mirror of
https://github.com/hathach/tinyusb.git
synced 2025-01-31 05:52:55 +08:00
Merge pull request #3 from hathach/PanRe-uac2-fix-build
Pan re uac2 fix build
This commit is contained in:
commit
230c93a641
1
.github/workflows/build.yml
vendored
1
.github/workflows/build.yml
vendored
@ -27,6 +27,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
example:
|
||||
- 'device/audio_test'
|
||||
- 'device/board_test'
|
||||
- 'device/cdc_dual_ports'
|
||||
- 'device/cdc_msc'
|
||||
|
0
examples/device/audio_test/.skip.MCU_SAMD11
Normal file
0
examples/device/audio_test/.skip.MCU_SAMD11
Normal file
0
examples/device/audio_test/.skip.MCU_SAMG
Normal file
0
examples/device/audio_test/.skip.MCU_SAMG
Normal file
@ -137,6 +137,7 @@ void audio_task(void)
|
||||
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
|
||||
{
|
||||
(void) rhport;
|
||||
(void) pBuff;
|
||||
|
||||
// We do not support any set range requests here, only current value requests
|
||||
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
|
||||
@ -146,6 +147,8 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
|
||||
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
|
||||
uint8_t ep = TU_U16_LOW(p_request->wIndex);
|
||||
|
||||
(void) channelNum; (void) ctrlSel; (void) ep;
|
||||
|
||||
return false; // Yet not implemented
|
||||
}
|
||||
|
||||
@ -153,6 +156,7 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
|
||||
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
|
||||
{
|
||||
(void) rhport;
|
||||
(void) pBuff;
|
||||
|
||||
// We do not support any set range requests here, only current value requests
|
||||
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
|
||||
@ -162,6 +166,8 @@ bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
|
||||
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
|
||||
uint8_t itf = TU_U16_LOW(p_request->wIndex);
|
||||
|
||||
(void) channelNum; (void) ctrlSel; (void) itf;
|
||||
|
||||
return false; // Yet not implemented
|
||||
}
|
||||
|
||||
@ -176,6 +182,8 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
|
||||
uint8_t itf = TU_U16_LOW(p_request->wIndex);
|
||||
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
|
||||
|
||||
(void) itf;
|
||||
|
||||
// We do not support any set range requests here, only current value requests
|
||||
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
|
||||
|
||||
@ -205,7 +213,9 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
|
||||
return true;
|
||||
|
||||
// Unknown/Unsupported control
|
||||
default: TU_BREAKPOINT(); return false;
|
||||
default:
|
||||
TU_BREAKPOINT();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return false; // Yet not implemented
|
||||
@ -221,6 +231,8 @@ bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
|
||||
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
|
||||
uint8_t ep = TU_U16_LOW(p_request->wIndex);
|
||||
|
||||
(void) channelNum; (void) ctrlSel; (void) ep;
|
||||
|
||||
// return tud_control_xfer(rhport, p_request, &tmp, 1);
|
||||
|
||||
return false; // Yet not implemented
|
||||
@ -236,6 +248,8 @@ bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
|
||||
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
|
||||
uint8_t itf = TU_U16_LOW(p_request->wIndex);
|
||||
|
||||
(void) channelNum; (void) ctrlSel; (void) itf;
|
||||
|
||||
return false; // Yet not implemented
|
||||
}
|
||||
|
||||
|
@ -33,6 +33,7 @@ SRC_C += \
|
||||
src/common/tusb_fifo.c \
|
||||
src/device/usbd.c \
|
||||
src/device/usbd_control.c \
|
||||
src/class/audio/audio_device.c \
|
||||
src/class/cdc/cdc_device.c \
|
||||
src/class/dfu/dfu_rt_device.c \
|
||||
src/class/hid/hid_device.c \
|
||||
|
@ -469,28 +469,44 @@ typedef enum
|
||||
/// Additional Audio Device Class Codes - Source: Audio Data Formats
|
||||
|
||||
/// A.1 - Audio Class-Format Type Codes UAC2
|
||||
typedef enum
|
||||
{
|
||||
AUDIO_FORMAT_TYPE_UNDEFINED = 0x00,
|
||||
AUDIO_FORMAT_TYPE_I = 0x01,
|
||||
AUDIO_FORMAT_TYPE_II = 0x02,
|
||||
AUDIO_FORMAT_TYPE_III = 0x03,
|
||||
AUDIO_FORMAT_TYPE_IV = 0x04,
|
||||
AUDIO_EXT_FORMAT_TYPE_I = 0x81,
|
||||
AUDIO_EXT_FORMAT_TYPE_II = 0x82,
|
||||
AUDIO_EXT_FORMAT_TYPE_III = 0x83,
|
||||
} audio_format_type_t;
|
||||
//typedef enum
|
||||
