Merge branch 'master' into fix-rp2040-ctrl-xfer

This commit is contained in:
hathach 2024-03-12 16:59:12 +07:00
commit 2f0ad918cc
No known key found for this signature in database
GPG Key ID: 26FAB84F615C3C52
15 changed files with 884 additions and 1169 deletions

View File

@ -1,8 +1,14 @@
set(CMAKE_SYSTEM_NAME Generic)
set(CMAKE_C_COMPILER "arm-none-eabi-gcc")
set(CMAKE_CXX_COMPILER "arm-none-eabi-g++")
set(CMAKE_ASM_COMPILER "arm-none-eabi-gcc")
if (NOT DEFINED CMAKE_C_COMPILER)
set(CMAKE_C_COMPILER "arm-none-eabi-gcc")
endif ()
if (NOT DEFINED CMAKE_CXX_COMPILER)
set(CMAKE_CXX_COMPILER "arm-none-eabi-g++")
endif ()
set(CMAKE_ASM_COMPILER ${CMAKE_C_COMPILER})
set(CMAKE_SIZE "arm-none-eabi-size" CACHE FILEPATH "")
set(CMAKE_OBJCOPY "arm-none-eabi-objcopy" CACHE FILEPATH "")

View File

@ -31,12 +31,24 @@
#include "bsp/board_api.h"
#include "tusb.h"
//------------- prototypes -------------//
/* Blink pattern
* - 250 ms : device not mounted
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
static void led_blinking_task(void);
static void cdc_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
@ -46,28 +58,23 @@ int main(void)
board_init_after_tusb();
}
while (1)
{
while (1) {
tud_task(); // tinyusb device task
cdc_task();
led_blinking_task();
}
}
// echo to either Serial0 or Serial1
// with Serial0 as all lower case, Serial1 as all upper case
static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count)
{
static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count) {
uint8_t const case_diff = 'a' - 'A';
for(uint32_t i=0; i<count; i++)
{
if (itf == 0)
{
for (uint32_t i = 0; i < count; i++) {
if (itf == 0) {
// echo back 1st port as lower case
if (isupper(buf[i])) buf[i] += case_diff;
}
else
{
} else {
// echo back 2nd port as upper case
if (islower(buf[i])) buf[i] -= case_diff;
}
@ -77,21 +84,29 @@ static void echo_serial_port(uint8_t itf, uint8_t buf[], uint32_t count)
tud_cdc_n_write_flush(itf);
}
// Invoked when device is mounted
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
//--------------------------------------------------------------------+
// USB CDC
//--------------------------------------------------------------------+
static void cdc_task(void)
{
static void cdc_task(void) {
uint8_t itf;
for (itf = 0; itf < CFG_TUD_CDC; itf++)
{
for (itf = 0; itf < CFG_TUD_CDC; itf++) {
// connected() check for DTR bit
// Most but not all terminal client set this when making connection
// if ( tud_cdc_n_connected(itf) )
{
if ( tud_cdc_n_available(itf) )
{
if (tud_cdc_n_available(itf)) {
uint8_t buf[64];
uint32_t count = tud_cdc_n_read(itf, buf, sizeof(buf));
@ -103,3 +118,18 @@ static void cdc_task(void)
}
}
}
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if (board_millis() - start_ms < blink_interval_ms) return; // not enough time
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
}

View File

@ -71,7 +71,7 @@
#if CFG_TUSB_MCU == OPT_MCU_RP2040
// #define CFG_TUH_RPI_PIO_USB 1 // use pio-usb as host controller
// #define CFG_TUH_RPI_PIO_USB 1 // use max3421 as host controller
// #define CFG_TUH_MAX3421 1 // use max3421 as host controller
// host roothub port is 1 if using either pio-usb or max3421
#if (defined(CFG_TUH_RPI_PIO_USB) && CFG_TUH_RPI_PIO_USB) || (defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421)

View File

@ -71,7 +71,7 @@
#if CFG_TUSB_MCU == OPT_MCU_RP2040
// #define CFG_TUH_RPI_PIO_USB 1 // use pio-usb as host controller
// #define CFG_TUH_RPI_PIO_USB 1 // use max3421 as host controller
// #define CFG_TUH_MAX3421 1 // use max3421 as host controller
// host roothub port is 1 if using either pio-usb or max3421
#if (defined(CFG_TUH_RPI_PIO_USB) && CFG_TUH_RPI_PIO_USB) || (defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421)

View File

@ -76,7 +76,7 @@
#if CFG_TUSB_MCU == OPT_MCU_RP2040
// #define CFG_TUH_RPI_PIO_USB 1 // use pio-usb as host controller
// #define CFG_TUH_RPI_PIO_USB 1 // use max3421 as host controller
// #define CFG_TUH_MAX3421 1 // use max3421 as host controller
// host roothub port is 1 if using either pio-usb or max3421
#if (defined(CFG_TUH_RPI_PIO_USB) && CFG_TUH_RPI_PIO_USB) || (defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421)

View File

@ -71,7 +71,7 @@
#if CFG_TUSB_MCU == OPT_MCU_RP2040
// #define CFG_TUH_RPI_PIO_USB 1 // use pio-usb as host controller
// #define CFG_TUH_RPI_PIO_USB 1 // use max3421 as host controller
// #define CFG_TUH_MAX3421 1 // use max3421 as host controller
// host roothub port is 1 if using either pio-usb or max3421
#if (defined(CFG_TUH_RPI_PIO_USB) && CFG_TUH_RPI_PIO_USB) || (defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421)

View File

@ -71,7 +71,7 @@
#if CFG_TUSB_MCU == OPT_MCU_RP2040
// #define CFG_TUH_RPI_PIO_USB 1 // use pio-usb as host controller
// #define CFG_TUH_RPI_PIO_USB 1 // use max3421 as host controller
// #define CFG_TUH_MAX3421 1 // use max3421 as host controller
// host roothub port is 1 if using either pio-usb or max3421
#if (defined(CFG_TUH_RPI_PIO_USB) && CFG_TUH_RPI_PIO_USB) || (defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421)

