clock
2021-11-08 16:41:08 +07:00
UART0->CTL = (1 << 0) | (1 << 8) | (1 << 9); // UART0 Enable, Transmit Enable, Recieve Enable
}
2021-11-08 16:41:08 +07:00
static void initialize_board_led (GPIOA_Type *port, uint8_t PinMsk, uint8_t dirmsk)
{
2021-11-08 16:41:08 +07:00
/* Enable PortF Clock */
SYSCTL->RCGCGPIO |= (1 << 5);
2021-11-08 16:41:08 +07:00
/* Let the clock stabilize */
while ( !((SYSCTL->PRGPIO) & (1 << 5)) ) {}
2021-11-08 16:41:08 +07:00
/* Port Digital Enable */
port->DEN |= PinMsk;
2021-11-08 16:41:08 +07:00
/* Set direction */
port->DIR = dirmsk;
}
2021-11-08 16:41:08 +07:00
static void board_switch_init (void)
{
2021-11-08 16:41:08 +07:00
GPIOF->DIR &= ~(1 << BOARD_BTN);
GPIOF->PUR |= (1 << BOARD_BTN);
GPIOF->DEN |= (1 << BOARD_BTN);
}
2021-11-08 16:41:08 +07:00
static void WriteGPIOPin (GPIOA_Type *port, uint8_t PinMsk, bool state)
{
2021-11-08 16:41:08 +07:00
if ( state )
{
2021-11-08 16:41:08 +07:00
port->DATA |= PinMsk;
}
2021-11-08 16:41:08 +07:00
else
{
2021-11-08 16:41:08 +07:00
port->DATA &= ~(PinMsk);
}
}
2021-11-08 16:41:08 +07:00
static uint32_t ReadGPIOPin (GPIOA_Type *port, uint8_t pinMsk)
{
2021-11-08 16:41:08 +07:00
return (port->DATA & pinMsk);
}
2021-11-08 16:41:08 +07:00
void board_init (void)
{
2021-11-08 16:41:08 +07:00
SystemCoreClockUpdate();
#if CFG_TUSB_OS == OPT_OS_NONE
2021-11-08 16:41:08 +07:00
// 1ms tick timer
SysTick_Config(SystemCoreClock / 1000);
#elif CFG_TUSB_OS == OPT_OS_FREERTOS
// If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher )
NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY );
#endif
2021-11-08 16:41:08 +07:00
/* Reset USB */
SYSCTL->SRCR2 |= (1u << 16);
for ( volatile uint8_t i = 0; i < 20; i++ ) {}
2021-11-08 16:41:08 +07:00
SYSCTL->SRCR2 &= ~(1u << 16);
2021-11-08 16:41:08 +07:00
/* Open the USB clock gate */
SYSCTL->RCGCUSB |= (1 << 0);
2021-11-08 16:41:08 +07:00
/* Power-up USB PLL */
SYSCTL->RCC2 &= ~(1u << 14);
2021-11-08 16:41:08 +07:00
/* USB IO Initialization */
SYSCTL->RCGCGPIO |= (1u << 3);
2021-11-08 16:41:08 +07:00
/* Let the clock stabilize */
while ( !(SYSCTL->PRGPIO & (1u << 3)) ) {}
2021-11-08 16:41:08 +07:00
/* USB IOs to Analog Mode */
GPIOD->AFSEL &= ~((1u << 4) | (1u << 5));
GPIOD->DEN &= ~((1u << 4) | (1u << 5));
GPIOD->AMSEL |= ((1u << 4) | (1u << 5));
2021-11-08 16:41:08 +07:00
uint8_t leds = (1 << LED_PIN_RED) | (1 << LED_PIN_BLUE) | (1 << LED_PIN_GREEN);
uint8_t dirmsk = (1 << LED_PIN_RED) | (1 << LED_PIN_BLUE) | (1 << LED_PIN_GREEN);
2021-11-08 16:41:08 +07:00
/* Configure GPIO for board LED */
initialize_board_led(LED_PORT, leds, dirmsk);
2021-11-08 16:41:08 +07:00
/* Configure GPIO for board switch */
board_switch_init();
2021-11-08 16:41:08 +07:00
/* Initialize board UART */
board_uart_init();
TU_LOG1_INT(SystemCoreClock);
}
2021-11-08 16:41:08 +07:00
void board_led_write (bool state)
{
2021-11-08 16:41:08 +07:00
WriteGPIOPin(LED_PORT, (1 << LED_PIN_BLUE), state);
}
2021-11-08 16:41:08 +07:00
uint32_t board_button_read (void)
{
2021-11-08 16:41:08 +07:00
uint32_t gpio_value = ReadGPIOPin(BOARD_BTN_PORT, BOARD_BTN_Msk);
return BUTTON_STATE_ACTIVE ? gpio_value : !gpio_value;
}
2021-11-08 16:41:08 +07:00
int board_uart_write (void const *buf, int len)
{
2021-11-08 16:41:08 +07:00
uint8_t const * data = buf;
2021-11-08 16:41:08 +07:00
for ( int i = 0; i < len; i++ )
{
while ( (UART0->FR & (1 << 5)) != 0 ) {} // Poll until previous data was shofted out
UART0->DR = data[i]; // Write UART0 DATA REGISTER
}
2021-11-08 16:41:08 +07:00
return len;
}
2021-11-08 16:41:08 +07:00
int board_uart_read (uint8_t *buf, int len)
{
2021-11-08 16:41:08 +07:00
(void) buf;
(void) len;
return 0;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler (void)
{
system_ticks++;
}
2021-11-08 16:41:08 +07:00
uint32_t board_millis (void)
{
return system_ticks;
}
#endif