//{
|
||||
// AUDIO_FORMAT_TYPE_UNDEFINED = 0x00,
|
||||
// AUDIO_FORMAT_TYPE_I = 0x01,
|
||||
// AUDIO_FORMAT_TYPE_II = 0x02,
|
||||
// AUDIO_FORMAT_TYPE_III = 0x03,
|
||||
// AUDIO_FORMAT_TYPE_IV = 0x04,
|
||||
// AUDIO_EXT_FORMAT_TYPE_I = 0x81,
|
||||
// AUDIO_EXT_FORMAT_TYPE_II = 0x82,
|
||||
// AUDIO_EXT_FORMAT_TYPE_III = 0x83,
|
||||
//} audio_format_type_t;
|
||||
|
||||
#define AUDIO_FORMAT_TYPE_UNDEFINED 0x00
|
||||
#define AUDIO_FORMAT_TYPE_I 0x01
|
||||
#define AUDIO_FORMAT_TYPE_II 0x02
|
||||
#define AUDIO_FORMAT_TYPE_III 0x03
|
||||
#define AUDIO_FORMAT_TYPE_IV 0x04
|
||||
#define AUDIO_EXT_FORMAT_TYPE_I 0x81
|
||||
#define AUDIO_EXT_FORMAT_TYPE_II 0x82
|
||||
#define AUDIO_EXT_FORMAT_TYPE_III 0x83
|
||||
|
||||
/// A.2.1 - Audio Class-Audio Data Format Type I UAC2
|
||||
typedef enum
|
||||
{
|
||||
AUDIO_DATA_FORMAT_TYPE_I_PCM = (uint32_t) (1 << 0),
|
||||
AUDIO_DATA_FORMAT_TYPE_I_PCM8 = (uint32_t) (1 << 1),
|
||||
AUDIO_DATA_FORMAT_TYPE_I_IEEE_FLOAT = (uint32_t) (1 << 2),
|
||||
AUDIO_DATA_FORMAT_TYPE_I_ALAW = (uint32_t) (1 << 3),
|
||||
AUDIO_DATA_FORMAT_TYPE_I_MULAW = (uint32_t) (1 << 4),
|
||||
AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA = 0x100000000,
|
||||
} audio_data_format_type_I_t;
|
||||
//typedef enum
|
||||
//{
|
||||
// AUDIO_DATA_FORMAT_TYPE_I_PCM = (uint32_t) (1 << 0),
|
||||
// AUDIO_DATA_FORMAT_TYPE_I_PCM8 = (uint32_t) (1 << 1),
|
||||
// AUDIO_DATA_FORMAT_TYPE_I_IEEE_FLOAT = (uint32_t) (1 << 2),
|
||||
// AUDIO_DATA_FORMAT_TYPE_I_ALAW = (uint32_t) (1 << 3),
|
||||
// AUDIO_DATA_FORMAT_TYPE_I_MULAW = (uint32_t) (1 << 4),
|
||||
// AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA = 0x100000000,
|
||||
//} audio_data_format_type_I_t;
|
||||
|
||||
#define AUDIO_DATA_FORMAT_TYPE_I_PCM ((uint32_t) (1 << 0))
|
||||
#define AUDIO_DATA_FORMAT_TYPE_I_PCM8 ((uint32_t) (1 << 1))
|
||||
#define AUDIO_DATA_FORMAT_TYPE_I_IEEE_FLOAT ((uint32_t) (1 << 2))
|
||||
#define AUDIO_DATA_FORMAT_TYPE_I_ALAW ((uint32_t) (1 << 3))
|
||||
#define AUDIO_DATA_FORMAT_TYPE_I_MULAW ((uint32_t) (1 << 4))
|
||||
#define AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA 0x100000000
|
||||
|
||||
/// All remaining definitions are taken from the descriptor descriptions in the UAC2 main specification
|
||||
|
||||
|
@ -564,9 +564,10 @@ static bool audiod_tx_done_type_I_pcm_ff_cb(uint8_t rhport, audiod_interface_t*
|
||||
|
||||
for (cntChannel = 1; cntChannel < CFG_TUD_AUDIO_N_CHANNELS_TX; cntChannel++)
|
||||
{
|
||||
if (audio->tx_ff[cntChannel].count / CFG_TUD_AUDIO_TX_ITEMSIZE < nSamplesPerChannelToSend)
|
||||
uint16_t const count = tu_fifo_count(&audio->tx_ff[cntChannel]);
|
||||
if (count / CFG_TUD_AUDIO_TX_ITEMSIZE < nSamplesPerChannelToSend)
|
||||
{
|
||||
nSamplesPerChannelToSend = audio->tx_ff[cntChannel].count * CFG_TUD_AUDIO_TX_ITEMSIZE;
|
||||
nSamplesPerChannelToSend = count * CFG_TUD_AUDIO_TX_ITEMSIZE;
|
||||
}
|
||||
}
|
||||
|
||||
@ -782,6 +783,8 @@ void audiod_reset(uint8_t rhport)
|
||||
|
||||
uint16_t audiod_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
|
||||
{
|
||||
(void) max_len;
|
||||
|
||||
TU_VERIFY ( TUSB_CLASS_AUDIO == itf_desc->bInterfaceClass &&
|
||||
AUDIO_SUBCLASS_CONTROL == itf_desc->bInterfaceSubClass);
|
||||
|
||||
@ -1171,6 +1174,7 @@ bool audiod_control_request(uint8_t rhport, tusb_control_request_t const * p_req
|
||||
bool audiod_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
|
||||
{
|
||||
(void) result;
|
||||
(void) xferred_bytes;
|
||||
|
||||
// Search for interface belonging to given end point address and proceed as required
|
||||
uint8_t idxDriver;
|
||||
|
@ -33,7 +33,6 @@
|
||||
#include "device/usbd.h"
|
||||
|
||||
#include "audio.h"
|
||||
#include "tusb_config.h"
|
||||
|
||||
//--------------------------------------------------------------------+
|
||||
// Class Driver Configuration
|
||||
@ -59,6 +58,10 @@
|
||||
#define CFG_TUD_AUDIO_TX_FIFO_SIZE 0 // Buffer size per channel
|
||||
#endif
|
||||
|
||||
#ifndef CFG_TUD_AUDIO_TX_DMA_RINGBUFFER_SIZE
|
||||
#define CFG_TUD_AUDIO_TX_DMA_RINGBUFFER_SIZE 0
|
||||
#endif
|
||||
|
||||
#if CFG_TUD_AUDIO_TX_FIFO_SIZE && CFG_TUD_AUDIO_TX_DMA_RINGBUFFER_SIZE
|
||||
#error TX_FIFOs and TX_DMA_RINGBUFFER can not be used simultaneously!