View File

@ -39,12 +39,11 @@
#endif
#define TU_LOG_DRV(...) TU_LOG(CFG_TUH_HID_LOG_LEVEL, __VA_ARGS__)
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
typedef struct {
uint8_t daddr;
uint8_t itf_num;
@ -55,7 +54,7 @@ typedef struct
uint8_t itf_protocol; // None, Keyboard, Mouse
uint8_t protocol_mode; // Boot (0) or Report protocol (1)
uint8_t report_desc_type;
uint8_t report_desc_type;
uint16_t report_desc_len;
uint16_t epin_size;
@ -73,79 +72,57 @@ tu_static uint8_t _hidh_default_protocol = HID_PROTOCOL_BOOT;
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
TU_ATTR_ALWAYS_INLINE static inline
hidh_interface_t* get_hid_itf(uint8_t daddr, uint8_t idx)
{
TU_ATTR_ALWAYS_INLINE static inline hidh_interface_t* get_hid_itf(uint8_t daddr, uint8_t idx) {
TU_ASSERT(daddr > 0 && idx < CFG_TUH_HID, NULL);
hidh_interface_t* p_hid = &_hidh_itf[idx];
return (p_hid->daddr == daddr) ? p_hid : NULL;
}
// Get instance ID by endpoint address
static uint8_t get_idx_by_epaddr(uint8_t daddr, uint8_t ep_addr)
{
for ( uint8_t idx = 0; idx < CFG_TUH_HID; idx++ )
{
hidh_interface_t const * p_hid = &_hidh_itf[idx];
if ( p_hid->daddr == daddr &&
(p_hid->ep_in == ep_addr || p_hid->ep_out == ep_addr) )
{
static uint8_t get_idx_by_epaddr(uint8_t daddr, uint8_t ep_addr) {
for (uint8_t idx = 0; idx < CFG_TUH_HID; idx++) {
hidh_interface_t const* p_hid = &_hidh_itf[idx];
if (p_hid->daddr == daddr &&
(p_hid->ep_in == ep_addr || p_hid->ep_out == ep_addr)) {
return idx;
}
}
return TUSB_INDEX_INVALID_8;
}
static hidh_interface_t* find_new_itf(void)
{
for(uint8_t i=0; i<CFG_TUH_HID; i++)
{
static hidh_interface_t* find_new_itf(void) {
for (uint8_t i = 0; i < CFG_TUH_HID; i++) {
if (_hidh_itf[i].daddr == 0) return &_hidh_itf[i];
}
return NULL;
}
//--------------------------------------------------------------------+
// Interface API
//--------------------------------------------------------------------+
uint8_t tuh_hid_itf_get_count(uint8_t daddr)
{
uint8_t tuh_hid_itf_get_count(uint8_t daddr) {
uint8_t count = 0;
for(uint8_t i=0; i<CFG_TUH_HID; i++)
{
for (uint8_t i = 0; i < CFG_TUH_HID; i++) {
if (_hidh_itf[i].daddr == daddr) count++;
}
return count;
}
uint8_t tuh_hid_itf_get_total_count(void)
{
uint8_t tuh_hid_itf_get_total_count(void) {
uint8_t count = 0;
for(uint8_t i=0; i<CFG_TUH_HID; i++)
{
for (uint8_t i = 0; i < CFG_TUH_HID; i++) {
if (_hidh_itf[i].daddr != 0) count++;
}
return count;
}
bool tuh_hid_mounted(uint8_t daddr, uint8_t idx)
{
bool tuh_hid_mounted(uint8_t daddr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid);
return p_hid->mounted;
}
bool tuh_hid_itf_get_info(uint8_t daddr, uint8_t idx, tuh_itf_info_t* info)
{
bool tuh_hid_itf_get_info(uint8_t daddr, uint8_t idx, tuh_itf_info_t* info) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid && info);
@ -153,34 +130,30 @@ bool tuh_hid_itf_get_info(uint8_t daddr, uint8_t idx, tuh_itf_info_t* info)
// re-construct descriptor
tusb_desc_interface_t* desc = &info->desc;
desc->bLength = sizeof(tusb_desc_interface_t);
desc->bDescriptorType = TUSB_DESC_INTERFACE;
desc->bLength = sizeof(tusb_desc_interface_t);
desc->bDescriptorType = TUSB_DESC_INTERFACE;
desc->bInterfaceNumber = p_hid->itf_num;
desc->bAlternateSetting = 0;
desc->bNumEndpoints = (uint8_t) ((p_hid->ep_in ? 1u : 0u) + (p_hid->ep_out ? 1u : 0u));
desc->bInterfaceClass = TUSB_CLASS_HID;
desc->bInterfaceNumber = p_hid->itf_num;
desc->bAlternateSetting = 0;
desc->bNumEndpoints = (uint8_t) ((p_hid->ep_in ? 1u : 0u) + (p_hid->ep_out ? 1u : 0u));
desc->bInterfaceClass = TUSB_CLASS_HID;
desc->bInterfaceSubClass = (p_hid->itf_protocol ? HID_SUBCLASS_BOOT : HID_SUBCLASS_NONE);
desc->bInterfaceProtocol = p_hid->itf_protocol;
desc->iInterface = 0; // not used yet
desc->iInterface = 0; // not used yet
return true;
}
uint8_t tuh_hid_itf_get_index(uint8_t daddr, uint8_t itf_num)
{
for ( uint8_t idx = 0; idx < CFG_TUH_HID; idx++ )
{
hidh_interface_t const * p_hid = &_hidh_itf[idx];
if ( p_hid->daddr == daddr && p_hid->itf_num == itf_num) return idx;
uint8_t tuh_hid_itf_get_index(uint8_t daddr, uint8_t itf_num) {
for (uint8_t idx = 0; idx < CFG_TUH_HID; idx++) {
hidh_interface_t const* p_hid = &_hidh_itf[idx];
if (p_hid->daddr == daddr && p_hid->itf_num == itf_num) return idx;
}
return TUSB_INDEX_INVALID_8;
}
uint8_t tuh_hid_interface_protocol(uint8_t daddr, uint8_t idx)
{
uint8_t tuh_hid_interface_protocol(uint8_t daddr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
return p_hid ? p_hid->itf_protocol : 0;
}
@ -188,29 +161,24 @@ uint8_t tuh_hid_interface_protocol(uint8_t daddr, uint8_t idx)
//--------------------------------------------------------------------+
// Control Endpoint API
//--------------------------------------------------------------------+
uint8_t tuh_hid_get_protocol(uint8_t daddr, uint8_t idx)
{
uint8_t tuh_hid_get_protocol(uint8_t daddr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
return p_hid ? p_hid->protocol_mode : 0;
}
static void set_protocol_complete(tuh_xfer_t* xfer)
{
static void set_protocol_complete(tuh_xfer_t* xfer) {
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const daddr = xfer->daddr;
uint8_t const idx = tuh_hid_itf_get_index(daddr, itf_num);
uint8_t const daddr = xfer->daddr;
uint8_t const idx = tuh_hid_itf_get_index(daddr, itf_num);
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid, );
TU_VERIFY(p_hid,);
if (XFER_RESULT_SUCCESS == xfer->result)
{
if (XFER_RESULT_SUCCESS == xfer->result) {
p_hid->protocol_mode = (uint8_t) tu_le16toh(xfer->setup->wValue);
}
if (tuh_hid_set_protocol_complete_cb)
{
if (tuh_hid_set_protocol_complete_cb) {
tuh_hid_set_protocol_complete_cb(daddr, idx, p_hid->protocol_mode);
}
}
@ -219,123 +187,109 @@ void tuh_hid_set_default_protocol(uint8_t protocol) {
_hidh_default_protocol = protocol;
}
static bool _hidh_set_protocol(uint8_t daddr, uint8_t itf_num, uint8_t protocol, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
static bool _hidh_set_protocol(uint8_t daddr, uint8_t itf_num, uint8_t protocol,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("HID Set Protocol = %d\r\n", protocol);
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = HID_REQ_CONTROL_SET_PROTOCOL,
.wValue = protocol,
.wIndex = itf_num,
.wLength = 0
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = HID_REQ_CONTROL_SET_PROTOCOL,
.wValue = protocol,
.wIndex = itf_num,
.wLength = 0
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
bool tuh_hid_set_protocol(uint8_t daddr, uint8_t idx, uint8_t protocol)
{
bool tuh_hid_set_protocol(uint8_t daddr, uint8_t idx, uint8_t protocol) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid && p_hid->itf_protocol != HID_ITF_PROTOCOL_NONE);
return _hidh_set_protocol(daddr, p_hid->itf_num, protocol, set_protocol_complete, 0);
}
static void set_report_complete(tuh_xfer_t* xfer)
{
static void set_report_complete(tuh_xfer_t* xfer) {
TU_LOG_DRV("HID Set Report complete\r\n");
if (tuh_hid_set_report_complete_cb)
{
if (tuh_hid_set_report_complete_cb) {
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_hid_itf_get_index(xfer->daddr, itf_num);
uint8_t const idx = tuh_hid_itf_get_index(xfer->daddr, itf_num);
uint8_t const report_type = tu_u16_high(xfer->setup->wValue);
uint8_t const report_id = tu_u16_low(xfer->setup->wValue);
uint8_t const report_id = tu_u16_low(xfer->setup->wValue);
tuh_hid_set_report_complete_cb(xfer->daddr, idx, report_id, report_type,
(xfer->result == XFER_RESULT_SUCCESS) ? xfer->setup->wLength : 0);
}
}
bool tuh_hid_set_report(uint8_t daddr, uint8_t idx, uint8_t report_id, uint8_t report_type, void* report, uint16_t len)
{
bool tuh_hid_set_report(uint8_t daddr, uint8_t idx, uint8_t report_id, uint8_t report_type, void* report, uint16_t len) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid);
TU_LOG_DRV("HID Set Report: id = %u, type = %u, len = %u\r\n", report_id, report_type, len);
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = HID_REQ_CONTROL_SET_REPORT,
.wValue = tu_htole16(tu_u16(report_type, report_id)),
.wIndex = tu_htole16((uint16_t)p_hid->itf_num),
.wLength = len
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = HID_REQ_CONTROL_SET_REPORT,
.wValue = tu_htole16(tu_u16(report_type, report_id)),
.wIndex = tu_htole16((uint16_t) p_hid->itf_num),
.wLength = len
