606 lines
20 KiB
C
Raw Normal View History

/*
* @brief LPC13xx SSP Registers and control functions
*
* @note
* Copyright(C) NXP Semiconductors, 2012
* All rights reserved.
*
* @par
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* LPC products. This software is supplied "AS IS" without any warranties of
* any kind, and NXP Semiconductors and its licensor disclaim any and
* all warranties, express or implied, including all implied warranties of
* merchantability, fitness for a particular purpose and non-infringement of
* intellectual property rights. NXP Semiconductors assumes no responsibility
* or liability for the use of the software, conveys no license or rights under any
* patent, copyright, mask work right, or any other intellectual property rights in
* or to any products. NXP Semiconductors reserves the right to make changes
* in the software without notification. NXP Semiconductors also makes no
* representation or warranty that such application will be suitable for the
* specified use without further testing or modification.
*
* @par
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors' and its
* licensor's relevant copyrights in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
*/
#ifndef __SSP_13XX_H_
#define __SSP_13XX_H_
#ifdef __cplusplus
extern "C" {
#endif
/** @defgroup SSP_13XX CHIP: LPC13xx SSP register block and driver
* @ingroup CHIP_13XX_Drivers
* @{
*/
/**
* @brief SSP register block structure
*/
typedef struct { /*!< SSPn Structure */
__IO uint32_t CR0; /*!< Control Register 0. Selects the serial clock rate, bus type, and data size. */
__IO uint32_t CR1; /*!< Control Register 1. Selects master/slave and other modes. */
__IO uint32_t DR; /*!< Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO. */
__I uint32_t SR; /*!< Status Register */
__IO uint32_t CPSR; /*!< Clock Prescale Register */
__IO uint32_t IMSC; /*!< Interrupt Mask Set and Clear Register */
__I uint32_t RIS; /*!< Raw Interrupt Status Register */
__I uint32_t MIS; /*!< Masked Interrupt Status Register */
__O uint32_t ICR; /*!< SSPICR Interrupt Clear Register */
#if !defined(CHIP_LPC110X) && !defined(CHIP_LPC11XXLV) && !defined(CHIP_LPC11AXX) && \
!defined(CHIP_LPC11CXX) && !defined(CHIP_LPC11EXX) && !defined(CHIP_LPC11UXX)
__IO uint32_t DMACR; /*!< SSPn DMA control register */
#endif
} LPC_SSP_T;
/**
* Macro defines for CR0 register
*/
/** SSP data size select, must be 4 bits to 16 bits */
#define SSP_CR0_DSS(n) ((uint32_t) ((n) & 0xF))
/** SSP control 0 Motorola SPI mode */
#define SSP_CR0_FRF_SPI ((uint32_t) (0 << 4))
/** SSP control 0 TI synchronous serial mode */
#define SSP_CR0_FRF_TI ((uint32_t) (1 << 4))
/** SSP control 0 National Micro-wire mode */
#define SSP_CR0_FRF_MICROWIRE ((uint32_t) (2 << 4))
/** SPI clock polarity bit (used in SPI mode only), (1) = maintains the
bus clock high between frames, (0) = low */
#define SSP_CR0_CPOL_LO ((uint32_t) (0))
#define SSP_CR0_CPOL_HI ((uint32_t) (1 << 6))
/** SPI clock out phase bit (used in SPI mode only), (1) = captures data