|
||||
#endif
|
||||
@ -193,6 +196,10 @@ uint16_t tud_audio_n_write_ep_in_buffer(uint8_t itf, const void * data, uint16_t
|
||||
#endif
|
||||
*/
|
||||
|
||||
#ifndef CFG_TUD_AUDIO_TX_FIFO_COUNT
|
||||
#define CFG_TUD_AUDIO_TX_FIFO_COUNT 1
|
||||
#endif
|
||||
|
||||
#if CFG_TUD_AUDIO_EPSIZE_IN && CFG_TUD_AUDIO_TX_FIFO_SIZE
|
||||
#if CFG_TUD_AUDIO_TX_FIFO_COUNT > 1
|
||||
uint16_t tud_audio_n_write (uint8_t itf, uint8_t channelId, const void * data, uint16_t len);
|
||||
|
@ -47,10 +47,10 @@
|
||||
#define U16_TO_U8S_BE(u16) TU_U16_HIGH(u16), TU_U16_LOW(u16)
|
||||
#define U16_TO_U8S_LE(u16) TU_U16_LOW(u16), TU_U16_HIGH(u16)
|
||||
|
||||
#define U32_B1_U8(u32) ((uint8_t) (((u32) >> 24) & 0x000000ff)) // MSB
|
||||
#define U32_B2_U8(u32) ((uint8_t) (((u32) >> 16) & 0x000000ff))
|
||||
#define U32_B3_U8(u32) ((uint8_t) (((u32) >> 8) & 0x000000ff))
|
||||
#define U32_B4_U8(u32) ((uint8_t) ((u32) & 0x000000ff)) // LSB
|
||||
#define U32_B1_U8(u32) ((uint8_t) ((((uint32_t) u32) >> 24) & 0x000000ff)) // MSB
|
||||
#define U32_B2_U8(u32) ((uint8_t) ((((uint32_t) u32) >> 16) & 0x000000ff))
|
||||
#define U32_B3_U8(u32) ((uint8_t) ((((uint32_t) u32) >> 8) & 0x000000ff))
|
||||
#define U32_B4_U8(u32) ((uint8_t) (((uint32_t) u32) & 0x000000ff)) // LSB
|
||||
|
||||
#define U32_TO_U8S_BE(u32) U32_B1_U8(u32), U32_B2_U8(u32), U32_B3_U8(u32), U32_B4_U8(u32)
|
||||
#define U32_TO_U8S_LE(u32) U32_B4_U8(u32), U32_B3_U8(u32), U32_B2_U8(u32), U32_B1_U8(u32)
|
||||
|
@ -2,6 +2,7 @@
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
||||
* Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
@ -57,6 +58,8 @@ static void tu_fifo_unlock(tu_fifo_t *f)
|
||||
|
||||
bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
|
||||
{
|
||||
if (depth > 0x8000) return false; // Maximum depth is 2^15 items
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
f->buffer = (uint8_t*) buffer;
|
||||
@ -64,55 +67,328 @@ bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_si
|
||||
f->item_size = item_size;
|
||||
f->overwritable = overwritable;
|
||||
|
||||
f->rd_idx = f->wr_idx = f->count = 0;
|
||||
f->max_pointer_idx = 2*depth - 1; // Limit index space to 2*depth - this allows for a fast "modulo" calculation but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable only if overflow happens once (important for unsupervised DMA applications)
|
||||
f->non_used_index_space = 0xFFFF - f->max_pointer_idx;
|
||||
|
||||
f->rd_idx = f->wr_idx = 0;
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Static functions are intended to work on local variables
|
||||
|
||||
static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
|
||||
{
|
||||
return (idx < depth) ? idx : (idx-depth);
|
||||
while ( idx >= depth) idx -= depth;
|
||||
return idx;
|
||||
}
|
||||
|
||||
// retrieve data from fifo
|
||||
static inline void _ff_pull(tu_fifo_t* f, void * buffer, uint16_t n)
|
||||
// send one item to FIFO WITHOUT updating write pointer
|
||||
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t wRel)
|
||||
{
|
||||
memcpy(buffer,
|
||||
f->buffer + (f->rd_idx * f->item_size),
|
||||
f->item_size*n);
|
||||
|
||||
f->rd_idx = _ff_mod(f->rd_idx + n, f->depth);
|
||||
f->count -= n;
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, f->item_size);
|
||||
}
|
||||
|
||||
// send data to fifo
|
||||
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
|
||||
// send n items to FIFO WITHOUT updating write pointer
|
||||
static void _ff_push_n(tu_fifo_t* f, void const * data, uint16_t n, uint16_t wRel)
|
||||
{
|
||||
memcpy(f->buffer + (f->wr_idx * f->item_size),
|
||||
data,
|
||||
f->item_size*n);
|
||||
|
||||
f->wr_idx = _ff_mod(f->wr_idx + n, f->depth);
|
||||
|
||||
if (tu_fifo_full(f))
|
||||
if(wRel + n <= f->depth) // Linear mode only
|
||||
{
|
||||
f->rd_idx = f->wr_idx; // keep the full state (rd == wr && count = depth)
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, n*f->item_size);
|
||||
}
|
||||
else // Wrap around
|
||||
{
|
||||
uint16_t nLin = f->depth - wRel;
|
||||
|
||||
// Write data to linear part of buffer
|
||||
memcpy(f->buffer + (wRel * f->item_size), data, nLin*f->item_size);
|
||||
|
||||
// Write data wrapped around
|
||||
memcpy(f->buffer, data + nLin*f->item_size, (n - nLin) * f->item_size);
|
||||
}
|
||||
}
|
||||
|
||||
// get one item from FIFO WITHOUT updating read pointer
|
||||
static inline void _ff_pull(tu_fifo_t* f, void * p_buffer, uint16_t rRel)
|
||||
{
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), f->item_size);
|
||||
}
|
||||
|
||||
// get n items from FIFO WITHOUT updating read pointer
|
||||
static void _ff_pull_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t rRel)
|
||||
{
|
||||
if(rRel + n <= f->depth) // Linear mode only
|
||||
{
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), n*f->item_size);
|
||||
}
|
||||
else // Wrap around
|
||||
{
|
||||
uint16_t nLin = f->depth - rRel;
|
||||
|
||||
// Read data from linear part of buffer
|
||||
memcpy(p_buffer, f->buffer + (rRel * f->item_size), nLin*f->item_size);
|
||||
|
||||
// Read data wrapped part
|
||||
memcpy(p_buffer + nLin*f->item_size, f->buffer, (n - nLin) * f->item_size);
|
||||
}
|
||||
}
|
||||
|
||||
// Advance an absolute pointer
|
||||
static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
||||
{
|
||||
// We limit the index space of p such that a correct wrap around happens
|
||||
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
||||
if ((p > p + offset) || (p + offset > f->max_pointer_idx))
|
||||
{
|
||||
p = (p + offset) + f->non_used_index_space;
|
||||
}
|
||||
else
|
||||
{
|
||||
f->count += n;
|
||||
p += offset;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
// Backward an absolute pointer
|
||||
static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
||||
{
|
||||
// We limit the index space of p such that a correct wrap around happens
|
||||
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
||||
if ((p < p - offset) || (p - offset > f->max_pointer_idx))
|
||||
{
|
||||
p = (p - offset) - f->non_used_index_space;
|
||||
}
|
||||
else
|
||||
{
|
||||
p -= offset;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
// get relative from absolute pointer
|
||||
static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
||||
{
|
||||
return _ff_mod(advance_pointer(f, p, offset), f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = wAbs-rAbs;
|
||||
|
||||
// In case we have non-power of two depth we need a further modification
|
||||
if (rAbs > wAbs) cnt -= f->non_used_index_space;
|
||||
|
||||
return cnt;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return wAbs == rAbs;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
||||
// Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
|
||||
// write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
|
||||
// write pointer wraps and you pointer states are messed up. This can only happen if you
|
||||
// use DMAs, write functions do not allow such an error.