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = report,
.complete_cb = set_report_complete,
.user_data = 0
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = report,
.complete_cb = set_report_complete,
.user_data = 0
};
return tuh_control_xfer(&xfer);
}
static bool _hidh_set_idle(uint8_t daddr, uint8_t itf_num, uint16_t idle_rate, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
static bool _hidh_set_idle(uint8_t daddr, uint8_t itf_num, uint16_t idle_rate,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
// SET IDLE request, device can stall if not support this request
TU_LOG_DRV("HID Set Idle \r\n");
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = HID_REQ_CONTROL_SET_IDLE,
.wValue = tu_htole16(idle_rate),
.wIndex = tu_htole16((uint16_t)itf_num),
.wLength = 0
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = HID_REQ_CONTROL_SET_IDLE,
.wValue = tu_htole16(idle_rate),
.wIndex = tu_htole16((uint16_t) itf_num),
.wLength = 0
};
tuh_xfer_t xfer =
{
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
@ -346,68 +300,60 @@ static bool _hidh_set_idle(uint8_t daddr, uint8_t itf_num, uint16_t idle_rate, t
//--------------------------------------------------------------------+
// Check if HID interface is ready to receive report
bool tuh_hid_receive_ready(uint8_t dev_addr, uint8_t idx)
{
bool tuh_hid_receive_ready(uint8_t dev_addr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(dev_addr, idx);
TU_VERIFY(p_hid);
return !usbh_edpt_busy(dev_addr, p_hid->ep_in);
}
bool tuh_hid_receive_report(uint8_t daddr, uint8_t idx)
{
bool tuh_hid_receive_report(uint8_t daddr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid);
// claim endpoint
TU_VERIFY( usbh_edpt_claim(daddr, p_hid->ep_in) );
TU_VERIFY(usbh_edpt_claim(daddr, p_hid->ep_in));
if ( !usbh_edpt_xfer(daddr, p_hid->ep_in, p_hid->epin_buf, p_hid->epin_size) )
{
if (!usbh_edpt_xfer(daddr, p_hid->ep_in, p_hid->epin_buf, p_hid->epin_size)) {
usbh_edpt_release(daddr, p_hid->ep_in);
return false;
}
return true;
}
bool tuh_hid_send_ready(uint8_t dev_addr, uint8_t idx)
{
bool tuh_hid_receive_abort(uint8_t dev_addr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(dev_addr, idx);
TU_VERIFY(p_hid);
return tuh_edpt_abort_xfer(dev_addr, p_hid->ep_in);
}
bool tuh_hid_send_ready(uint8_t dev_addr, uint8_t idx) {
hidh_interface_t* p_hid = get_hid_itf(dev_addr, idx);
TU_VERIFY(p_hid);
return !usbh_edpt_busy(dev_addr, p_hid->ep_out);
}
bool tuh_hid_send_report(uint8_t daddr, uint8_t idx, uint8_t report_id, const void* report, uint16_t len)
{
bool tuh_hid_send_report(uint8_t daddr, uint8_t idx, uint8_t report_id, const void* report, uint16_t len) {
TU_LOG_DRV("HID Send Report %d\r\n", report_id);
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid);
if (p_hid->ep_out == 0)
{
if (p_hid->ep_out == 0) {
// This HID does not have an out endpoint (other than control)
return false;
}
else if (len > CFG_TUH_HID_EPOUT_BUFSIZE ||
(report_id != 0 && len > (CFG_TUH_HID_EPOUT_BUFSIZE - 1)))
{
} else if (len > CFG_TUH_HID_EPOUT_BUFSIZE ||
(report_id != 0 && len > (CFG_TUH_HID_EPOUT_BUFSIZE - 1))) {
// ep_out buffer is not large enough to hold contents
return false;
}
// claim endpoint
TU_VERIFY( usbh_edpt_claim(daddr, p_hid->ep_out) );
TU_VERIFY(usbh_edpt_claim(daddr, p_hid->ep_out));
if (report_id == 0)
{
if (report_id == 0) {
// No report ID in transmission
memcpy(&p_hid->epout_buf[0], report, len);
}
else
{
} else {
p_hid->epout_buf[0] = report_id;
memcpy(&p_hid->epout_buf[1], report, len);
++len; // 1 more byte for report_id
@ -415,8 +361,7 @@ bool tuh_hid_send_report(uint8_t daddr, uint8_t idx, uint8_t report_id, const vo
TU_LOG3_MEM(p_hid->epout_buf, len, 2);
if ( !usbh_edpt_xfer(daddr, p_hid->ep_out, p_hid->epout_buf, len) )
{
if (!usbh_edpt_xfer(daddr, p_hid->ep_out, p_hid->epout_buf, len)) {
usbh_edpt_release(daddr, p_hid->ep_out);
return false;
}
@ -427,13 +372,11 @@ bool tuh_hid_send_report(uint8_t daddr, uint8_t idx, uint8_t report_id, const vo
//--------------------------------------------------------------------+
// USBH API
//--------------------------------------------------------------------+
void hidh_init(void)
{
void hidh_init(void) {
tu_memclr(_hidh_itf, sizeof(_hidh_itf));
}
bool hidh_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
bool hidh_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void) result;
uint8_t const dir = tu_edpt_dir(ep_addr);
@ -442,28 +385,25 @@ bool hidh_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid);
if ( dir == TUSB_DIR_IN )
{
if (dir == TUSB_DIR_IN) {
TU_LOG_DRV(" Get Report callback (%u, %u)\r\n", daddr, idx);
TU_LOG3_MEM(p_hid->epin_buf, xferred_bytes, 2);
tuh_hid_report_received_cb(daddr, idx, p_hid->epin_buf, (uint16_t) xferred_bytes);
}else
{
if (tuh_hid_report_sent_cb) tuh_hid_report_sent_cb(daddr, idx, p_hid->epout_buf, (uint16_t) xferred_bytes);
} else {
if (tuh_hid_report_sent_cb) {
tuh_hid_report_sent_cb(daddr, idx, p_hid->epout_buf, (uint16_t) xferred_bytes);
}
}
return true;
}
void hidh_close(uint8_t daddr)
{
for(uint8_t i=0; i<CFG_TUH_HID; i++)
{
void hidh_close(uint8_t daddr) {
for (uint8_t i = 0; i < CFG_TUH_HID; i++) {
hidh_interface_t* p_hid = &_hidh_itf[i];
if (p_hid->daddr == daddr)
{
if (p_hid->daddr == daddr) {
TU_LOG_DRV(" HIDh close addr = %u index = %u\r\n", daddr, i);
if(tuh_hid_umount_cb) tuh_hid_umount_cb(daddr, i);
if (tuh_hid_umount_cb) tuh_hid_umount_cb(daddr, i);
p_hid->daddr = 0;
p_hid->mounted = false;
}
@ -474,25 +414,22 @@ void hidh_close(uint8_t daddr)
// Enumeration
//--------------------------------------------------------------------+
bool hidh_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *desc_itf, uint16_t max_len)
{
bool hidh_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const* desc_itf, uint16_t max_len) {
(void) rhport;
(void) max_len;
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass);
TU_LOG_DRV("[%u] HID opening Interface %u\r\n", daddr, desc_itf->bInterfaceNumber);
// len = interface + hid + n*endpoints
uint16_t const drv_len = (uint16_t) (sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) +
desc_itf->bNumEndpoints * sizeof(tusb_desc_endpoint_t));
TU_ASSERT(max_len >= drv_len);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
uint8_t const* p_desc = (uint8_t const*) desc_itf;
//------------- HID descriptor -------------//
p_desc = tu_desc_next(p_desc);
tusb_hid_descriptor_hid_t const *desc_hid = (tusb_hid_descriptor_hid_t const *) p_desc;
tusb_hid_descriptor_hid_t const* desc_hid = (tusb_hid_descriptor_hid_t const*) p_desc;
TU_ASSERT(HID_DESC_TYPE_HID == desc_hid->bDescriptorType);
hidh_interface_t* p_hid = find_new_itf();
@ -501,38 +438,33 @@ bool hidh_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *desc_
//------------- Endpoint Descriptors -------------//
p_desc = tu_desc_next(p_desc);
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc;
tusb_desc_endpoint_t const* desc_ep = (tusb_desc_endpoint_t const*) p_desc;
for(int i = 0; i < desc_itf->bNumEndpoints; i++)
{
for (int i = 0; i < desc_itf->bNumEndpoints; i++) {
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType);
TU_ASSERT( tuh_edpt_open(daddr, desc_ep) );
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
if(tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN)
{
p_hid->ep_in = desc_ep->bEndpointAddress;
if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) {
p_hid->ep_in = desc_ep->bEndpointAddress;
p_hid->epin_size = tu_edpt_packet_size(desc_ep);
}
else
{
p_hid->ep_out = desc_ep->bEndpointAddress;
} else {
p_hid->ep_out = desc_ep->bEndpointAddress;
p_hid->epout_size = tu_edpt_packet_size(desc_ep);
}
p_desc = tu_desc_next(p_desc);
desc_ep = (tusb_desc_endpoint_t const *) p_desc;
desc_ep = (tusb_desc_endpoint_t const*) p_desc;
}
p_hid->itf_num = desc_itf->bInterfaceNumber;
p_hid->itf_num = desc_itf->bInterfaceNumber;
// Assume bNumDescriptors = 1
p_hid->report_desc_type = desc_hid->bReportType;
p_hid->report_desc_len = tu_unaligned_read16(&desc_hid->wReportLength);
p_hid->report_desc_len = tu_unaligned_read16(&desc_hid->wReportLength);
// Per HID Specs: default is Report protocol, though we will force Boot protocol when set_config
p_hid->protocol_mode = _hidh_default_protocol;
if ( HID_SUBCLASS_BOOT == desc_itf->bInterfaceSubClass )
{
if (HID_SUBCLASS_BOOT == desc_itf->bInterfaceSubClass) {