on the second clock transition of the frame, (0) = first */
#define SSP_CR0_CPHA_FIRST ((uint32_t) (0))
#define SSP_CR0_CPHA_SECOND ((uint32_t) (1 << 7))
/** SSP serial clock rate value load macro, divider rate is
PERIPH_CLK / (cpsr * (SCR + 1)) */
#define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8))
/** SSP CR0 bit mask */
#define SSP_CR0_BITMASK ((uint32_t) (0xFFFF))
/** SSP CR0 bit mask */
#define SSP_CR0_BITMASK ((uint32_t) (0xFFFF))
/** SSP serial clock rate value load macro, divider rate is
PERIPH_CLK / (cpsr * (SCR + 1)) */
#define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8))
/**
* Macro defines for CR1 register
*/
/** SSP control 1 loopback mode enable bit */
#define SSP_CR1_LBM_EN ((uint32_t) (1 << 0))
/** SSP control 1 enable bit */
#define SSP_CR1_SSP_EN ((uint32_t) (1 << 1))
/** SSP control 1 slave enable */
#define SSP_CR1_SLAVE_EN ((uint32_t) (1 << 2))
#define SSP_CR1_MASTER_EN ((uint32_t) (0))
/** SSP control 1 slave out disable bit, disables transmit line in slave
mode */
#define SSP_CR1_SO_DISABLE ((uint32_t) (1 << 3))
/** SSP CR1 bit mask */
#define SSP_CR1_BITMASK ((uint32_t) (0x0F))
/** SSP CPSR bit mask */
#define SSP_CPSR_BITMASK ((uint32_t) (0xFF))
/**
* Macro defines for DR register
*/
/** SSP data bit mask */
#define SSP_DR_BITMASK(n) ((n) & 0xFFFF)
/**
* Macro defines for SR register
*/
/** SSP SR bit mask */
#define SSP_SR_BITMASK ((uint32_t) (0x1F))
/** ICR bit mask */
#define SSP_ICR_BITMASK ((uint32_t) (0x03))
/**
* @brief SSP Type of Status
*/
typedef enum _SSP_STATUS {
SSP_STAT_TFE = ((uint32_t)(1 << 0)),/**< TX FIFO Empty */
SSP_STAT_TNF = ((uint32_t)(1 << 1)),/**< TX FIFO not full */
SSP_STAT_RNE = ((uint32_t)(1 << 2)),/**< RX FIFO not empty */
SSP_STAT_RFF = ((uint32_t)(1 << 3)),/**< RX FIFO full */
SSP_STAT_BSY = ((uint32_t)(1 << 4)),/**< SSP Busy */
} SSP_STATUS_T;
/**
* @brief SSP Type of Interrupt Mask
*/
typedef enum _SSP_INTMASK {
SSP_RORIM = ((uint32_t)(1 << 0)), /**< Overun */
SSP_RTIM = ((uint32_t)(1 << 1)),/**< TimeOut */
SSP_RXIM = ((uint32_t)(1 << 2)),/**< Rx FIFO is at least half full */
SSP_TXIM = ((uint32_t)(1 << 3)),/**< Tx FIFO is at least half empty */
SSP_INT_MASK_BITMASK = ((uint32_t)(0xF)),
} SSP_INTMASK_T;
/**
* @brief SSP Type of Mask Interrupt Status
*/
typedef enum _SSP_MASKINTSTATUS {
SSP_RORMIS = ((uint32_t)(1 << 0)), /**< Overun */
SSP_RTMIS = ((uint32_t)(1 << 1)), /**< TimeOut */
SSP_RXMIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */
SSP_TXMIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */
SSP_MASK_INT_STAT_BITMASK = ((uint32_t)(0xF)),
} SSP_MASKINTSTATUS_T;
/**
* @brief SSP Type of Raw Interrupt Status
*/
typedef enum _SSP_RAWINTSTATUS {
SSP_RORRIS = ((uint32_t)(1 << 0)), /**< Overun */
SSP_RTRIS = ((uint32_t)(1 << 1)), /**< TimeOut */
SSP_RXRIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */
SSP_TXRIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */
SSP_RAW_INT_STAT_BITMASK = ((uint32_t)(0xF)),
} SSP_RAWINTSTATUS_T;
typedef enum _SSP_INTCLEAR {
SSP_RORIC = 0x0,
SSP_RTIC = 0x1,
SSP_INT_CLEAR_BITMASK = 0x3,
