Merge pull request #581 from hathach/dcd_synopsis_mem_allocation

Dcd synopsis mem allocation
This commit is contained in:
Ha Thach 2021-01-08 12:45:46 +07:00 committed by GitHub
commit 1f00a182c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -139,25 +139,47 @@ typedef struct {
uint8_t interval;
} xfer_ctl_t;
// EP size and transfer type report
typedef struct TU_ATTR_PACKED {
// The following format may look complicated but it is the most elegant way of addressing the required fields: EP number, EP direction, and EP transfer type.
// The codes assigned to those fields, according to the USB specification, can be neatly used as indices.
uint16_t ep_size[EP_MAX][2]; ///< dim 1: EP number, dim 2: EP direction denoted by TUSB_DIR_OUT (= 0) and TUSB_DIR_IN (= 1)
bool ep_transfer_type[EP_MAX][2][4]; ///< dim 1: EP number, dim 2: EP direction, dim 3: transfer type, where 0 = Control, 1 = Isochronous, 2 = Bulk, and 3 = Interrupt
///< I know very well that EP0 can only be used as control EP and we waste space here but for the sake of simplicity we accept that. It is used in a non-persistent way anyway!
} ep_sz_tt_report_t;
typedef volatile uint32_t * usb_fifo_t;
xfer_ctl_t xfer_status[EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
// FIFO RAM allocation so far in words
static uint16_t _allocated_fifo_words;
// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from usb_otg->GRXFSIZ
static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs)
static bool _rx_ep_closed; // Flag to check if RX FIFO size needs an update (reduce its size)
// Calculate the RX FIFO size according to recommendations from reference manual
// ep_size in words
static inline uint16_t calc_rx_ff_size(uint16_t ep_size)
{
return 15 + 2*ep_size + 2*EP_MAX;
}
static inline void update_grxfsiz(void)
{
// If an OUT EP was closed update (reduce) the RX FIFO size if RX FIFO is empty - since this function handle_rxflvl_ints() gets looped from dcd_int_handler() until RX FIFO is empty it is guaranteed to be entered
if (_rx_ep_closed)
{
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
// Determine largest EP size for RX FIFO
uint16_t sz = xfer_status[0][TUSB_DIR_OUT].max_size;
for (uint8_t cnt = 1; cnt < EP_MAX; cnt++)
{
if (sz < xfer_status[cnt][TUSB_DIR_OUT].max_size) sz = xfer_status[cnt][TUSB_DIR_OUT].max_size;
}
// Update size of RX FIFO
usb_otg->GRXFSIZ = calc_rx_ff_size(sz/4); // sz was in bytes and is now needed in words
// Disable flag
_rx_ep_closed = false;
}
}
// Setup the control endpoint 0.
static void bus_reset(uint8_t rhport)
@ -170,6 +192,7 @@ static void bus_reset(uint8_t rhport)
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
tu_memclr(xfer_status, sizeof(xfer_status));
_rx_ep_closed = false;
for(uint8_t n = 0; n < EP_MAX; n++) {
out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
@ -182,16 +205,28 @@ static void bus_reset(uint8_t rhport)
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
// We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
// between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
// configuration done below.
//
// Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
// All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
// configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
// opened when the host sends an additional command: setInterface. At this point in time
// the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
// an additional memory
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | ... |
// --------------- y + x + 16 + GRXFSIZ
// | IN FIFO 2 |
// --------------- x + 16 + GRXFSIZ
// | IN FIFO 1 |
// --------------- 16 + GRXFSIZ
// | IN FIFO 0 |
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
@ -213,24 +248,20 @@ static void bus_reset(uint8_t rhport)
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
// of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
//
// FIXME: for Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
// For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
// overwrite this.