p_hid->itf_protocol = desc_itf->bInterfaceProtocol;
}
@ -553,15 +485,14 @@ enum {
static void config_driver_mount_complete(uint8_t daddr, uint8_t idx, uint8_t const* desc_report, uint16_t desc_len);
static void process_set_config(tuh_xfer_t* xfer);
bool hidh_set_config(uint8_t daddr, uint8_t itf_num)
{
bool hidh_set_config(uint8_t daddr, uint8_t itf_num) {
tusb_control_request_t request;
request.wIndex = tu_htole16((uint16_t) itf_num);
tuh_xfer_t xfer;
xfer.daddr = daddr;
xfer.result = XFER_RESULT_SUCCESS;
xfer.setup = &request;
xfer.daddr = daddr;
xfer.result = XFER_RESULT_SUCCESS;
xfer.setup = &request;
xfer.user_data = CONFG_SET_IDLE;
// fake request to kick-off the set config process
@ -570,71 +501,67 @@ bool hidh_set_config(uint8_t daddr, uint8_t itf_num)
return true;
}
static void process_set_config(tuh_xfer_t* xfer)
{
static void process_set_config(tuh_xfer_t* xfer) {
// Stall is a valid response for SET_IDLE, sometime SET_PROTOCOL as well
// therefore we could ignore its result
if ( !(xfer->setup->bRequest == HID_REQ_CONTROL_SET_IDLE ||
xfer->setup->bRequest == HID_REQ_CONTROL_SET_PROTOCOL) )
{
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS, );
if (!(xfer->setup->bRequest == HID_REQ_CONTROL_SET_IDLE ||
xfer->setup->bRequest == HID_REQ_CONTROL_SET_PROTOCOL)) {
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS,);
}
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const daddr = xfer->daddr;
uint8_t const daddr = xfer->daddr;
uint8_t const idx = tuh_hid_itf_get_index(daddr, itf_num);
uint8_t const idx = tuh_hid_itf_get_index(daddr, itf_num);
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid, );
TU_VERIFY(p_hid,);
switch(state)
{
case CONFG_SET_IDLE:
{
switch (state) {
case CONFG_SET_IDLE: {
// Idle rate = 0 mean only report when there is changes
const uint16_t idle_rate = 0;
const uintptr_t next_state = (p_hid->itf_protocol != HID_ITF_PROTOCOL_NONE) ? CONFIG_SET_PROTOCOL : CONFIG_GET_REPORT_DESC;
const uintptr_t next_state = (p_hid->itf_protocol != HID_ITF_PROTOCOL_NONE)
? CONFIG_SET_PROTOCOL : CONFIG_GET_REPORT_DESC;
_hidh_set_idle(daddr, itf_num, idle_rate, process_set_config, next_state);
break;
}
break;
case CONFIG_SET_PROTOCOL:
_hidh_set_protocol(daddr, p_hid->itf_num, _hidh_default_protocol, process_set_config, CONFIG_GET_REPORT_DESC);
break;
break;
case CONFIG_GET_REPORT_DESC:
// Get Report Descriptor if possible
// using usbh enumeration buffer since report descriptor can be very long
if( p_hid->report_desc_len > CFG_TUH_ENUMERATION_BUFSIZE )
{
if (p_hid->report_desc_len > CFG_TUH_ENUMERATION_BUFSIZE) {
TU_LOG_DRV("HID Skip Report Descriptor since it is too large %u bytes\r\n", p_hid->report_desc_len);
// Driver is mounted without report descriptor
config_driver_mount_complete(daddr, idx, NULL, 0);
}else
{
tuh_descriptor_get_hid_report(daddr, itf_num, p_hid->report_desc_type, 0, usbh_get_enum_buf(), p_hid->report_desc_len, process_set_config, CONFIG_COMPLETE);
} else {
tuh_descriptor_get_hid_report(daddr, itf_num, p_hid->report_desc_type, 0,
usbh_get_enum_buf(), p_hid->report_desc_len,
process_set_config, CONFIG_COMPLETE);
}
break;
case CONFIG_COMPLETE:
{
case CONFIG_COMPLETE: {
uint8_t const* desc_report = usbh_get_enum_buf();
uint16_t const desc_len = tu_le16toh(xfer->setup->wLength);
uint16_t const desc_len = tu_le16toh(xfer->setup->wLength);
config_driver_mount_complete(daddr, idx, desc_report, desc_len);
break;
}
break;
default: break;
default:
break;
}
}
static void config_driver_mount_complete(uint8_t daddr, uint8_t idx, uint8_t const* desc_report, uint16_t desc_len)
{
static void config_driver_mount_complete(uint8_t daddr, uint8_t idx, uint8_t const* desc_report, uint16_t desc_len) {
hidh_interface_t* p_hid = get_hid_itf(daddr, idx);
TU_VERIFY(p_hid, );
TU_VERIFY(p_hid,);
p_hid->mounted = true;
// enumeration is complete
@ -648,21 +575,19 @@ static void config_driver_mount_complete(uint8_t daddr, uint8_t idx, uint8_t con
// Report Descriptor Parser
//--------------------------------------------------------------------+
uint8_t tuh_hid_parse_report_descriptor(tuh_hid_report_info_t* report_info_arr, uint8_t arr_count, uint8_t const* desc_report, uint16_t desc_len)
{
uint8_t tuh_hid_parse_report_descriptor(tuh_hid_report_info_t* report_info_arr, uint8_t arr_count,
uint8_t const* desc_report, uint16_t desc_len) {
// Report Item 6.2.2.2 USB HID 1.11
union TU_ATTR_PACKED
{
union TU_ATTR_PACKED {
uint8_t byte;
struct TU_ATTR_PACKED
{
uint8_t size : 2;
uint8_t type : 2;
uint8_t tag : 4;
struct TU_ATTR_PACKED {
uint8_t size : 2;
uint8_t type : 2;
uint8_t tag : 4;
};
} header;
tu_memclr(report_info_arr, arr_count*sizeof(tuh_hid_report_info_t));
tu_memclr(report_info_arr, arr_count * sizeof(tuh_hid_report_info_t));
uint8_t report_num = 0;
tuh_hid_report_info_t* info = report_info_arr;
@ -672,114 +597,105 @@ uint8_t tuh_hid_parse_report_descriptor(tuh_hid_report_info_t* report_info_arr,
// uint8_t ri_report_size = 0;
uint8_t ri_collection_depth = 0;
while(desc_len && report_num < arr_count)
{
while (desc_len && report_num < arr_count) {
header.byte = *desc_report++;
desc_len--;
uint8_t const tag = header.tag;
uint8_t const tag = header.tag;
uint8_t const type = header.type;
uint8_t const size = header.size;
uint8_t const data8 = desc_report[0];
TU_LOG(3, "tag = %d, type = %d, size = %d, data = ", tag, type, size);
for(uint32_t i=0; i<size; i++) TU_LOG(3, "%02X ", desc_report[i]);
for (uint32_t i = 0; i < size; i++) TU_LOG(3, "%02X ", desc_report[i]);
TU_LOG(3, "\r\n");
switch(type)
{
switch (type) {
case RI_TYPE_MAIN:
switch (tag)
{
switch (tag) {
case RI_MAIN_INPUT: break;
case RI_MAIN_OUTPUT: break;
case RI_MAIN_FEATURE: break;
case RI_MAIN_COLLECTION:
ri_collection_depth++;
break;
break;
case RI_MAIN_COLLECTION_END:
ri_collection_depth--;
if (ri_collection_depth == 0)
{
if (ri_collection_depth == 0) {
info++;
report_num++;
}
break;
break;
default: break;
default:break;
}
break;
break;
case RI_TYPE_GLOBAL:
switch(tag)
{
switch (tag) {
case RI_GLOBAL_USAGE_PAGE:
// only take in account the "usage page" before REPORT ID
if ( ri_collection_depth == 0 ) memcpy(&info->usage_page, desc_report, size);
break;
if (ri_collection_depth == 0) memcpy(&info->usage_page, desc_report, size);
break;
case RI_GLOBAL_LOGICAL_MIN : break;
case RI_GLOBAL_LOGICAL_MAX : break;
case RI_GLOBAL_PHYSICAL_MIN : break;
case RI_GLOBAL_PHYSICAL_MAX : break;
case RI_GLOBAL_LOGICAL_MIN: break;
case RI_GLOBAL_LOGICAL_MAX: break;
case RI_GLOBAL_PHYSICAL_MIN: break;
case RI_GLOBAL_PHYSICAL_MAX: break;
case RI_GLOBAL_REPORT_ID:
info->report_id = data8;
break;
break;
case RI_GLOBAL_REPORT_SIZE:
// ri_report_size = data8;
break;
break;
case RI_GLOBAL_REPORT_COUNT:
// ri_report_count = data8;
break;
break;
case RI_GLOBAL_UNIT_EXPONENT : break;
case RI_GLOBAL_UNIT : break;
case RI_GLOBAL_PUSH : break;
case RI_GLOBAL_POP : break;
case RI_GLOBAL_UNIT_EXPONENT: break;
case RI_GLOBAL_UNIT: break;
case RI_GLOBAL_PUSH: break;
case RI_GLOBAL_POP: break;
default: break;
}
break;
break;
case RI_TYPE_LOCAL:
switch(tag)
{
switch (tag) {
case RI_LOCAL_USAGE:
// only take in account the "usage" before starting REPORT ID
if ( ri_collection_depth == 0 ) info->usage = data8;
break;
if (ri_collection_depth == 0) info->usage = data8;
break;
case RI_LOCAL_USAGE_MIN : break;
case RI_LOCAL_USAGE_MAX : break;
case RI_LOCAL_DESIGNATOR_INDEX : break;
case RI_LOCAL_DESIGNATOR_MIN : break;
case RI_LOCAL_DESIGNATOR_MAX : break;
case RI_LOCAL_STRING_INDEX : break;
case RI_LOCAL_STRING_MIN : break;
case RI_LOCAL_STRING_MAX : break;
case RI_LOCAL_DELIMITER : break;
case RI_LOCAL_USAGE_MIN: break;
case RI_LOCAL_USAGE_MAX: break;
case RI_LOCAL_DESIGNATOR_INDEX: break;
case RI_LOCAL_DESIGNATOR_MIN: break;
case RI_LOCAL_DESIGNATOR_MAX: break;
case RI_LOCAL_STRING_INDEX: break;
case RI_LOCAL_STRING_MIN: break;
case RI_LOCAL_STRING_MAX: break;
case RI_LOCAL_DELIMITER: break;
default: break;
}
break;
break;
// error
// error
default: break;
}
desc_report += size;
desc_len -= size;
desc_len -= size;
}
for ( uint8_t i = 0; i < report_num; i++ )
{
info = report_info_arr+i;
for (uint8_t i = 0; i < report_num; i++) {
info = report_info_arr + i;
TU_LOG_DRV("%u: id = %u, usage_page = %u, usage = %u\r\n", i, info->report_id, info->usage_page, info->usage);
}

