mirror of
https://github.com/hathach/tinyusb.git
synced 2025-01-17 05:32:55 +08:00
Merge pull request #581 from hathach/dcd_synopsis_mem_allocation
Dcd synopsis mem allocation
This commit is contained in:
commit
1f00a182c4
@ -139,25 +139,47 @@ typedef struct {
|
|||||||
uint8_t interval;
|
uint8_t interval;
|
||||||
} xfer_ctl_t;
|
} xfer_ctl_t;
|
||||||
|
|
||||||
// EP size and transfer type report
|
|
||||||
typedef struct TU_ATTR_PACKED {
|
|
||||||
// The following format may look complicated but it is the most elegant way of addressing the required fields: EP number, EP direction, and EP transfer type.
|
|
||||||
// The codes assigned to those fields, according to the USB specification, can be neatly used as indices.
|
|
||||||
uint16_t ep_size[EP_MAX][2]; ///< dim 1: EP number, dim 2: EP direction denoted by TUSB_DIR_OUT (= 0) and TUSB_DIR_IN (= 1)
|
|
||||||
bool ep_transfer_type[EP_MAX][2][4]; ///< dim 1: EP number, dim 2: EP direction, dim 3: transfer type, where 0 = Control, 1 = Isochronous, 2 = Bulk, and 3 = Interrupt
|
|
||||||
///< I know very well that EP0 can only be used as control EP and we waste space here but for the sake of simplicity we accept that. It is used in a non-persistent way anyway!
|
|
||||||
} ep_sz_tt_report_t;
|
|
||||||
|
|
||||||
typedef volatile uint32_t * usb_fifo_t;
|
typedef volatile uint32_t * usb_fifo_t;
|
||||||
|
|
||||||
xfer_ctl_t xfer_status[EP_MAX][2];
|
xfer_ctl_t xfer_status[EP_MAX][2];
|
||||||
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
|
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
|
||||||
|
|
||||||
// EP0 transfers are limited to 1 packet - larger sizes has to be split
|
// EP0 transfers are limited to 1 packet - larger sizes has to be split
|
||||||
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
|
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
|
||||||
|
|
||||||
// FIFO RAM allocation so far in words
|
// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from usb_otg->GRXFSIZ
|
||||||
static uint16_t _allocated_fifo_words;
|
static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs)
|
||||||
|
static bool _rx_ep_closed; // Flag to check if RX FIFO size needs an update (reduce its size)
|
||||||
|
|
||||||
|
// Calculate the RX FIFO size according to recommendations from reference manual
|
||||||
|
// ep_size in words
|
||||||
|
static inline uint16_t calc_rx_ff_size(uint16_t ep_size)
|
||||||
|
{
|
||||||
|
return 15 + 2*ep_size + 2*EP_MAX;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline void update_grxfsiz(void)
|
||||||
|
{
|
||||||
|
// If an OUT EP was closed update (reduce) the RX FIFO size if RX FIFO is empty - since this function handle_rxflvl_ints() gets looped from dcd_int_handler() until RX FIFO is empty it is guaranteed to be entered
|
||||||
|
if (_rx_ep_closed)
|
||||||
|
{
|
||||||
|
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
|
||||||
|
|
||||||
|
// Determine largest EP size for RX FIFO
|
||||||
|
uint16_t sz = xfer_status[0][TUSB_DIR_OUT].max_size;
|
||||||
|
|
||||||
|
for (uint8_t cnt = 1; cnt < EP_MAX; cnt++)
|
||||||
|
{
|
||||||
|
if (sz < xfer_status[cnt][TUSB_DIR_OUT].max_size) sz = xfer_status[cnt][TUSB_DIR_OUT].max_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update size of RX FIFO
|
||||||
|
usb_otg->GRXFSIZ = calc_rx_ff_size(sz/4); // sz was in bytes and is now needed in words
|
||||||
|
|
||||||
|
// Disable flag
|
||||||
|
_rx_ep_closed = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Setup the control endpoint 0.