} SSP_INTCLEAR_T;
typedef enum _SSP_DMA {
SSP_DMA_RX = (1u), /**< DMA RX Enable */
SSP_DMA_TX = (1u << 1), /**< DMA TX Enable */
SSP_DMA_BITMASK = ((uint32_t)(0x3)),
} SSP_DMA_T;
/*
* @brief SSP clock format
*/
typedef enum CHIP_SSP_CLOCK_FORMAT {
SSP_CLOCK_CPHA0_CPOL0 = (0 << 6), /**< CPHA = 0, CPOL = 0 */
SSP_CLOCK_CPHA0_CPOL1 = (1u << 6), /**< CPHA = 0, CPOL = 1 */
SSP_CLOCK_CPHA1_CPOL0 = (2u << 6), /**< CPHA = 1, CPOL = 0 */
SSP_CLOCK_CPHA1_CPOL1 = (3u << 6), /**< CPHA = 1, CPOL = 1 */
SSP_CLOCK_MODE0 = SSP_CLOCK_CPHA0_CPOL0,/**< alias */
SSP_CLOCK_MODE1 = SSP_CLOCK_CPHA1_CPOL0,/**< alias */
SSP_CLOCK_MODE2 = SSP_CLOCK_CPHA0_CPOL1,/**< alias */
SSP_CLOCK_MODE3 = SSP_CLOCK_CPHA1_CPOL1,/**< alias */
} CHIP_SSP_CLOCK_MODE_T;
/*
* @brief SSP frame format
*/
typedef enum CHIP_SSP_FRAME_FORMAT {
SSP_FRAMEFORMAT_SPI = (0 << 4), /**< Frame format: SPI */
CHIP_SSP_FRAME_FORMAT_TI = (1u << 4), /**< Frame format: TI SSI */
SSP_FRAMEFORMAT_MICROWIRE = (2u << 4), /**< Frame format: Microwire */
} CHIP_SSP_FRAME_FORMAT_T;
/*
* @brief Number of bits per frame
*/
typedef enum CHIP_SSP_BITS {
SSP_BITS_4 = (3u << 0), /*!< 4 bits/frame */
SSP_BITS_5 = (4u << 0), /*!< 5 bits/frame */
SSP_BITS_6 = (5u << 0), /*!< 6 bits/frame */
SSP_BITS_7 = (6u << 0), /*!< 7 bits/frame */
SSP_BITS_8 = (7u << 0), /*!< 8 bits/frame */
SSP_BITS_9 = (8u << 0), /*!< 9 bits/frame */
SSP_BITS_10 = (9u << 0), /*!< 10 bits/frame */
SSP_BITS_11 = (10u << 0), /*!< 11 bits/frame */
SSP_BITS_12 = (11u << 0), /*!< 12 bits/frame */
SSP_BITS_13 = (12u << 0), /*!< 13 bits/frame */
SSP_BITS_14 = (13u << 0), /*!< 14 bits/frame */
SSP_BITS_15 = (14u << 0), /*!< 15 bits/frame */
SSP_BITS_16 = (15u << 0), /*!< 16 bits/frame */
} CHIP_SSP_BITS_T;
/*
* @brief SSP config format
*/
typedef struct SSP_ConfigFormat {
CHIP_SSP_BITS_T bits; /*!< Format config: bits/frame */
CHIP_SSP_CLOCK_MODE_T clockMode; /*!< Format config: clock phase/polarity */
CHIP_SSP_FRAME_FORMAT_T frameFormat; /*!< Format config: SPI/TI/Microwire */
} SSP_ConfigFormat;
/**
* @brief Enable SSP operation
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
*/
STATIC INLINE void Chip_SSP_Enable(LPC_SSP_T *pSSP)
{
pSSP->CR1 |= SSP_CR1_SSP_EN;
}
/**
* @brief Disable SSP operation
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
*/
STATIC INLINE void Chip_SSP_Disable(LPC_SSP_T *pSSP)
{
pSSP->CR1 &= (~SSP_CR1_SSP_EN) & SSP_CR1_BITMASK;
}
/**
* @brief Enable loopback mode
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
* @note Serial input is taken from the serial output (MOSI or MISO) rather
* than the serial input pin
*/
STATIC INLINE void Chip_SSP_EnableLoopBack(LPC_SSP_T *pSSP)
{
pSSP->CR1 |= SSP_CR1_LBM_EN;
}
/**
* @brief Disable loopback mode
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
* @note Serial input is taken from the serial output (MOSI or MISO) rather
* than the serial input pin
*/
STATIC INLINE void Chip_SSP_DisableLoopBack(LPC_SSP_T *pSSP)
{
pSSP->CR1 &= (~SSP_CR1_LBM_EN) & SSP_CR1_BITMASK;
}
/**
* @brief Get the current status of SSP controller