View File

@ -30,7 +30,7 @@
#include "hid.h"
#ifdef __cplusplus
extern "C" {
extern "C" {
#endif
//--------------------------------------------------------------------+
@ -47,10 +47,9 @@
#endif
typedef struct
{
uint8_t report_id;
uint8_t usage;
typedef struct {
uint8_t report_id;
uint8_t usage;
uint16_t usage_page;
// TODO still use the endpoint size for now
@ -86,7 +85,8 @@ bool tuh_hid_mounted(uint8_t dev_addr, uint8_t idx);
// Parse report descriptor into array of report_info struct and return number of reports.
// For complicated report, application should write its own parser.
uint8_t tuh_hid_parse_report_descriptor(tuh_hid_report_info_t* reports_info_arr, uint8_t arr_count, uint8_t const* desc_report, uint16_t desc_len) TU_ATTR_UNUSED;
TU_ATTR_UNUSED uint8_t tuh_hid_parse_report_descriptor(tuh_hid_report_info_t* reports_info_arr, uint8_t arr_count,
uint8_t const* desc_report, uint16_t desc_len);
//--------------------------------------------------------------------+
// Control Endpoint API
@ -107,7 +107,8 @@ bool tuh_hid_set_protocol(uint8_t dev_addr, uint8_t idx, uint8_t protocol);
// Set Report using control endpoint
// report_type is either Input, Output or Feature, (value from hid_report_type_t)
bool tuh_hid_set_report(uint8_t dev_addr, uint8_t idx, uint8_t report_id, uint8_t report_type, void* report, uint16_t len);
bool tuh_hid_set_report(uint8_t dev_addr, uint8_t idx, uint8_t report_id, uint8_t report_type,
void* report, uint16_t len);
//--------------------------------------------------------------------+
// Interrupt Endpoint API
@ -121,6 +122,9 @@ bool tuh_hid_receive_ready(uint8_t dev_addr, uint8_t idx);
// - false if failed to queue the transfer e.g endpoint is busy
bool tuh_hid_receive_report(uint8_t dev_addr, uint8_t idx);
// Abort receiving report on Interrupt Endpoint
bool tuh_hid_receive_abort(uint8_t dev_addr, uint8_t idx);
// Check if HID interface is ready to send report
bool tuh_hid_send_ready(uint8_t dev_addr, uint8_t idx);
@ -159,11 +163,11 @@ TU_ATTR_WEAK void tuh_hid_set_protocol_complete_cb(uint8_t dev_addr, uint8_t idx
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void hidh_init (void);
bool hidh_open (uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const *desc_itf, uint16_t max_len);
bool hidh_set_config (uint8_t dev_addr, uint8_t itf_num);
bool hidh_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void hidh_close (uint8_t dev_addr);
void hidh_init(void);
bool hidh_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const* desc_itf, uint16_t max_len);
bool hidh_set_config(uint8_t dev_addr, uint8_t itf_num);
bool hidh_xfer_cb(uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void hidh_close(uint8_t dev_addr);
#ifdef __cplusplus
}