|
// Setup the control endpoint 0.
|
||||||
static void bus_reset(uint8_t rhport)
|
static void bus_reset(uint8_t rhport)
|
||||||
@ -170,6 +192,7 @@ static void bus_reset(uint8_t rhport)
|
|||||||
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
|
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
|
||||||
|
|
||||||
tu_memclr(xfer_status, sizeof(xfer_status));
|
tu_memclr(xfer_status, sizeof(xfer_status));
|
||||||
|
_rx_ep_closed = false;
|
||||||
|
|
||||||
for(uint8_t n = 0; n < EP_MAX; n++) {
|
for(uint8_t n = 0; n < EP_MAX; n++) {
|
||||||
out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
|
out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
|
||||||
@ -182,16 +205,28 @@ static void bus_reset(uint8_t rhport)
|
|||||||
// "USB Data FIFOs" section in reference manual
|
// "USB Data FIFOs" section in reference manual
|
||||||
// Peripheral FIFO architecture
|
// Peripheral FIFO architecture
|
||||||
//
|
//
|
||||||
|
// The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
|
||||||
|
// We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
|
||||||
|
// between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
|
||||||
|
// configuration done below.
|
||||||
|
//
|
||||||
|
// Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
|
||||||
|
// All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
|
||||||
|
// configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
|
||||||
|
// opened when the host sends an additional command: setInterface. At this point in time
|
||||||
|
// the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
|
||||||
|
// an additional memory
|
||||||
|
//
|
||||||
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
||||||
|
// | IN FIFO 0 |
|
||||||
|
// --------------- (320 or 1024) - 16
|
||||||
|
// | IN FIFO 1 |
|
||||||
|
// --------------- (320 or 1024) - 16 - x
|
||||||
|
// | . . . . |
|
||||||
|
// --------------- (320 or 1024) - 16 - x - y - ... - z
|
||||||
// | IN FIFO MAX |
|
// | IN FIFO MAX |
|
||||||
// ---------------
|
// ---------------
|
||||||
// | ... |
|
// | FREE |
|
||||||
// --------------- y + x + 16 + GRXFSIZ
|
|
||||||
// | IN FIFO 2 |
|
|
||||||
// --------------- x + 16 + GRXFSIZ
|
|
||||||
// | IN FIFO 1 |
|
|
||||||
// --------------- 16 + GRXFSIZ
|
|
||||||
// | IN FIFO 0 |
|
|
||||||
// --------------- GRXFSIZ
|
// --------------- GRXFSIZ
|
||||||
// | OUT FIFO |
|
// | OUT FIFO |
|
||||||
// | ( Shared ) |
|
// | ( Shared ) |
|
||||||
@ -213,24 +248,20 @@ static void bus_reset(uint8_t rhport)
|
|||||||
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
|
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
|
||||||
// of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
|
// of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
|
||||||
//
|
//
|
||||||
// FIXME: for Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
|
// For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
|
||||||
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
|
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
|
||||||
// overwrite this.
|
// overwrite this.