* @param pSSP : The base of SSP peripheral on the chip
* @param Stat : Type of status, should be :
* - SSP_STAT_TFE
* - SSP_STAT_TNF
* - SSP_STAT_RNE
* - SSP_STAT_RFF
* - SSP_STAT_BSY
* @return SSP controller status, SET or RESET
*/
STATIC INLINE FlagStatus Chip_SSP_GetStatus(LPC_SSP_T *pSSP, SSP_STATUS_T Stat)
{
return (pSSP->SR & Stat) ? SET : RESET;
}
/**
* @brief Get the masked interrupt status
* @param pSSP : The base of SSP peripheral on the chip
* @return SSP Masked Interrupt Status Register value
* @note The return value contains a 1 for each interrupt condition that is asserted and enabled (masked)
*/
STATIC INLINE uint32_t Chip_SSP_GetIntStatus(LPC_SSP_T *pSSP)
{
return pSSP->MIS;
}
/**
* @brief Get the raw interrupt status
* @param pSSP : The base of SSP peripheral on the chip
* @param RawInt : Interrupt condition to be get status, shoud be :
* - SSP_RORRIS
* - SSP_RTRIS
* - SSP_RXRIS
* - SSP_TXRIS
* @return Raw interrupt status corresponding to interrupt condition , SET or RESET
* @note Get the status of each interrupt condition ,regardless of whether or not the interrupt is enabled
*/
STATIC INLINE IntStatus Chip_SSP_GetRawIntStatus(LPC_SSP_T *pSSP, SSP_RAWINTSTATUS_T RawInt)
{
return (pSSP->RIS & RawInt) ? SET : RESET;
}
/**
* @brief Get the number of bits transferred in each frame
* @param pSSP : The base of SSP peripheral on the chip
* @return the number of bits transferred in each frame minus one
* @note The return value is 0x03 -> 0xF corresponding to 4bit -> 16bit transfer
*/
STATIC INLINE uint8_t Chip_SSP_GetDataSize(LPC_SSP_T *pSSP)
{
return SSP_CR0_DSS(pSSP->CR0);
}
/**
* @brief Clear the corresponding interrupt condition(s) in the SSP controller
* @param pSSP : The base of SSP peripheral on the chip
* @param IntClear: Type of cleared interrupt, should be :
* - SSP_RORIC
* - SSP_RTIC
* @return Nothing
* @note Software can clear one or more interrupt condition(s) in the SSP controller
*/
STATIC INLINE void Chip_SSP_ClearIntPending(LPC_SSP_T *pSSP, SSP_INTCLEAR_T IntClear)
{
pSSP->ICR = IntClear;
}
/**
* @brief Enable interrupt for the SSP
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
*/
STATIC INLINE void Chip_SSP_Int_Enable(LPC_SSP_T *pSSP)
{
pSSP->IMSC |= SSP_TXIM;
}
/**
* @brief Disable interrupt for the SSP
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
*/
STATIC INLINE void Chip_SSP_Int_Disable(LPC_SSP_T *pSSP)
{
pSSP->IMSC &= (~SSP_TXIM);
}
/**
* @brief Get received SSP data
* @param pSSP : The base of SSP peripheral on the chip
* @return SSP 16-bit data received
*/
STATIC INLINE uint16_t Chip_SSP_ReceiveFrame(LPC_SSP_T *pSSP)
{
return (uint16_t) (SSP_DR_BITMASK(pSSP->DR));
}
/**
* @brief Send SSP 16-bit data
* @param pSSP : The base of SSP peripheral on the chip
* @param tx_data : SSP 16-bit data to be transmited
* @return Nothing
*/
STATIC INLINE void Chip_SSP_SendFrame(LPC_SSP_T *pSSP, uint16_t tx_data)
{
pSSP->DR = SSP_DR_BITMASK(tx_data);
}
/**
* @brief Set up output clocks per bit for SSP bus
* @param pSSP : The base of SSP peripheral on the chip