View File

@ -372,10 +372,9 @@ bool tud_inited(void) {
return _usbd_rhport != RHPORT_INVALID;
}
bool tud_init (uint8_t rhport)
{
bool tud_init(uint8_t rhport) {
// skip if already initialized
if ( tud_inited() ) return true;
if (tud_inited()) return true;
TU_LOG_USBD("USBD init on controller %u\r\n", rhport);
TU_LOG_INT(CFG_TUD_LOG_LEVEL, sizeof(usbd_device_t));
@ -395,15 +394,13 @@ bool tud_init (uint8_t rhport)
TU_ASSERT(_usbd_q);
// Get application driver if available
if ( usbd_app_driver_get_cb )
{
if (usbd_app_driver_get_cb) {
_app_driver = usbd_app_driver_get_cb(&_app_driver_count);
}
// Init class drivers
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++)
{
usbd_class_driver_t const * driver = get_driver(i);
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) {
usbd_class_driver_t const* driver = get_driver(i);
TU_ASSERT(driver);
TU_LOG_USBD("%s init\r\n", driver->name);
driver->init();
@ -418,31 +415,26 @@ bool tud_init (uint8_t rhport)
return true;
}
static void configuration_reset(uint8_t rhport)
{
for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ )
{
usbd_class_driver_t const * driver = get_driver(i);
TU_ASSERT(driver, );
static void configuration_reset(uint8_t rhport) {
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++) {
usbd_class_driver_t const* driver = get_driver(i);
TU_ASSERT(driver,);
driver->reset(rhport);
}
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
memset(_usbd_dev.ep2drv, DRVID_INVALID, sizeof(_usbd_dev.ep2drv)); // invalid mapping
}
static void usbd_reset(uint8_t rhport)
{
static void usbd_reset(uint8_t rhport) {
configuration_reset(rhport);
usbd_control_reset();
}
bool tud_task_event_ready(void)
{
bool tud_task_event_ready(void) {
// Skip if stack is not initialized
if ( !tud_inited() ) return false;
if (!tud_inited()) return false;
return !osal_queue_empty(_usbd_q);
}
@ -450,53 +442,44 @@ bool tud_task_event_ready(void)
* This top level thread manages all device controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
int main(void) {
application_init();
tusb_init();
while(1) // the mainloop
{
while(1) { // the mainloop
application_code();
tud_task(); // tinyusb device task
}
}
@endcode
*/
void tud_task_ext(uint32_t timeout_ms, bool in_isr)
{
void tud_task_ext(uint32_t timeout_ms, bool in_isr) {
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if ( !tud_inited() ) return;
if (!tud_inited()) return;
// Loop until there is no more events in the queue
while (1)
{
while (1) {
dcd_event_t event;
if ( !osal_queue_receive(_usbd_q, &event, timeout_ms) ) return;
if (!osal_queue_receive(_usbd_q, &event, timeout_ms)) return;
#if CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL
if (event.event_id == DCD_EVENT_SETUP_RECEIVED) TU_LOG_USBD("\r\n"); // extra line for setup
TU_LOG_USBD("USBD %s ", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED");
#endif
switch ( event.event_id )
{
switch (event.event_id) {
case DCD_EVENT_BUS_RESET:
TU_LOG_USBD(": %s Speed\r\n", tu_str_speed[event.bus_reset.speed]);
usbd_reset(event.rhport);
_usbd_dev.speed = event.bus_reset.speed;
break;
break;
case DCD_EVENT_UNPLUGGED:
TU_LOG_USBD("\r\n");
usbd_reset(event.rhport);
// invoke callback
if (tud_umount_cb) tud_umount_cb();
break;
break;
case DCD_EVENT_SETUP_RECEIVED:
TU_LOG_BUF(CFG_TUD_LOG_LEVEL, &event.setup_received, 8);
@ -508,81 +491,72 @@ void tud_task_ext(uint32_t timeout_ms, bool in_isr)
// mark both in & out control as free
_usbd_dev.ep_status[0][TUSB_DIR_OUT].busy = 0;
_usbd_dev.ep_status[0][TUSB_DIR_OUT].claimed = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN ].busy = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN ].claimed = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN].busy = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN].claimed = 0;
// Process control request
if ( !process_control_request(event.rhport, &event.setup_received) )
{
if (!process_control_request(event.rhport, &event.setup_received)) {
TU_LOG_USBD(" Stall EP0\r\n");
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
}
break;
break;
case DCD_EVENT_XFER_COMPLETE:
{
case DCD_EVENT_XFER_COMPLETE: {
// Invoke the class callback associated with the endpoint address
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_LOG_USBD("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
_usbd_dev.ep_status[epnum][ep_dir].busy = 0;
_usbd_dev.ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum )
{
usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete
.len);
}
else
{
usbd_class_driver_t const * driver = get_driver( _usbd_dev.ep2drv[epnum][ep_dir] );
TU_ASSERT(driver, );
if (0 == epnum) {
usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result,
event.xfer_complete.len);
} else {
usbd_class_driver_t const* driver = get_driver(_usbd_dev.ep2drv[epnum][ep_dir]);
TU_ASSERT(driver,);
TU_LOG_USBD(" %s xfer callback\r\n", driver->name);
driver->xfer_cb(event.rhport, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len);
}
break;
}
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and
// can accidentally meet the SUSPEND condition ( Bus Idle for 3ms ), which result in a series of event
// e.g suspend -> resume -> unplug/plug. Skip suspend/resume if not connected
if ( _usbd_dev.connected )
{
if (_usbd_dev.connected) {
TU_LOG_USBD(": Remote Wakeup = %u\r\n", _usbd_dev.remote_wakeup_en);
if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en);
}else
{
} else {
TU_LOG_USBD(" Skipped\r\n");
}
break;
break;
case DCD_EVENT_RESUME:
if ( _usbd_dev.connected )
{
if (_usbd_dev.connected) {
TU_LOG_USBD("\r\n");
if (tud_resume_cb) tud_resume_cb();
}else
{
} else {
TU_LOG_USBD(" Skipped\r\n");
}
break;
break;
case USBD_EVENT_FUNC_CALL:
TU_LOG_USBD("\r\n");
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
if (event.func_call.func) event.func_call.func(event.func_call.param);
break;
case DCD_EVENT_SOF:
default:
TU_BREAKPOINT();
break;
break;
}
#if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO
@ -597,8 +571,7 @@ void tud_task_ext(uint32_t timeout_ms, bool in_isr)
//--------------------------------------------------------------------+
// Helper to invoke class driver control request handler
static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request)
{
static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request) {
usbd_control_set_complete_callback(driver->control_xfer_cb);
TU_LOG_USBD(" %s control request\r\n", driver->name);
return driver->control_xfer_cb(rhport, CONTROL_STAGE_SETUP, request);
@ -606,15 +579,12 @@ static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * dri
// This handles the actual request and its response.
// return false will cause its caller to stall control endpoint
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request)
{
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request) {
usbd_control_set_complete_callback(NULL);
TU_ASSERT(p_request->bmRequestType_bit.type < TUSB_REQ_TYPE_INVALID);
// Vendor request
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR )
{
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR ) {
TU_VERIFY(tud_vendor_control_xfer_cb);
usbd_control_set_complete_callback(tud_vendor_control_xfer_cb);
@ -622,19 +592,16 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
}
#if CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL
if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME)
{
if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME) {
TU_LOG_USBD(" %s", tu_str_std_request[p_request->bRequest]);
if (TUSB_REQ_GET_DESCRIPTOR != p_request->bRequest) TU_LOG_USBD("\r\n");
}
#endif
switch ( p_request->bmRequestType_bit.recipient )
{
switch ( p_request->bmRequestType_bit.recipient ) {
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type )
{
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type ) {
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
@ -645,15 +612,13 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
return invoke_class_control(rhport, driver, p_request);
}
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) {
// Non standard request is not supported
TU_BREAKPOINT();
return false;
}
switch ( p_request->bRequest )
{
switch ( p_request->bRequest ) {
case TUSB_REQ_SET_ADDRESS:
// Depending on mcu, status phase could be sent either before or after changing device address,
// or even require stack to not response with status at all
@ -664,22 +629,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
_usbd_dev.addressed = 1;
break;
case TUSB_REQ_GET_CONFIGURATION:
{
case TUSB_REQ_GET_CONFIGURATION: {
uint8_t cfg_num = _usbd_dev.cfg_num;
tud_control_xfer(rhport, p_request, &cfg_num, 1);
}
break;
case TUSB_REQ_SET_CONFIGURATION:
{
case TUSB_REQ_SET_CONFIGURATION: {
uint8_t const cfg_num = (uint8_t) p_request->wValue;
// Only process if new configure is different
if (_usbd_dev.cfg_num != cfg_num)
{
if ( _usbd_dev.cfg_num )
{
if (_usbd_dev.cfg_num != cfg_num) {
if ( _usbd_dev.cfg_num ) {
// already configured: need to clear all endpoints and driver first
TU_LOG_USBD(" Clear current Configuration (%u) before switching\r\n", _usbd_dev.cfg_num);
@ -694,15 +655,11 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
}
// Handle the new configuration and execute the corresponding callback
if ( cfg_num )
{
if ( cfg_num ) {
// switch to new configuration if not zero
TU_ASSERT( process_set_config(rhport, cfg_num) );
if ( tud_mount_cb ) tud_mount_cb();
}
else
{
} else {
if ( tud_umount_cb ) tud_umount_cb();
}
}
@ -738,15 +695,14 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_GET_STATUS:
{
case TUSB_REQ_GET_STATUS: {
// Device status bit mask
// - Bit 0: Self Powered
// - Bit 1: Remote Wakeup enabled
uint16_t status = (uint16_t) ((_usbd_dev.self_powered ? 1u : 0u) | (_usbd_dev.remote_wakeup_en ? 2u : 0u));
tud_control_xfer(rhport, p_request, &status, 2);
break;
}
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
@ -754,8 +710,7 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
break;
//------------- Class/Interface Specific Request -------------//
case TUSB_REQ_RCPT_INTERFACE:
{
case TUSB_REQ_RCPT_INTERFACE: {
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
@ -764,25 +719,21 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
// all requests to Interface (STD or Class) is forwarded to class driver.
// notable requests are: GET HID REPORT DESCRIPTOR, SET_INTERFACE, GET_INTERFACE
if ( !invoke_class_control(rhport, driver, p_request) )
{
if ( !invoke_class_control(rhport, driver, p_request) ) {
// For GET_INTERFACE and SET_INTERFACE, it is mandatory to respond even if the class
// driver doesn't use alternate settings or implement this
TU_VERIFY(TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type);
switch(p_request->bRequest)
{
switch(p_request->bRequest) {
case TUSB_REQ_GET_INTERFACE:
case TUSB_REQ_SET_INTERFACE:
// Clear complete callback if driver set since it can also stall the request.
usbd_control_set_complete_callback(NULL);
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest)
{
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest) {
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
}else
{
}else {
tud_control_status(rhport, p_request);
}
break;
@ -790,54 +741,42 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
default: return false;
}
}
break;
}
break;
//------------- Endpoint Request -------------//
case TUSB_REQ_RCPT_ENDPOINT:
{
case TUSB_REQ_RCPT_ENDPOINT: {
uint8_t const ep_addr = tu_u16_low(p_request->wIndex);
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) );
usbd_class_driver_t const * driver = get_driver(_usbd_dev.ep2drv[ep_num][ep_dir]);
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type ) {
// Forward class request to its driver
TU_VERIFY(driver);
return invoke_class_control(rhport, driver, p_request);
}
else
{
} else {
// Handle STD request to endpoint
switch ( p_request->bRequest )
{
case TUSB_REQ_GET_STATUS:
{
switch ( p_request->bRequest ) {
case TUSB_REQ_GET_STATUS: {
uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000;
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
case TUSB_REQ_CLEAR_FEATURE:
case TUSB_REQ_SET_FEATURE:
{
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest )
{
case TUSB_REQ_SET_FEATURE: {
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue ) {
if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest ) {
usbd_edpt_clear_stall(rhport, ep_addr);
}else
{
}else {
usbd_edpt_stall(rhport, ep_addr);
}
}
if (driver)
{
if (driver) {
// Some classes such as USBTMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request
// We will also forward std request targeted endpoint to class drivers as well
@ -853,14 +792,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
default:
TU_BREAKPOINT();
return false;
}
}
}
break;
// Unknown recipient
default: TU_BREAKPOINT(); return false;
default:
TU_BREAKPOINT();
return false;
}
return true;
@ -1185,8 +1128,7 @@ void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr) {
// USBD Endpoint API
//--------------------------------------------------------------------+
bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
{
bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) {
rhport = _usbd_rhport;
TU_ASSERT(tu_edpt_number(desc_ep->bEndpointAddress) < CFG_TUD_ENDPPOINT_MAX);
@ -1195,37 +1137,34 @@ bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
return dcd_edpt_open(rhport, desc_ep);
}
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
// TODO add this check later, also make sure we don't starve an out endpoint while suspending
// TU_VERIFY(tud_ready());
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir];
return tu_edpt_claim(ep_state, _usbd_mutex);
}
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir];
return tu_edpt_release(ep_state, _usbd_mutex);
}
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// TODO skip ready() check for now since enumeration also use this API
// TU_VERIFY(tud_ready());
@ -1239,11 +1178,9 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
// could return and USBD task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = 1;
if ( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) )
{
if (dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes)) {
return true;
}else
{
} else {
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = 0;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
@ -1257,12 +1194,11 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t total_bytes) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_LOG_USBD(" Queue ISO EP %02X with %u bytes ... ", ep_addr, total_bytes);
@ -1273,12 +1209,10 @@ bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
// and usbd task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = 1;
if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes))
{
if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes)) {
TU_LOG_USBD("OK\r\n");
return true;
}else
{
} else {
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = 0;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
@ -1288,26 +1222,23 @@ bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
}
}
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].busy;
}
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// only stalled if currently cleared
if ( !_usbd_dev.ep_status[epnum][dir].stalled )
{
if (!_usbd_dev.ep_status[epnum][dir].stalled) {
TU_LOG_USBD(" Stall EP %02X\r\n", ep_addr);
dcd_edpt_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = 1;
@ -1315,16 +1246,14 @@ void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
}
}
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// only clear if currently stalled
if ( _usbd_dev.ep_status[epnum][dir].stalled )
{
if (_usbd_dev.ep_status[epnum][dir].stalled) {
TU_LOG_USBD(" Clear Stall EP %02X\r\n", ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = 0;
@ -1332,31 +1261,27 @@ void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
}
}
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].stalled;
}
/**
* usbd_edpt_close will disable an endpoint.
*
* In progress transfers on this EP may be delivered after this call.
*
*/
void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
rhport = _usbd_rhport;
TU_ASSERT(dcd_edpt_close, /**/);
TU_LOG_USBD(" CLOSING Endpoint: 0x%02X\r\n", ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_close(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = 0;
@ -1366,8 +1291,7 @@ void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr)
return;
}
void usbd_sof_enable(uint8_t rhport, bool en)
{
void usbd_sof_enable(uint8_t rhport, bool en) {
rhport = _usbd_rhport;
// TODO: Check needed if all drivers including the user sof_cb does not need an active SOF ISR any more.
@ -1375,8 +1299,7 @@ void usbd_sof_enable(uint8_t rhport, bool en)
dcd_sof_enable(rhport, en);
}
bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size)
{
bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
rhport = _usbd_rhport;
TU_ASSERT(dcd_edpt_iso_alloc);
@ -1385,12 +1308,11 @@ bool usbd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packe
return dcd_edpt_iso_alloc(rhport, ep_addr, largest_packet_size);
}
bool usbd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
{
bool usbd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const* desc_ep) {
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(desc_ep->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_ep->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_ep->bEndpointAddress);
TU_ASSERT(dcd_edpt_iso_activate);
TU_ASSERT(epnum < CFG_TUD_ENDPPOINT_MAX);