#if TUD_OPT_HIGH_SPEED
_allocated_fifo_words = 271 + 2*EP_MAX;
usb_otg->GRXFSIZ = calc_rx_ff_size(128);
#else
_allocated_fifo_words = 47 + 2*EP_MAX;
usb_otg->GRXFSIZ = calc_rx_ff_size(16);
#endif
usb_otg->GRXFSIZ = _allocated_fifo_words;
_allocated_fifo_words_tx = 16;
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words;
_allocated_fifo_words += 16;
// TU_LOG2_INT(_allocated_fifo_words);
usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | (EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
// Fixed control EP0 size to 64 bytes
in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
@ -557,8 +588,22 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
xfer->max_size = desc_edpt->wMaxPacketSize.size;
xfer->interval = desc_edpt->bInterval;
uint16_t const fifo_size = tu_max16((desc_edpt->wMaxPacketSize.size + 3) / 4, 16); // Round up to next full word, minimum value must be 16
if(dir == TUSB_DIR_OUT)
{
// Calculate required size of RX FIFO
uint16_t const sz = calc_rx_ff_size(fifo_size);
// If size_rx needs to be extended check if possible and if so enlarge it
if (usb_otg->GRXFSIZ < sz)
{
TU_ASSERT(sz + _allocated_fifo_words_tx <= EP_FIFO_SIZE/4);
// Enlarge RX FIFO
usb_otg->GRXFSIZ = sz;
}
out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
(desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
@ -571,15 +616,15 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | ... |
// --------------- y + x + 16 + GRXFSIZ
// | IN FIFO 2 |
// --------------- x + 16 + GRXFSIZ
// | IN FIFO 1 |
// --------------- 16 + GRXFSIZ
// | IN FIFO 0 |
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
@ -587,34 +632,15 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
//
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
// - Offset: allocated so far
// - Size
// - Interrupt is EPSize
// - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN)
uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words;
uint16_t fifo_size = (desc_edpt->wMaxPacketSize.size + 3) / 4; // +3 for rounding up to next full word
// Check if free space is available
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + usb_otg->GRXFSIZ <= EP_FIFO_SIZE/4);
if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT )
{
uint8_t opened = 0;
for(uint8_t i = 0; i < EP_MAX; i++)
{
if ( (i != epnum) && (xfer_status[i][TUSB_DIR_IN].max_size > 0) ) opened++;
}
// EP Size or equally divided of remaining whichever is larger
fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened));
}
// FIFO overflows, we probably need a better allocating scheme
TU_ASSERT(fifo_size <= fifo_remaining);
_allocated_fifo_words_tx += fifo_size;
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words;
_allocated_fifo_words += fifo_size;
usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | (EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
@ -724,13 +750,21 @@ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_disable(rhport, ep_addr, false);
// Update max_size
xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation
if (dir == TUSB_DIR_IN)
{
uint16_t const fifo_size = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXFD_Msk) >> USB_OTG_DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXSA_Msk) >> USB_OTG_DIEPTXF_INEPTXSA_Pos;
// For now only endpoint that has FIFO at the end of FIFO memory can be closed without fuss.
TU_ASSERT(fifo_start + fifo_size == _allocated_fifo_words,);
_allocated_fifo_words -= fifo_size;
// For now only the last opened endpoint can be closed without fuss.
TU_ASSERT(fifo_start == EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,);
_allocated_fifo_words_tx -= fifo_size;
}
else
{
_rx_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
}
}
@ -1048,6 +1082,9 @@ void dcd_int_handler(uint8_t rhport)
int_status = usb_otg->GINTSTS;
} while(int_status & USB_OTG_GINTSTS_RXFLVL);
// Manage RX FIFO size
update_grxfsiz();
usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
}
@ -1063,11 +1100,11 @@ void dcd_int_handler(uint8_t rhport)
handle_epin_ints(rhport, dev, in_ep);
}
// // Check for Incomplete isochronous IN transfer
// if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
// printf(" IISOIXFR!\r\n");
//// TU_LOG2(" IISOIXFR!\r\n");
// }
// // Check for Incomplete isochronous IN transfer
// if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
// printf(" IISOIXFR!\r\n");
//// TU_LOG2(" IISOIXFR!\r\n");
// }
}
#endif