* @param clk_rate fs: The number of prescaler-output clocks per bit on the bus, minus one
* @param prescale : The factor by which the Prescaler divides the SSP peripheral clock PCLK
* @return Nothing
* @note The bit frequency is PCLK / (prescale x[clk_rate+1])
*/
void Chip_SSP_SetClockRate(LPC_SSP_T *pSSP, uint32_t clk_rate, uint32_t prescale);
/**
* @brief Set up the SSP frame format
* @param pSSP : The base of SSP peripheral on the chip
* @param bits : The number of bits transferred in each frame, should be SSP_BITS_4 to SSP_BITS_16
* @param frameFormat : Frame format, should be :
* - SSP_FRAMEFORMAT_SPI
* - SSP_FRAME_FORMAT_TI
* - SSP_FRAMEFORMAT_MICROWIRE
* @param clockMode : Select Clock polarity and Clock phase, should be :
* - SSP_CLOCK_CPHA0_CPOL0
* - SSP_CLOCK_CPHA0_CPOL1
* - SSP_CLOCK_CPHA1_CPOL0
* - SSP_CLOCK_CPHA1_CPOL1
* @return Nothing
* @note Note: The clockFormat is only used in SPI mode
*/
STATIC INLINE void Chip_SSP_SetFormat(LPC_SSP_T *pSSP, uint32_t bits, uint32_t frameFormat, uint32_t clockMode)
{
pSSP->CR0 = (pSSP->CR0 & ~0xFF) | bits | frameFormat | clockMode;
}
/**
* @brief Set the SSP working as master or slave mode
* @param pSSP : The base of SSP peripheral on the chip
* @param mode : Operating mode, should be
* - SSP_MODE_MASTER
* - SSP_MODE_SLAVE
* @return Nothing
*/
STATIC INLINE void Chip_SSP_Set_Mode(LPC_SSP_T *pSSP, uint32_t mode)
{
pSSP->CR1 = (pSSP->CR1 & ~(1 << 2)) | mode;
}
#if !defined(CHIP_LPC110X) && !defined(CHIP_LPC11XXLV) && !defined(CHIP_LPC11AXX) && \
!defined(CHIP_LPC11CXX) && !defined(CHIP_LPC11EXX) && !defined(CHIP_LPC11UXX)
/**
* @brief Enable DMA for SSP
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
*/
STATIC INLINE void Chip_SSP_DMA_Enable(LPC_SSP_T *pSSP)
{
pSSP->DMACR |= SSP_DMA_BITMASK;
}
/**
* @brief Disable DMA for SSP
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
*/
STATIC INLINE void Chip_SSP_DMA_Disable(LPC_SSP_T *pSSP)
{
pSSP->DMACR &= ~SSP_DMA_BITMASK;
}
#endif
/*
* @brief SSP mode
*/
typedef enum CHIP_SSP_MODE {
SSP_MODE_MASTER = (0 << 2), /**< Master mode */
SSP_MODE_SLAVE = (1u << 2), /**< Slave mode */
} CHIP_SSP_MODE_T;
/*
* @brief SPI address
*/
typedef struct {
uint8_t port; /*!< Port Number */
uint8_t pin; /*!< Pin number */
} SPI_Address_t;
/*
* @brief SSP data setup structure
*/
typedef struct {
void *tx_data; /*!< Pointer to transmit data */
uint32_t tx_cnt; /*!< Transmit counter */
void *rx_data; /*!< Pointer to transmit data */
uint32_t rx_cnt; /*!< Receive counter */
uint32_t length; /*!< Length of transfer data */
} Chip_SSP_DATA_SETUP_T;
/** SSP configuration parameter defines */
/** Clock phase control bit */
#define SSP_CPHA_FIRST SSP_CR0_CPHA_FIRST
#define SSP_CPHA_SECOND SSP_CR0_CPHA_SECOND
/** Clock polarity control bit */
/* There's no bug here!!!
* - If bit[6] in SSPnCR0 is 0: SSP controller maintains the bus clock low between frames.
* That means the active clock is in HI state.
* - If bit[6] in SSPnCR0 is 1 (SSP_CR0_CPOL_HI): SSP controller maintains the bus clock
* high between frames. That means the active clock is in LO state.