|
||||
static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w
|
||||
// For more details see _tu_fifo_overflow()!
|
||||
static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
|
||||
{
|
||||
f->rd_idx = backward_pointer(f, wAbs, f->depth);
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// Must be protected by mutexes since in case of an overflow read pointer gets modified
|
||||
static bool _tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
||||
|
||||
// Check overflow and correct if required
|
||||
if (cnt > f->depth)
|
||||
{
|
||||
_tu_fifo_correct_read_pointer(f, wAbs);
|
||||
cnt = f->depth;
|
||||
}
|
||||
|
||||
// Skip beginning of buffer
|
||||
if (cnt == 0 || offset >= cnt) return false;
|
||||
|
||||
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
|
||||
|
||||
// Peek data
|
||||
_ff_pull(f, p_buffer, rRel);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
// Must be protected by mutexes since in case of an overflow read pointer gets modified
|
||||
static uint16_t _tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
||||
|
||||
// Check overflow and correct if required
|
||||
if (cnt > f->depth)
|
||||
{
|
||||
_tu_fifo_correct_read_pointer(f, wAbs);
|
||||
rAbs = f->rd_idx;
|
||||
cnt = f->depth;
|
||||
}
|
||||
|
||||
// Skip beginning of buffer
|
||||
if (cnt == 0 || offset >= cnt) return 0;
|
||||
|
||||
// Check if we can read something at and after offset - if too less is available we read what remains
|
||||
cnt -= offset;
|
||||
if (cnt < n) {
|
||||
if (cnt == 0) return 0;
|
||||
n = cnt;
|
||||
}
|
||||
|
||||
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
|
||||
|
||||
// Peek data
|
||||
_ff_pull_n(f, p_buffer, n, rRel);
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
// Works on local copies of w and r
|
||||
static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
||||
{
|
||||
return f->depth - _tu_fifo_count(f, wAbs, rAbs);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one element out of the RX buffer.
|
||||
@brief Get number of items in FIFO.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_count(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_count(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if FIFO is empty.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_empty(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_empty(f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if FIFO is full.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_full(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Get remaining space in FIFO.
|
||||
|
||||
As this function only reads the read and write pointers once, this function is
|
||||
reentrant and thus thread and ISR save without any mutexes.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns Number of items in FIFO
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Check if overflow happened.
|
||||
|
||||
BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
||||
Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
|
||||
write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
|
||||
write pointer wraps and you pointer states are messed up. This can only happen if you
|
||||
use DMAs, write functions do not allow such an error. Avoid such nasty things!
|
||||
|
||||
All reading functions (read, peek) check for overflows and correct read pointer on their own such
|
||||
that latest items are read.
|
||||
If required (e.g. for DMA use) you can also correct the read pointer by
|
||||
tu_fifo_correct_read_pointer().
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
|
||||
@returns True if overflow happened
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_overflowed(tu_fifo_t* f)
|
||||
{
|
||||
return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx);
|
||||
}
|
||||
|
||||
// Only use in case tu_fifo_overflow() returned true!
|
||||
void tu_fifo_correct_read_pointer(tu_fifo_t* f)
|
||||
{
|
||||
tu_fifo_lock(f);
|
||||
_tu_fifo_correct_read_pointer(f, f->wr_idx);
|
||||
tu_fifo_unlock(f);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one element out of the buffer.
|
||||
|
||||
This function will return the element located at the array index of the
|
||||
read pointer, and then increment the read pointer index. If the read
|
||||
pointer exceeds the maximum buffer size, it will roll over to zero.
|
||||
read pointer, and then increment the read pointer index.
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -124,22 +400,23 @@ static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
||||
{
|
||||
if( tu_fifo_empty(f) ) return false;
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
|
||||
tu_fifo_lock(f);
|
||||
// Peek the data
|
||||
bool ret = _tu_fifo_peek_at(f, 0, buffer, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
|
||||
|
||||
_ff_pull(f, buffer, 1);
|
||||
// Advance pointer
|
||||
f->rd_idx = advance_pointer(f, f->rd_idx, ret);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief This function will read n elements from the array index specified by
|
||||
the read pointer and increment the read index. If the read index
|
||||
exceeds the max buffer size, then it will roll over to zero.
|
||||
the read pointer and increment the read index.
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -153,72 +430,72 @@ bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t count)
|
||||
{
|
||||
if(tu_fifo_empty(f)) return 0;
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
|
||||
tu_fifo_lock(f);
|
||||
// Peek the data
|
||||
count = _tu_fifo_peek_at_n(f, 0, buffer, count, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
|
||||
|
||||
// Limit up to fifo's count
|
||||
if(count > f->count) count = f->count;
|
||||
|
||||
if(count + f->rd_idx <= f->depth)
|
||||
{
|
||||
_ff_pull(f, buffer, count);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t const part1 = f->depth - f->rd_idx;
|
||||
|
||||
// Part 1: from rd_idx to end
|
||||
_ff_pull(f, buffer, part1);
|
||||
buffer = ((uint8_t*) buffer) + part1*f->item_size;
|
||||
|
||||
// Part 2: start to remaining
|
||||
_ff_pull(f, buffer, count-part1);
|
||||
}
|
||||
// Advance read pointer
|
||||
f->rd_idx = advance_pointer(f, f->rd_idx, count);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Read one item without removing it from the FIFO
|
||||
@brief Read one item without removing it from the FIFO.