File diff suppressed because it is too large Load Diff

View File

@ -48,7 +48,7 @@
*------------------------------------------------------------------*/
// Init these in dcd_init
static uint8_t *next_buffer_ptr;
static uint8_t* next_buffer_ptr;
// USB_MAX_ENDPOINTS Endpoints, direction TUSB_DIR_OUT for out and TUSB_DIR_IN for in.
static struct hw_endpoint hw_endpoints[USB_MAX_ENDPOINTS][2];
@ -56,79 +56,70 @@ static struct hw_endpoint hw_endpoints[USB_MAX_ENDPOINTS][2];
// SOF may be used by remote wakeup as RESUME, this indicate whether SOF is actually used by usbd
static bool _sof_enable = false;
TU_ATTR_ALWAYS_INLINE static inline struct hw_endpoint *hw_endpoint_get_by_num(uint8_t num, tusb_dir_t dir)
{
TU_ATTR_ALWAYS_INLINE static inline struct hw_endpoint* hw_endpoint_get_by_num(uint8_t num, tusb_dir_t dir) {
return &hw_endpoints[num][dir];
}
static struct hw_endpoint *hw_endpoint_get_by_addr(uint8_t ep_addr)
{
static struct hw_endpoint* hw_endpoint_get_by_addr(uint8_t ep_addr) {
uint8_t num = tu_edpt_number(ep_addr);
tusb_dir_t dir = tu_edpt_dir(ep_addr);
return hw_endpoint_get_by_num(num, dir);
}
static void _hw_endpoint_alloc(struct hw_endpoint *ep, uint8_t transfer_type)
{
static void _hw_endpoint_alloc(struct hw_endpoint* ep, uint8_t transfer_type) {
// size must be multiple of 64
uint size = tu_div_ceil(ep->wMaxPacketSize, 64) * 64u;
// double buffered Bulk endpoint
if ( transfer_type == TUSB_XFER_BULK )
{
if (transfer_type == TUSB_XFER_BULK) {
size *= 2u;
}
ep->hw_data_buf = next_buffer_ptr;
next_buffer_ptr += size;
assert(((uintptr_t )next_buffer_ptr & 0b111111u) == 0);
assert(((uintptr_t) next_buffer_ptr & 0b111111u) == 0);
uint dpram_offset = hw_data_offset(ep->hw_data_buf);
hard_assert(hw_data_offset(next_buffer_ptr) <= USB_DPRAM_MAX);
pico_info(" Allocated %d bytes at offset 0x%x (0x%p)\r\n", size, dpram_offset, ep->hw_data_buf);
// Fill in endpoint control register with buffer offset
uint32_t const reg = EP_CTRL_ENABLE_BITS | ((uint)transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset;
uint32_t const reg = EP_CTRL_ENABLE_BITS | ((uint) transfer_type << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset;
*ep->endpoint_control = reg;
}
static void _hw_endpoint_close(struct hw_endpoint *ep)
{
// Clear hardware registers and then zero the struct
// Clears endpoint enable
*ep->endpoint_control = 0;
// Clears buffer available, etc
*ep->buffer_control = 0;
// Clear any endpoint state
memset(ep, 0, sizeof(struct hw_endpoint));
static void _hw_endpoint_close(struct hw_endpoint* ep) {
// Clear hardware registers and then zero the struct
// Clears endpoint enable
*ep->endpoint_control = 0;
// Clears buffer available, etc
*ep->buffer_control = 0;
// Clear any endpoint state
memset(ep, 0, sizeof(struct hw_endpoint));
// Reclaim buffer space if all endpoints are closed
bool reclaim_buffers = true;
for ( uint8_t i = 1; i < USB_MAX_ENDPOINTS; i++ )
{
if (hw_endpoint_get_by_num(i, TUSB_DIR_OUT)->hw_data_buf != NULL || hw_endpoint_get_by_num(i, TUSB_DIR_IN)->hw_data_buf != NULL)
{
reclaim_buffers = false;
break;
}
}
if (reclaim_buffers)
{
next_buffer_ptr = &usb_dpram->epx_data[0];
// Reclaim buffer space if all endpoints are closed
bool reclaim_buffers = true;
for (uint8_t i = 1; i < USB_MAX_ENDPOINTS; i++) {
if (hw_endpoint_get_by_num(i, TUSB_DIR_OUT)->hw_data_buf != NULL ||
hw_endpoint_get_by_num(i, TUSB_DIR_IN)->hw_data_buf != NULL) {
reclaim_buffers = false;
break;
}
}
if (reclaim_buffers) {
next_buffer_ptr = &usb_dpram->epx_data[0];
}
}
static void hw_endpoint_close(uint8_t ep_addr)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_close(ep);
static void hw_endpoint_close(uint8_t ep_addr) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
_hw_endpoint_close(ep);
}
static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
const uint8_t num = tu_edpt_number(ep_addr);
const tusb_dir_t dir = tu_edpt_dir(ep_addr);
@ -143,35 +134,26 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t t
ep->transfer_type = transfer_type;
// Every endpoint has a buffer control register in dpram
if ( dir == TUSB_DIR_IN )
{
if (dir == TUSB_DIR_IN) {
ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].in;
}
else
{
} else {
ep->buffer_control = &usb_dpram->ep_buf_ctrl[num].out;
}
// Clear existing buffer control state
*ep->buffer_control = 0;
if ( num == 0 )
{
if (num == 0) {
// EP0 has no endpoint control register because the buffer offsets are fixed
ep->endpoint_control = NULL;
// Buffer offset is fixed (also double buffered)
ep->hw_data_buf = (uint8_t*) &usb_dpram->ep0_buf_a[0];
}
else
{
} else {
// Set the endpoint control register (starts at EP1, hence num-1)
if ( dir == TUSB_DIR_IN )
{
if (dir == TUSB_DIR_IN) {
ep->endpoint_control = &usb_dpram->ep_ctrl[num - 1].in;
}
else
{
} else {
ep->endpoint_control = &usb_dpram->ep_ctrl[num - 1].out;
}
@ -180,39 +162,34 @@ static void hw_endpoint_init(uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t t
}
}
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
hw_endpoint_xfer_start(ep, buffer, total_bytes);
static void hw_endpoint_xfer(uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
hw_endpoint_xfer_start(ep, buffer, total_bytes);
}
static void __tusb_irq_path_func(hw_handle_buff_status)(void)
{
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status = 0x%08lx\r\n", remaining_buffers);
uint bit = 1u;
for (uint8_t i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++)
{
if (remaining_buffers & bit)
{
// clear this in advance
usb_hw_clear->buf_status = bit;
static void __tusb_irq_path_func(hw_handle_buff_status)(void) {
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status = 0x%08lx\r\n", remaining_buffers);
uint bit = 1u;
for (uint8_t i = 0; remaining_buffers && i < USB_MAX_ENDPOINTS * 2; i++) {
if (remaining_buffers & bit) {
// clear this in advance
usb_hw_clear->buf_status = bit;
// IN transfer for even i, OUT transfer for odd i
struct hw_endpoint *ep = hw_endpoint_get_by_num(i >> 1u, (i & 1u) ? TUSB_DIR_OUT : TUSB_DIR_IN);
// IN transfer for even i, OUT transfer for odd i
struct hw_endpoint* ep = hw_endpoint_get_by_num(i >> 1u, (i & 1u) ? TUSB_DIR_OUT : TUSB_DIR_IN);
// Continue xfer
bool done = hw_endpoint_xfer_continue(ep);
if (done)
{
// Notify
dcd_event_xfer_complete(0, ep->ep_addr, ep->xferred_len, XFER_RESULT_SUCCESS, true);
hw_endpoint_reset_transfer(ep);
}
remaining_buffers &= ~bit;
}
bit <<= 1u;
// Continue xfer
bool done = hw_endpoint_xfer_continue(ep);
if (done) {
// Notify
dcd_event_xfer_complete(0, ep->ep_addr, ep->xferred_len, XFER_RESULT_SUCCESS, true);
hw_endpoint_reset_transfer(ep);
}
remaining_buffers &= ~bit;
}
bit <<= 1u;
}
}
TU_ATTR_ALWAYS_INLINE static inline void reset_ep0_pid(void)
@ -258,29 +235,25 @@ TU_ATTR_ALWAYS_INLINE static inline void reset_ep0_pid(void)
}
}
static void __tusb_irq_path_func(reset_non_control_endpoints)(void)
{
static void __tusb_irq_path_func(reset_non_control_endpoints)(void) {
// Disable all non-control
for ( uint8_t i = 0; i < USB_MAX_ENDPOINTS-1; i++ )
{
for (uint8_t i = 0; i < USB_MAX_ENDPOINTS - 1; i++) {
usb_dpram->ep_ctrl[i].in = 0;
usb_dpram->ep_ctrl[i].out = 0;
}
// clear non-control hw endpoints
tu_memclr(hw_endpoints[1], sizeof(hw_endpoints) - 2*sizeof(hw_endpoint_t));
tu_memclr(hw_endpoints[1], sizeof(hw_endpoints) - 2 * sizeof(hw_endpoint_t));
// reclaim buffer space
next_buffer_ptr = &usb_dpram->epx_data[0];
}
static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
{
static void __tusb_irq_path_func(dcd_rp2040_irq)(void) {
uint32_t const status = usb_hw->ints;
uint32_t handled = 0;
if ( status & USB_INTF_DEV_SOF_BITS )
{
if (status & USB_INTF_DEV_SOF_BITS) {
bool keep_sof_alive = false;
handled |= USB_INTF_DEV_SOF_BITS;
@ -289,20 +262,17 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
// Errata 15 workaround for Device Bulk-In endpoint
e15_last_sof = time_us_32();
for ( uint8_t i = 0; i < USB_MAX_ENDPOINTS; i++ )
{
struct hw_endpoint * ep = hw_endpoint_get_by_num(i, TUSB_DIR_IN);
for (uint8_t i = 0; i < USB_MAX_ENDPOINTS; i++) {
struct hw_endpoint* ep = hw_endpoint_get_by_num(i, TUSB_DIR_IN);
// Active Bulk IN endpoint requires SOF
if ( (ep->transfer_type == TUSB_XFER_BULK) && ep->active )
{
if ((ep->transfer_type == TUSB_XFER_BULK) && ep->active) {
keep_sof_alive = true;
hw_endpoint_lock_update(ep, 1);
// Deferred enable?
if ( ep->pending )
{
if (ep->pending) {
ep->pending = 0;
hw_endpoint_start_next_buffer(ep);
}
@ -313,23 +283,21 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#endif
// disable SOF interrupt if it is used for RESUME in remote wakeup
if ( !keep_sof_alive && !_sof_enable ) usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS;
if (!keep_sof_alive && !_sof_enable) usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS;
dcd_event_sof(0, usb_hw->sof_rd & USB_SOF_RD_BITS, true);
}
// xfer events are handled before setup req. So if a transfer completes immediately
// before closing the EP, the events will be delivered in same order.
if ( status & USB_INTS_BUFF_STATUS_BITS )
{
if (status & USB_INTS_BUFF_STATUS_BITS) {
handled |= USB_INTS_BUFF_STATUS_BITS;
hw_handle_buff_status();
}
if ( status & USB_INTS_SETUP_REQ_BITS )
{
if (status & USB_INTS_SETUP_REQ_BITS) {
handled |= USB_INTS_SETUP_REQ_BITS;
uint8_t const * setup = remove_volatile_cast(uint8_t const*, &usb_dpram->setup_packet);
uint8_t const* setup = remove_volatile_cast(uint8_t const*, &usb_dpram->setup_packet);
// reset pid to both 1 (data and ack)
reset_ep0_pid();
@ -360,8 +328,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#endif
// SE0 for 2.5 us or more (will last at least 10ms)
if ( status & USB_INTS_BUS_RESET_BITS )
{
if (status & USB_INTS_BUS_RESET_BITS) {
pico_trace("BUS RESET\r\n");
handled |= USB_INTS_BUS_RESET_BITS;
@ -373,7 +340,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#if TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX
// Only run enumeration workaround if pull up is enabled
if ( usb_hw->sie_ctrl & USB_SIE_CTRL_PULLUP_EN_BITS ) rp2040_usb_device_enumeration_fix();
if (usb_hw->sie_ctrl & USB_SIE_CTRL_PULLUP_EN_BITS) rp2040_usb_device_enumeration_fix();
#endif
}
@ -385,22 +352,19 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
* because without VBUS detection, it is impossible to tell the difference between
* being disconnected and suspended.
*/
if ( status & USB_INTS_DEV_SUSPEND_BITS )
{
if (status & USB_INTS_DEV_SUSPEND_BITS) {
handled |= USB_INTS_DEV_SUSPEND_BITS;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
usb_hw_clear->sie_status = USB_SIE_STATUS_SUSPENDED_BITS;
}
if ( status & USB_INTS_DEV_RESUME_FROM_HOST_BITS )
{
if (status & USB_INTS_DEV_RESUME_FROM_HOST_BITS) {
handled |= USB_INTS_DEV_RESUME_FROM_HOST_BITS;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
usb_hw_clear->sie_status = USB_SIE_STATUS_RESUME_BITS;
}
if ( status ^ handled )
{
if (status ^ handled) {
panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
}
}
@ -421,8 +385,7 @@ static void __tusb_irq_path_func(dcd_rp2040_irq)(void)
#define PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY 0xff
#endif
void dcd_init (uint8_t rhport)
{
void dcd_init(uint8_t rhport) {
assert(rhport == 0);
// Reset hardware to default state
@ -436,7 +399,7 @@ void dcd_init (uint8_t rhport)
irq_add_shared_handler(USBCTRL_IRQ, dcd_rp2040_irq, PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY);
// Init control endpoints
tu_memclr(hw_endpoints[0], 2*sizeof(hw_endpoint_t));
tu_memclr(hw_endpoints[0], 2 * sizeof(hw_endpoint_t));
hw_endpoint_init(0x0, 64, TUSB_XFER_CONTROL);
hw_endpoint_init(0x80, 64, TUSB_XFER_CONTROL);
@ -451,27 +414,24 @@ void dcd_init (uint8_t rhport)
// for the global interrupt enable...
// Note: Force VBUS detect cause disconnection not detectable
usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS;
usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS |
USB_INTS_DEV_SUSPEND_BITS | USB_INTS_DEV_RESUME_FROM_HOST_BITS |
(FORCE_VBUS_DETECT ? 0 : USB_INTS_DEV_CONN_DIS_BITS);
usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS |
USB_INTS_DEV_SUSPEND_BITS | USB_INTS_DEV_RESUME_FROM_HOST_BITS |
(FORCE_VBUS_DETECT ? 0 : USB_INTS_DEV_CONN_DIS_BITS);
dcd_connect(rhport);
}
void dcd_int_enable(__unused uint8_t rhport)
{
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, true);
void dcd_int_enable(__unused uint8_t rhport) {
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, true);
}
void dcd_int_disable(__unused uint8_t rhport)
{
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, false);
void dcd_int_disable(__unused uint8_t rhport) {
assert(rhport == 0);
irq_set_enabled(USBCTRL_IRQ, false);
}
void dcd_set_address (__unused uint8_t rhport, __unused uint8_t dev_addr)
{
void dcd_set_address(__unused uint8_t rhport, __unused uint8_t dev_addr) {
assert(rhport == 0);
// Can't set device address in hardware until status xfer has complete
@ -479,8 +439,7 @@ void dcd_set_address (__unused uint8_t rhport, __unused uint8_t dev_addr)
hw_endpoint_xfer(0x80, NULL, 0);
}
void dcd_remote_wakeup(__unused uint8_t rhport)
{
void dcd_remote_wakeup(__unused uint8_t rhport) {
pico_info("dcd_remote_wakeup %d\n", rhport);
assert(rhport == 0);
@ -491,100 +450,88 @@ void dcd_remote_wakeup(__unused uint8_t rhport)
}
// disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(__unused uint8_t rhport)
{
void dcd_disconnect(__unused uint8_t rhport) {
(void) rhport;
usb_hw_clear->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
// connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(__unused uint8_t rhport)
{
void dcd_connect(__unused uint8_t rhport) {
(void) rhport;
usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
void dcd_sof_enable(uint8_t rhport, bool en) {
(void) rhport;
_sof_enable = en;
if (en)
{
if (en) {
usb_hw_set->inte = USB_INTS_DEV_SOF_BITS;
}else
{
}
#if !TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
else {
// Don't clear immediately if the SOF workaround is in use.
// The SOF handler will conditionally disable the interrupt.
#if !TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
usb_hw_clear->inte = USB_INTS_DEV_SOF_BITS;
#endif
}
#endif
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const* request) {
(void) rhport;
if ( request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
usb_hw->dev_addr_ctrl = (uint8_t) request->wValue;
}
}
bool dcd_edpt_open (__unused uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
assert(rhport == 0);
hw_endpoint_init(desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt), desc_edpt->bmAttributes.xfer);
return true;
bool dcd_edpt_open(__unused uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
assert(rhport == 0);
hw_endpoint_init(desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt), desc_edpt->bmAttributes.xfer);
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
void dcd_edpt_close_all(uint8_t rhport) {
(void) rhport;
// may need to use EP Abort
reset_non_control_endpoints();
}
bool dcd_edpt_xfer(__unused uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
assert(rhport == 0);
hw_endpoint_xfer(ep_addr, buffer, total_bytes);
return true;
bool dcd_edpt_xfer(__unused uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
assert(rhport == 0);
hw_endpoint_xfer(ep_addr, buffer, total_bytes);
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
if ( tu_edpt_number(ep_addr) == 0 )
{
if (tu_edpt_number(ep_addr) == 0) {
// A stall on EP0 has to be armed so it can be cleared on the next setup packet
usb_hw_set->ep_stall_arm = (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) ? USB_EP_STALL_ARM_EP0_IN_BITS : USB_EP_STALL_ARM_EP0_OUT_BITS;
usb_hw_set->ep_stall_arm = (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) ? USB_EP_STALL_ARM_EP0_IN_BITS
: USB_EP_STALL_ARM_EP0_OUT_BITS;
}
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
// stall and clear current pending buffer
// may need to use EP_ABORT
_hw_endpoint_buffer_control_set_value32(ep, USB_BUF_CTRL_STALL);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
if (tu_edpt_number(ep_addr))
{
struct hw_endpoint *ep = hw_endpoint_get_by_addr(ep_addr);
if (tu_edpt_number(ep_addr)) {
struct hw_endpoint* ep = hw_endpoint_get_by_addr(ep_addr);
// clear stall also reset toggle to DATA0, ready for next transfer
ep->next_pid = 0;
@ -592,16 +539,13 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
}
}
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
pico_trace("dcd_edpt_close %02x\r\n", ep_addr);
hw_endpoint_close(ep_addr);
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
pico_trace("dcd_edpt_close %02x\r\n", ep_addr);
hw_endpoint_close(ep_addr);
}
void __tusb_irq_path_func(dcd_int_handler)(uint8_t rhport)
{
void __tusb_irq_path_func(dcd_int_handler)(uint8_t rhport) {
(void) rhport;
dcd_rp2040_irq();
}