*/
#define SSP_CPOL_HI SSP_CR0_CPOL_LO
#define SSP_CPOL_LO SSP_CR0_CPOL_HI
/** SSP master mode enable */
#define SSP_SLAVE_MODE SSP_CR1_SLAVE_EN
#define SSP_MASTER_MODE SSP_CR1_MASTER_EN
/**
* @brief Clean all data in RX FIFO of SSP
* @param pSSP : The base SSP peripheral on the chip
* @return Nothing
*/
void Chip_SSP_Int_FlushData(LPC_SSP_T *pSSP);
/**
* @brief SSP Interrupt Read/Write with 8-bit frame width
* @param pSSP : The base SSP peripheral on the chip
* @param xf_setup : Pointer to a SSP_DATA_SETUP_T structure that contains specified
* information about transmit/receive data configuration
* @return SUCCESS or ERROR
*/
Status Chip_SSP_Int_RWFrames8Bits(LPC_SSP_T *pSSP, Chip_SSP_DATA_SETUP_T *xf_setup);
/**
* @brief SSP Interrupt Read/Write with 16-bit frame width
* @param pSSP : The base SSP peripheral on the chip
* @param xf_setup : Pointer to a SSP_DATA_SETUP_T structure that contains specified
* information about transmit/receive data configuration
* @return SUCCESS or ERROR
*/
Status Chip_SSP_Int_RWFrames16Bits(LPC_SSP_T *pSSP, Chip_SSP_DATA_SETUP_T *xf_setup);
/**
* @brief SSP Polling Read/Write in blocking mode
* @param pSSP : The base SSP peripheral on the chip
* @param xf_setup : Pointer to a SSP_DATA_SETUP_T structure that contains specified
* information about transmit/receive data configuration
* @return Actual data length has been transferred
* @note
* This function can be used in both master and slave mode. It starts with writing phase and after that,
* a reading phase is generated to read any data available in RX_FIFO. All needed information is prepared
* through xf_setup param.
*/
uint32_t Chip_SSP_RWFrames_Blocking(LPC_SSP_T *pSSP, Chip_SSP_DATA_SETUP_T *xf_setup);
/**
* @brief SSP Polling Write in blocking mode
* @param pSSP : The base SSP peripheral on the chip
* @param buffer : Buffer address
* @param buffer_len : Buffer length
* @return Actual data length has been transferred
* @note
* This function can be used in both master and slave mode. First, a writing operation will send
* the needed data. After that, a dummy reading operation is generated to clear data buffer
*/
uint32_t Chip_SSP_WriteFrames_Blocking(LPC_SSP_T *pSSP, uint8_t *buffer, uint32_t buffer_len);
/**
* @brief SSP Polling Read in blocking mode
* @param pSSP : The base SSP peripheral on the chip
* @param buffer : Buffer address
* @param buffer_len : The length of buffer
* @return Actual data length has been transferred
* @note
* This function can be used in both master and slave mode. First, a dummy writing operation is generated
* to clear data buffer. After that, a reading operation will receive the needed data
*/
uint32_t Chip_SSP_ReadFrames_Blocking(LPC_SSP_T *pSSP, uint8_t *buffer, uint32_t buffer_len);
/**
* @brief Initialize the SSP
* @param pSSP : The base SSP peripheral on the chip
* @return Nothing
*/
void Chip_SSP_Init(LPC_SSP_T *pSSP);
/**
* @brief Deinitialise the SSP
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
* @note The SSP controller is disabled
*/
void Chip_SSP_DeInit(LPC_SSP_T *pSSP);
/**
* @brief Set the SSP operating modes, master or slave
* @param pSSP : The base SSP peripheral on the chip
* @param master : 1 to set master, 0 to set slave
* @return Nothing
*/
void Chip_SSP_SetMaster(LPC_SSP_T *pSSP, bool master);
/**
* @brief Set the clock frequency for SSP interface
* @param pSSP : The base SSP peripheral on the chip
* @param bitRate : The SSP bit rate
* @return Nothing
*/
void Chip_SSP_SetBitRate(LPC_SSP_T *pSSP, uint32_t bitRate);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __SSP_13XX_H_ */