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] pos
|
||||
Position to read from in the FIFO buffer
|
||||
@param[in] offset
|
||||
Position to read from in the FIFO buffer with respect to read pointer
|
||||
@param[in] p_buffer
|
||||
Pointer to the place holder for data read from the buffer
|
||||
|
||||
@returns TRUE if the queue is not empty
|
||||
*/
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
|
||||
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer)
|
||||
{
|
||||
if ( pos >= f->count ) return false;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
// rd_idx is pos=0
|
||||
uint16_t index = _ff_mod(f->rd_idx + pos, f->depth);
|
||||
memcpy(p_buffer,
|
||||
f->buffer + (index * f->item_size),
|
||||
f->item_size);
|
||||
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
bool ret = _tu_fifo_peek_at(f, offset, p_buffer, f->wr_idx, f->rd_idx);
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Write one element into the RX buffer.
|
||||
@brief Read n items without removing it from the FIFO
|
||||
This function checks for an overflow and corrects read pointer if required.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] offset
|
||||
Position to read from in the FIFO buffer with respect to read pointer
|
||||
@param[in] p_buffer
|
||||
Pointer to the place holder for data read from the buffer
|
||||
@param[in] n
|
||||
Number of items to peek
|
||||
|
||||
@returns Number of bytes written to p_buffer
|
||||
*/
|
||||
/******************************************************************************/
|
||||
uint16_t tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n)
|
||||
{
|
||||
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
||||
bool ret = _tu_fifo_peek_at_n(f, offset, p_buffer, n, f->wr_idx, f->rd_idx);
|
||||
tu_fifo_unlock(f);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Write one element into the buffer.
|
||||
|
||||
This function will write one element into the array index specified by
|
||||
the write pointer and increment the write index. If the write index
|
||||
exceeds the max buffer size, then it will roll over to zero.
|
||||
the write pointer and increment the write index.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -231,11 +508,19 @@ bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
|
||||
/******************************************************************************/
|
||||
bool tu_fifo_write(tu_fifo_t* f, const void * data)
|
||||
{
|
||||
if ( tu_fifo_full(f) && !f->overwritable ) return false;
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
_ff_push(f, data, 1);
|
||||
uint16_t w = f->wr_idx;
|
||||
|
||||
if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
|
||||
|
||||
uint16_t wRel = get_relative_pointer(f, w, 0);
|
||||
|
||||
// Write data
|
||||
_ff_push(f, data, wRel);
|
||||
|
||||
// Advance pointer
|
||||
f->wr_idx = advance_pointer(f, w, 1);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
@ -245,8 +530,7 @@ bool tu_fifo_write (tu_fifo_t* f, const void * data)
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief This function will write n elements into the array index specified by
|
||||
the write pointer and increment the write index. If the write index
|
||||
exceeds the max buffer size, then it will roll over to zero.
|
||||
the write pointer and increment the write index.
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -263,38 +547,33 @@ uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
|
||||
tu_fifo_lock(f);
|
||||
|
||||
uint16_t w = f->wr_idx, r = f->rd_idx;
|
||||
uint8_t const* buf8 = (uint8_t const*) data;
|
||||
|
||||
if (!f->overwritable)
|
||||
{
|
||||
// Not overwritable limit up to full
|
||||
count = tu_min16(count, tu_fifo_remaining(f));
|
||||
count = tu_min16(count, _tu_fifo_remaining(f, w, r));
|
||||
}
|
||||
else if (count > f->depth)
|
||||
{
|
||||
// Only copy last part
|
||||
buf8 = buf8 + (count - f->depth) * f->item_size;
|
||||
count = f->depth;
|
||||
f->wr_idx = 0;
|
||||
f->rd_idx = 0;
|
||||
f->count = 0;
|
||||
|
||||
// We start writing at the read pointer's position since we fill the complete
|
||||
// buffer and we do not want to modify the read pointer within a write function!
|
||||
// This would end up in a race condition with read functions!
|
||||
f->wr_idx = r;
|
||||
}
|
||||
|
||||
if (count + f->wr_idx <= f->depth )
|
||||
{
|
||||
_ff_push(f, buf8, count);
|
||||
}
|
||||
else
|
||||
{
|
||||
uint16_t const part1 = f->depth - f->wr_idx;
|
||||
uint16_t wRel = get_relative_pointer(f, w, 0);
|
||||
|
||||
// Part 1: from wr_idx to end
|
||||
_ff_push(f, buf8, part1);
|
||||
buf8 += part1*f->item_size;
|
||||
// Write data
|
||||
_ff_push_n(f, buf8, count, wRel);
|
||||
|
||||
// Part 2: start to remaining
|
||||
_ff_push(f, buf8, count-part1);
|
||||
}
|
||||
// Advance pointer
|
||||
f->wr_idx = advance_pointer(f, w, count);
|
||||
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
@ -303,7 +582,7 @@ uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Clear the fifo read and write pointers and set length to zero
|
||||
@brief Clear the fifo read and write pointers
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@ -312,10 +591,50 @@ uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
|
||||
bool tu_fifo_clear(tu_fifo_t *f)
|
||||
{
|
||||
tu_fifo_lock(f);
|
||||
|
||||
f->rd_idx = f->wr_idx = f->count = 0;
|
||||
|
||||
f->rd_idx = f->wr_idx = 0;
|
||||
tu_fifo_unlock(f);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Advance write pointer - intended to be used in combination with DMA.
|
||||
It is possible to fill the FIFO by use of a DMA in circular mode. Within
|
||||
DMA ISRs you may update the write pointer to be able to read from the FIFO.
|
||||
As long as the DMA is the only process writing into the FIFO this is safe
|
||||
to use.
|
||||
|
||||
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] n
|
||||
Number of items the write pointer moves forward
|
||||
*/
|
||||
/******************************************************************************/
|
||||
void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n)
|
||||
{
|
||||
f->wr_idx = advance_pointer(f, f->wr_idx, n);
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/*!
|
||||
@brief Advance read pointer - intended to be used in combination with DMA.
|
||||
It is possible to read from the FIFO by use of a DMA in linear mode. Within
|
||||
DMA ISRs you may update the read pointer to be able to again write into the
|
||||
FIFO. As long as the DMA is the only process reading from the FIFO this is
|
||||
safe to use.