|
||||||
|
|
||||||
#if TUD_OPT_HIGH_SPEED
|
#if TUD_OPT_HIGH_SPEED
|
||||||
_allocated_fifo_words = 271 + 2*EP_MAX;
|
usb_otg->GRXFSIZ = calc_rx_ff_size(128);
|
||||||
#else
|
#else
|
||||||
_allocated_fifo_words = 47 + 2*EP_MAX;
|
usb_otg->GRXFSIZ = calc_rx_ff_size(16);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
usb_otg->GRXFSIZ = _allocated_fifo_words;
|
_allocated_fifo_words_tx = 16;
|
||||||
|
|
||||||
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
|
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
|
||||||
usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words;
|
usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | (EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
|
||||||
|
|
||||||
_allocated_fifo_words += 16;
|
|
||||||
|
|
||||||
// TU_LOG2_INT(_allocated_fifo_words);
|
|
||||||
|
|
||||||
// Fixed control EP0 size to 64 bytes
|
// Fixed control EP0 size to 64 bytes
|
||||||
in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
|
in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
|
||||||
@ -557,8 +588,22 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
|
|||||||
xfer->max_size = desc_edpt->wMaxPacketSize.size;
|
xfer->max_size = desc_edpt->wMaxPacketSize.size;
|
||||||
xfer->interval = desc_edpt->bInterval;
|
xfer->interval = desc_edpt->bInterval;
|
||||||
|
|
||||||
|
uint16_t const fifo_size = tu_max16((desc_edpt->wMaxPacketSize.size + 3) / 4, 16); // Round up to next full word, minimum value must be 16
|
||||||
|
|
||||||
if(dir == TUSB_DIR_OUT)
|
if(dir == TUSB_DIR_OUT)
|
||||||
{
|
{
|
||||||
|
// Calculate required size of RX FIFO
|
||||||
|
uint16_t const sz = calc_rx_ff_size(fifo_size);
|
||||||
|
|
||||||
|
// If size_rx needs to be extended check if possible and if so enlarge it
|
||||||
|
if (usb_otg->GRXFSIZ < sz)
|
||||||
|
{
|
||||||
|
TU_ASSERT(sz + _allocated_fifo_words_tx <= EP_FIFO_SIZE/4);
|
||||||
|
|
||||||
|
// Enlarge RX FIFO
|
||||||
|
usb_otg->GRXFSIZ = sz;
|
||||||
|
}
|
||||||
|
|
||||||
out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
|
out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
|
||||||
(desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
|
(desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
|
||||||
(desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
|
(desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
|
||||||
@ -571,15 +616,15 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
|
|||||||
// Peripheral FIFO architecture
|
// Peripheral FIFO architecture
|
||||||
//
|
//
|
||||||
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
||||||
|
// | IN FIFO 0 |
|
||||||
|
// --------------- (320 or 1024) - 16
|
||||||
|
// | IN FIFO 1 |
|
||||||
|
// --------------- (320 or 1024) - 16 - x
|
||||||
|
// | . . . . |
|
||||||
|
// --------------- (320 or 1024) - 16 - x - y - ... - z
|
||||||
// | IN FIFO MAX |
|
// | IN FIFO MAX |
|
||||||
// ---------------
|
// ---------------
|
||||||
// | ... |
|
// | FREE |
|
||||||
// --------------- y + x + 16 + GRXFSIZ
|
|
||||||
// | IN FIFO 2 |
|
|
||||||
// --------------- x + 16 + GRXFSIZ
|
|
||||||
// | IN FIFO 1 |
|
|
||||||
// --------------- 16 + GRXFSIZ
|
|
||||||
// | IN FIFO 0 |
|
|
||||||
// --------------- GRXFSIZ
|
// --------------- GRXFSIZ
|
||||||
// | OUT FIFO |
|
// | OUT FIFO |
|
||||||
// | ( Shared ) |
|
// | ( Shared ) |
|
||||||
@ -587,34 +632,15 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
|
|||||||
//
|
//
|
||||||
// In FIFO is allocated by following rules:
|
// In FIFO is allocated by following rules:
|
||||||
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
|
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
|
||||||
// - Offset: allocated so far
|
|
||||||
// - Size
|
|
||||||
// - Interrupt is EPSize
|
|
||||||
// - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN)
|
|
||||||
|
|
||||||
uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words;
|
// Check if free space is available
|
||||||
uint16_t fifo_size = (desc_edpt->wMaxPacketSize.size + 3) / 4; // +3 for rounding up to next full word
|
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + usb_otg->GRXFSIZ <= EP_FIFO_SIZE/4);
|
||||||
|
|
||||||
if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT )
|
_allocated_fifo_words_tx += fifo_size;
|
||||||
{
|
|
||||||
uint8_t opened = 0;
|
|
||||||
for(uint8_t i = 0; i < EP_MAX; i++)
|
|
||||||
{
|
|
||||||
if ( (i != epnum) && (xfer_status[i][TUSB_DIR_IN].max_size > 0) ) opened++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// EP Size or equally divided of remaining whichever is larger
|
|
||||||
fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened));
|
|
||||||
}
|
|
||||||
|
|
||||||
// FIFO overflows, we probably need a better allocating scheme
|
|
||||||
TU_ASSERT(fifo_size <= fifo_remaining);
|
|
||||||
|
|
||||||
// DIEPTXF starts at FIFO #1.