|
||||
|
||||
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
|
||||
|
||||
@param[in] f
|
||||
Pointer to the FIFO buffer to manipulate
|
||||
@param[in] n
|
||||
Number of items the read pointer moves forward
|
||||
*/
|
||||
/******************************************************************************/
|
||||
void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n)
|
||||
{
|
||||
f->rd_idx = advance_pointer(f, f->rd_idx, n);
|
||||
}
|
||||
|
@ -31,6 +31,15 @@
|
||||
#ifndef _TUSB_FIFO_H_
|
||||
#define _TUSB_FIFO_H_
|
||||
|
||||
// Due to the use of unmasked pointers, this FIFO does not suffer from loosing
|
||||
// one item slice. Furthermore, write and read operations are completely
|
||||
// decoupled as write and read functions do not modify a common state. Henceforth,
|
||||
// writing or reading from the FIFO within an ISR is safe as long as no other
|
||||
// process (thread or ISR) interferes.
|
||||
// Also, this FIFO is ready to be used in combination with a DMA as the write and
|
||||
// read pointers can be updated from within a DMA ISR. Overflows are detectable
|
||||
// within a certain number (see tu_fifo_overflow()).
|
||||
|
||||
// mutex is only needed for RTOS
|
||||
// for OS None, we don't get preempted
|
||||
#define CFG_FIFO_MUTEX (CFG_TUSB_OS != OPT_OS_NONE)
|
||||
@ -57,7 +66,9 @@ typedef struct
|
||||
uint16_t item_size ; ///< size of each item
|
||||
bool overwritable ;
|
||||
|
||||
volatile uint16_t count ; ///< number of items in queue
|
||||
uint16_t non_used_index_space ; ///< required for non-power-of-two buffer length
|
||||
uint16_t max_pointer_idx ; ///< maximum absolute pointer index
|
||||
|
||||
volatile uint16_t wr_idx ; ///< write pointer
|
||||
volatile uint16_t rd_idx ; ///< read pointer
|
||||
|
||||
@ -74,6 +85,8 @@ typedef struct
|
||||
.depth = _depth, \
|
||||
.item_size = sizeof(_type), \
|
||||
.overwritable = _overwritable, \
|
||||
.max_pointer_idx = 2*_depth-1, \
|
||||
.non_used_index_space = 0xFFFF - 2*_depth-1, \
|
||||
}
|
||||
|
||||
bool tu_fifo_clear(tu_fifo_t *f);
|
||||
@ -93,32 +106,25 @@ bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
|
||||
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
|
||||
|
||||
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
|
||||
uint16_t tu_fifo_peek_at_n (tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t n);
|
||||
|
||||
uint16_t tu_fifo_count (tu_fifo_t* f);
|
||||
bool tu_fifo_empty (tu_fifo_t* f);
|
||||
bool tu_fifo_full (tu_fifo_t* f);
|
||||
uint16_t tu_fifo_remaining (tu_fifo_t* f);
|
||||
bool tu_fifo_overflowed (tu_fifo_t* f);
|
||||
void tu_fifo_correct_read_pointer (tu_fifo_t* f);
|
||||
|
||||
// Pointer modifications intended to be used in combinations with DMAs.
|
||||
// USE WITH CARE - NO SAFTY CHECKS CONDUCTED HERE! NOT MUTEX PROTECTED!
|
||||
void tu_fifo_advance_write_pointer (tu_fifo_t *f, uint16_t n);
|
||||
void tu_fifo_advance_read_pointer (tu_fifo_t *f, uint16_t n);
|
||||
|
||||
static inline bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer)
|
||||
{
|
||||
return tu_fifo_peek_at(f, 0, p_buffer);
|
||||
}
|
||||
|
||||
static inline bool tu_fifo_empty(tu_fifo_t* f)
|
||||
{
|
||||
return (f->count == 0);
|
||||
}
|
||||
|
||||
static inline bool tu_fifo_full(tu_fifo_t* f)
|
||||
{
|
||||
return (f->count == f->depth);
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_count(tu_fifo_t* f)
|
||||
{
|
||||
return f->count;
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
||||
{
|
||||
return f->depth - f->count;
|
||||
}
|
||||
|
||||
static inline uint16_t tu_fifo_depth(tu_fifo_t* f)
|
||||
{
|
||||
return f->depth;
|
||||
|
@ -37,6 +37,10 @@
|
||||
#define CFG_TUD_TASK_QUEUE_SZ 16
|
||||
#endif
|
||||
|
||||
#ifndef CFG_TUD_EP_MAX
|
||||
#define CFG_TUD_EP_MAX 9
|
||||
#endif
|
||||
|
||||
//--------------------------------------------------------------------+
|
||||
// Device Data
|
||||
//--------------------------------------------------------------------+
|
||||
@ -57,7 +61,7 @@ typedef struct
|
||||
uint8_t speed;
|
||||
|
||||
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
|
||||
uint8_t ep2drv[8][2]; // map endpoint to driver ( 0xff is invalid )
|
||||
uint8_t ep2drv[CFG_TUD_EP_MAX][2]; // map endpoint to driver ( 0xff is invalid )
|
||||
|
||||
struct TU_ATTR_PACKED
|
||||
{
|
||||
@ -66,7 +70,7 @@ typedef struct
|
||||
volatile bool claimed : 1;
|
||||
|
||||
// TODO merge ep2drv here, 4-bit should be sufficient
|
||||
}ep_status[8][2];
|
||||
}ep_status[CFG_TUD_EP_MAX][2];
|
||||
|
||||
}usbd_device_t;
|
||||
|
||||
@ -262,7 +266,7 @@ static osal_mutex_t _usbd_mutex;
|
||||
//--------------------------------------------------------------------+
|
||||
// Prototypes
|
||||
//--------------------------------------------------------------------+
|
||||
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id);
|
||||
static void mark_interface_endpoint(uint8_t ep2drv[][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id);
|
||||
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request);
|
||||
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
|
||||
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request);
|
||||
@ -858,7 +862,7 @@ static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
|
||||
}
|
||||
|
||||
// Helper marking endpoint of interface belongs to class driver
|
||||
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id)
|
||||
static void mark_interface_endpoint(uint8_t ep2drv[][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id)
|
||||
{
|
||||
uint16_t len = 0;
|
||||
|
||||
|
@ -53,6 +53,9 @@ enum
|
||||
|
||||
enum
|
||||
{
|
||||
// Endpoint number is fixed (8) for ISOOUT and ISOIN.
|
||||
EP_ISO_NUM = 8,
|
||||
// CBI endpoints count
|
||||
EP_COUNT = 8
|
||||
};
|
||||
|
||||
@ -62,11 +65,14 @@ typedef struct
|
||||
uint8_t* buffer;
|
||||
uint16_t total_len;
|
||||
volatile uint16_t actual_len;
|
||||
uint8_t mps; // max packet size
|
||||
uint16_t mps; // max packet size
|
||||
|
||||
// nrf52840 will auto ACK OUT packet after DMA is done
|
||||
// indicate packet is already ACK
|
||||
volatile bool data_received;
|
||||
// Set to true when data was transferred from RAM to ISO IN output buffer.
|
||||
// New data can be put in ISO IN output buffer after SOF.
|
||||
bool iso_in_transfer_ready;
|
||||
|
||||
} xfer_td_t;
|
||||
|
||||
@ -74,7 +80,8 @@ typedef struct
|
||||
static struct
|
||||
{
|
||||
// All 8 endpoints including control IN & OUT (offset 1)
|
||||
xfer_td_t xfer[EP_COUNT][2];
|
||||
// +1 for ISO endpoints
|
||||
xfer_td_t xfer[EP_COUNT + 1][2];
|
||||
|
||||
// Number of pending DMA that is started but not handled yet by dcd_int_handler().
|
||||
// Since nRF can only carry one DMA can run at a time, this value is normally be either 0 or 1.
|
||||
@ -173,6 +180,7 @@ static void xact_out_prepare(uint8_t epnum)
|
||||
{
|
||||
// Write zero value to SIZE register will allow hw to ACK (accept data)
|
||||
// If it is not already done by DMA
|
||||
// SIZE.ISOOUT can also be accessed this way
|
||||
NRF_USBD->SIZE.EPOUT[epnum] = 0;
|
||||
}
|
||||
|
||||
@ -183,15 +191,32 @@ static void xact_out_prepare(uint8_t epnum)
|
||||
static void xact_out_dma(uint8_t epnum)
|
||||
{
|
||||
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
|
||||
uint32_t xact_len;
|
||||
|
||||
uint8_t const xact_len = NRF_USBD->SIZE.EPOUT[epnum];
|
||||
if (epnum == EP_ISO_NUM)
|
||||
{
|
||||
xact_len = NRF_USBD->SIZE.ISOOUT;
|
||||
// If ZERO bit is set, ignore ISOOUT length
|
||||
if (xact_len & USBD_SIZE_ISOOUT_ZERO_Msk) xact_len = 0;
|
||||
else
|
||||
{
|
||||
// Trigger DMA move data from Endpoint -> SRAM
|
||||
NRF_USBD->ISOOUT.PTR = (uint32_t) xfer->buffer;
|
||||
NRF_USBD->ISOOUT.MAXCNT = xact_len;
|
||||
|
||||
edpt_dma_start(&NRF_USBD->TASKS_STARTISOOUT);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
xact_len = (uint8_t)NRF_USBD->SIZE.EPOUT[epnum];
|
||||
|
||||
// Trigger DMA move data from Endpoint -> SRAM
|
||||
NRF_USBD->EPOUT[epnum].PTR = (uint32_t) xfer->buffer;
|
||||
NRF_USBD->EPOUT[epnum].MAXCNT = xact_len;
|
||||
|
||||
edpt_dma_start(&NRF_USBD->TASKS_STARTEPOUT[epnum]);
|
||||
|
||||
}
|
||||
xfer->buffer += xact_len;
|
||||
xfer->actual_len += xact_len;
|
||||
}
|
||||
@ -205,7 +230,7 @@ static void xact_in_prepare(uint8_t epnum)
|
||||
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN);
|
||||
|
||||
// Each transaction is up to Max Packet Size
|
||||
uint8_t const xact_len = tu_min16(xfer->total_len - xfer->actual_len, xfer->mps);
|
||||
uint16_t const xact_len = tu_min16(xfer->total_len - xfer->actual_len, xfer->mps);
|
||||
|
||||
NRF_USBD->EPIN[epnum].PTR = (uint32_t) xfer->buffer;
|
||||
NRF_USBD->EPIN[epnum].MAXCNT = xact_len;
|
||||
@ -296,6 +321,8 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
|
||||
|
||||
_dcd.xfer[epnum][dir].mps = desc_edpt->wMaxPacketSize.size;
|
||||
|
||||
if (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS)
|
||||
{
|
||||
if (dir == TUSB_DIR_OUT)
|
||||
{
|
||||
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
|
||||
@ -305,11 +332,83 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
|
||||
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
|
||||
NRF_USBD->EPINEN |= TU_BIT(epnum);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
TU_ASSERT(epnum == EP_ISO_NUM);
|
||||
if (dir == TUSB_DIR_OUT)
|
||||
{
|
||||
// SPLIT ISO buffer when ISO IN endpoint is already opened.
|
||||
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_IN].mps) NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
|
||||
// Clear old events
|
||||
NRF_USBD->EVENTS_ENDISOOUT = 0;
|
||||
// Clear SOF event in case interrupt was not enabled yet.
|
||||
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
|
||||
// Enable SOF and ISOOUT interrupts, and ISOOUT endpoint.
|
||||
NRF_USBD->INTENSET = USBD_INTENSET_ENDISOOUT_Msk | USBD_INTENSET_SOF_Msk;
|
||||
NRF_USBD->EPOUTEN |= USBD_EPOUTEN_ISOOUT_Msk;
|
||||
}
|
||||
else
|
||||
{
|
||||
NRF_USBD->EVENTS_ENDISOIN = 0;
|
||||
// SPLIT ISO buffer when ISO OUT endpoint is already opened.
|
||||
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_OUT].mps) NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
|
||||
// Clear SOF event in case interrupt was not enabled yet.
|
||||
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
|
||||
// Enable SOF and ISOIN interrupts, and ISOIN endpoint.