|
// DIEPTXF starts at FIFO #1.
|
||||||
// Both TXFD and TXSA are in unit of 32-bit words.
|
// Both TXFD and TXSA are in unit of 32-bit words.
|
||||||
usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words;
|
usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | (EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
|
||||||
|
|
||||||
_allocated_fifo_words += fifo_size;
|
|
||||||
|
|
||||||
in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
|
in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
|
||||||
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
|
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
|
||||||
@ -724,13 +750,21 @@ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
|
|||||||
uint8_t const dir = tu_edpt_dir(ep_addr);
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
||||||
|
|
||||||
dcd_edpt_disable(rhport, ep_addr, false);
|
dcd_edpt_disable(rhport, ep_addr, false);
|
||||||
|
|
||||||
|
// Update max_size
|
||||||
|
xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation
|
||||||
|
|
||||||
if (dir == TUSB_DIR_IN)
|
if (dir == TUSB_DIR_IN)
|
||||||
{
|
{
|
||||||
uint16_t const fifo_size = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXFD_Msk) >> USB_OTG_DIEPTXF_INEPTXFD_Pos;
|
uint16_t const fifo_size = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXFD_Msk) >> USB_OTG_DIEPTXF_INEPTXFD_Pos;
|
||||||
uint16_t const fifo_start = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXSA_Msk) >> USB_OTG_DIEPTXF_INEPTXSA_Pos;
|
uint16_t const fifo_start = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXSA_Msk) >> USB_OTG_DIEPTXF_INEPTXSA_Pos;
|
||||||
// For now only endpoint that has FIFO at the end of FIFO memory can be closed without fuss.
|
// For now only the last opened endpoint can be closed without fuss.
|
||||||
TU_ASSERT(fifo_start + fifo_size == _allocated_fifo_words,);
|
TU_ASSERT(fifo_start == EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,);
|
||||||
_allocated_fifo_words -= fifo_size;
|
_allocated_fifo_words_tx -= fifo_size;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
_rx_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1048,6 +1082,9 @@ void dcd_int_handler(uint8_t rhport)
|
|||||||
int_status = usb_otg->GINTSTS;
|
int_status = usb_otg->GINTSTS;
|
||||||
} while(int_status & USB_OTG_GINTSTS_RXFLVL);
|
} while(int_status & USB_OTG_GINTSTS_RXFLVL);
|
||||||
|
|
||||||
|
// Manage RX FIFO size
|
||||||
|
update_grxfsiz();
|
||||||
|
|
||||||
usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
|
usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1063,11 +1100,11 @@ void dcd_int_handler(uint8_t rhport)
|
|||||||
handle_epin_ints(rhport, dev, in_ep);
|
handle_epin_ints(rhport, dev, in_ep);
|
||||||
}
|
}
|
||||||
|
|
||||||
// // Check for Incomplete isochronous IN transfer
|
// // Check for Incomplete isochronous IN transfer
|
||||||
// if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
|
// if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
|
||||||
// printf(" IISOIXFR!\r\n");
|
// printf(" IISOIXFR!\r\n");
|
||||||
//// TU_LOG2(" IISOIXFR!\r\n");
|
//// TU_LOG2(" IISOIXFR!\r\n");
|
||||||
// }
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
x
Reference in New Issue
Block a user