|
||||
NRF_USBD->INTENSET = USBD_INTENSET_ENDISOIN_Msk | USBD_INTENSET_SOF_Msk;
|
||||
NRF_USBD->EPINEN |= USBD_EPINEN_ISOIN_Msk;
|
||||
}
|
||||
}
|
||||
__ISB(); __DSB();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
|
||||
{
|
||||
(void) rhport;
|
||||
|
||||
uint8_t const epnum = tu_edpt_number(ep_addr);
|
||||
uint8_t const dir = tu_edpt_dir(ep_addr);
|
||||
|
||||
if (epnum != EP_ISO_NUM)
|
||||
{
|
||||
// CBI
|
||||
if (dir == TUSB_DIR_OUT)
|
||||
{
|
||||
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
|
||||
NRF_USBD->EPOUTEN &= ~TU_BIT(epnum);
|
||||
}
|
||||
else
|
||||
{
|
||||
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
|
||||
NRF_USBD->EPINEN &= ~TU_BIT(epnum);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
_dcd.xfer[EP_ISO_NUM][dir].mps = 0;
|
||||
// ISO
|
||||
if (dir == TUSB_DIR_OUT)
|
||||
{
|
||||
NRF_USBD->INTENCLR = USBD_INTENCLR_ENDISOOUT_Msk;
|
||||
NRF_USBD->EPOUTEN &= ~USBD_EPOUTEN_ISOOUT_Msk;
|
||||
NRF_USBD->EVENTS_ENDISOOUT = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
NRF_USBD->INTENCLR = USBD_INTENCLR_ENDISOIN_Msk;
|
||||
NRF_USBD->EPINEN &= ~USBD_EPINEN_ISOIN_Msk;
|
||||
}
|
||||
// One of the ISO endpoints closed, no need to split buffers any more.
|
||||
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_OneDir;
|
||||
// When both ISO endpoint are close there is no need for SOF any more.
|
||||
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_IN].mps + _dcd.xfer[EP_ISO_NUM][TUSB_DIR_OUT].mps == 0) NRF_USBD->INTENCLR = USBD_INTENCLR_SOF_Msk;
|
||||
}
|
||||
__ISB(); __DSB();
|
||||
}
|
||||
|
||||
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
|
||||
{
|
||||
(void) rhport;
|
||||
@ -361,11 +460,12 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
|
||||
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
|
||||
{
|
||||
(void) rhport;
|
||||
uint8_t const epnum = tu_edpt_number(ep_addr);
|
||||
|
||||
if ( tu_edpt_number(ep_addr) == 0 )
|
||||
if ( epnum == 0 )
|
||||
{
|
||||
NRF_USBD->TASKS_EP0STALL = 1;
|
||||
}else
|
||||
}else if (epnum != EP_ISO_NUM)
|
||||
{
|
||||
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep_addr;
|
||||
}
|
||||
@ -376,8 +476,9 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
|
||||
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
|
||||
{
|
||||
(void) rhport;
|
||||
uint8_t const epnum = tu_edpt_number(ep_addr);
|
||||
|
||||
if ( tu_edpt_number(ep_addr) )
|
||||
if ( epnum != 0 && epnum != EP_ISO_NUM )
|
||||
{
|
||||
// clear stall
|
||||
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr;
|
||||
@ -435,8 +536,31 @@ void dcd_int_handler(uint8_t rhport)
|
||||
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
|
||||
}
|
||||
|
||||
// ISOIN: Data was moved to endpoint buffer, client will be notified in SOF
|
||||
if ( int_status & USBD_INTEN_ENDISOIN_Msk )
|
||||
{
|
||||
xfer_td_t* xfer = get_td(EP_ISO_NUM, TUSB_DIR_IN);
|
||||
|
||||
xfer->actual_len = NRF_USBD->ISOIN.AMOUNT;
|
||||
// Data transferred from RAM to endpoint output buffer.
|
||||
// Next transfer can be scheduled after SOF.
|
||||
xfer->iso_in_transfer_ready = true;
|
||||
}
|
||||
|
||||
if ( int_status & USBD_INTEN_SOF_Msk )
|
||||
{
|
||||
// ISOOUT: Transfer data gathered in previous frame from buffer to RAM
|
||||
if (NRF_USBD->EPOUTEN & USBD_EPOUTEN_ISOOUT_Msk)
|
||||
{
|
||||
xact_out_dma(EP_ISO_NUM);
|
||||
}
|
||||
// ISOIN: Notify client that data was transferred
|
||||
xfer_td_t* xfer = get_td(EP_ISO_NUM, TUSB_DIR_IN);
|
||||
if ( xfer->iso_in_transfer_ready )
|
||||
{
|
||||
xfer->iso_in_transfer_ready = false;
|
||||
dcd_event_xfer_complete(0, EP_ISO_NUM | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
|
||||
}
|
||||
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
|
||||
}
|
||||
|
||||
@ -518,8 +642,11 @@ void dcd_int_handler(uint8_t rhport)
|
||||
* Note: Since nRF controller auto ACK next packet without SW awareness
|
||||
* We must handle this stage before Host -> Endpoint just in case
|
||||
* 2 event happens at once
|
||||
* ISO OUT: Transaction must fit in single packed, it can be shorter then total
|
||||
* len if Host decides to sent fewer bytes, it this case transaction is also
|
||||
* complete and next transfer is not initiated here like for CBI.
|
||||
*/
|
||||
for(uint8_t epnum=0; epnum<8; epnum++)
|
||||
for(uint8_t epnum=0; epnum<EP_COUNT+1; epnum++)
|
||||
{
|
||||
if ( tu_bit_test(int_status, USBD_INTEN_ENDEPOUT0_Pos+epnum))
|
||||
{
|
||||
@ -530,7 +657,7 @@ void dcd_int_handler(uint8_t rhport)
|
||||
xfer->data_received = false;
|
||||
|
||||
// Transfer complete if transaction len < Max Packet Size or total len is transferred
|
||||
if ( (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) )
|
||||
if ( (epnum != EP_ISO_NUM) && (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) )
|
||||
{
|
||||
// Prepare for next transaction
|
||||
xact_out_prepare(epnum);
|
||||
|
Loading…
x
Reference in New Issue
Block a user