View File

@ -37,24 +37,23 @@
//--------------------------------------------------------------------+
// Direction strings for debug
const char *ep_dir_string[] = {
"out",
"in",
const char* ep_dir_string[] = {
"out",
"in",
};
static void _hw_endpoint_xfer_sync(struct hw_endpoint *ep);
static void _hw_endpoint_xfer_sync(struct hw_endpoint* ep);
#if TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
static bool e15_is_bulkin_ep(struct hw_endpoint *ep);
static bool e15_is_critical_frame_period(struct hw_endpoint *ep);
static bool e15_is_bulkin_ep(struct hw_endpoint* ep);
static bool e15_is_critical_frame_period(struct hw_endpoint* ep);
#else
#define e15_is_bulkin_ep(x) (false)
#define e15_is_critical_frame_period(x) (false)
#endif
// if usb hardware is in host mode
TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void)
{
TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void) {
return (usb_hw->main_ctrl & USB_MAIN_CTRL_HOST_NDEVICE_BITS) ? true : false;
}
@ -62,8 +61,7 @@ TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void)
// Implementation
//--------------------------------------------------------------------+
void rp2040_usb_init(void)
{
void rp2040_usb_init(void) {
// Reset usb controller
reset_block(RESETS_RESET_USBCTRL_BITS);
unreset_block_wait(RESETS_RESET_USBCTRL_BITS);
@ -88,45 +86,40 @@ void rp2040_usb_init(void)
TU_LOG2_INT(sizeof(hw_endpoint_t));
}
void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint *ep)
{
void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint* ep) {
ep->active = false;
ep->remaining_len = 0;
ep->xferred_len = 0;
ep->user_buf = 0;
}
void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint *ep, uint32_t and_mask, uint32_t or_mask)
{
void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint* ep, uint32_t and_mask,
uint32_t or_mask) {
uint32_t value = 0;
if ( and_mask )
{
if (and_mask) {
value = *ep->buffer_control & and_mask;
}
if ( or_mask )
{
if (or_mask) {
value |= or_mask;
if ( or_mask & USB_BUF_CTRL_AVAIL )
{
if ( *ep->buffer_control & USB_BUF_CTRL_AVAIL )
{
if (or_mask & USB_BUF_CTRL_AVAIL) {
if (*ep->buffer_control & USB_BUF_CTRL_AVAIL) {
panic("ep %d %s was already available", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
}
*ep->buffer_control = value & ~USB_BUF_CTRL_AVAIL;
// 12 cycle delay.. (should be good for 48*12Mhz = 576Mhz)
// Don't need delay in host mode as host is in charge
#if !CFG_TUH_ENABLED
__asm volatile (
"b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1:\n"
: : : "memory");
__asm volatile (
"b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1: b 1f\n"
"1:\n"
: : : "memory");
#endif
}
}
@ -135,10 +128,9 @@ void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoi
}
// prepare buffer, return buffer control
static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep, uint8_t buf_id)
{
static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) {
uint16_t const buflen = tu_min16(ep->remaining_len, ep->wMaxPacketSize);
ep->remaining_len = (uint16_t)(ep->remaining_len - buflen);
ep->remaining_len = (uint16_t) (ep->remaining_len - buflen);
uint32_t buf_ctrl = buflen | USB_BUF_CTRL_AVAIL;
@ -146,10 +138,9 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep,
buf_ctrl |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
ep->next_pid ^= 1u;
if ( !ep->rx )
{
if (!ep->rx) {
// Copy data from user buffer to hw buffer
memcpy(ep->hw_data_buf + buf_id*64, ep->user_buf, buflen);
memcpy(ep->hw_data_buf + buf_id * 64, ep->user_buf, buflen);
ep->user_buf += buflen;
// Mark as full
@ -159,8 +150,7 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep,
// Is this the last buffer? Only really matters for host mode. Will trigger
// the trans complete irq but also stop it polling. We only really care about
// trans complete for setup packets being sent
if (ep->remaining_len == 0)
{
if (ep->remaining_len == 0) {
buf_ctrl |= USB_BUF_CTRL_LAST;
}
@ -170,8 +160,7 @@ static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint *ep,
}
// Prepare buffer control register value
void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
{
void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint* ep) {
uint32_t ep_ctrl = *ep->endpoint_control;
// always compute and start with buffer 0
@ -186,8 +175,7 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
bool const force_single = (!is_host && !tu_edpt_dir(ep->ep_addr)) ||
(is_host && tu_edpt_number(ep->ep_addr) != 0);
if(ep->remaining_len && !force_single)
{
if (ep->remaining_len && !force_single) {
// Use buffer 1 (double buffered) if there is still data
// TODO: Isochronous for buffer1 bit-field is different than CBI (control bulk, interrupt)
@ -196,8 +184,7 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
// Set endpoint control double buffered bit if needed
ep_ctrl &= ~EP_CTRL_INTERRUPT_PER_BUFFER;
ep_ctrl |= EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER;
}else
{
} else {
// Single buffered since 1 is enough
ep_ctrl &= ~(EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER);
ep_ctrl |= EP_CTRL_INTERRUPT_PER_BUFFER;
@ -212,35 +199,30 @@ void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint *ep)
_hw_endpoint_buffer_control_set_value32(ep, buf_ctrl);
}
void hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t total_len)
{
void hw_endpoint_xfer_start(struct hw_endpoint* ep, uint8_t* buffer, uint16_t total_len) {
hw_endpoint_lock_update(ep, 1);
if ( ep->active )
{
if (ep->active) {
// TODO: Is this acceptable for interrupt packets?
TU_LOG(1, "WARN: starting new transfer on already active ep %d %s\r\n", tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
hw_endpoint_reset_transfer(ep);
}
// Fill in info now that we're kicking off the hw
ep->remaining_len = total_len;
ep->xferred_len = 0;
ep->active = true;
ep->user_buf = buffer;
ep->xferred_len = 0;
ep->active = true;
ep->user_buf = buffer;
if ( e15_is_bulkin_ep(ep) )
{
if (e15_is_bulkin_ep(ep)) {
usb_hw_set->inte = USB_INTS_DEV_SOF_BITS;
}
if ( e15_is_critical_frame_period(ep) )
{
if (e15_is_critical_frame_period(ep)) {
ep->pending = 1;
} else
{
} else {
hw_endpoint_start_next_buffer(ep);
}
@ -248,34 +230,30 @@ void hw_endpoint_xfer_start(struct hw_endpoint *ep, uint8_t *buffer, uint16_t to
}
// sync endpoint buffer and return transferred bytes
static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint *ep, uint8_t buf_id)
{
static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) {
uint32_t buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep);
if (buf_id) buf_ctrl = buf_ctrl >> 16;
if (buf_id) buf_ctrl = buf_ctrl >> 16;
uint16_t xferred_bytes = buf_ctrl & USB_BUF_CTRL_LEN_MASK;
if ( !ep->rx )
{
if (!ep->rx) {
// We are continuing a transfer here. If we are TX, we have successfully
// sent some data can increase the length we have sent
assert(!(buf_ctrl & USB_BUF_CTRL_FULL));
ep->xferred_len = (uint16_t)(ep->xferred_len + xferred_bytes);
}else
{
ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes);
} else {
// If we have received some data, so can increase the length
// we have received AFTER we have copied it to the user buffer at the appropriate offset
assert(buf_ctrl & USB_BUF_CTRL_FULL);
memcpy(ep->user_buf, ep->hw_data_buf + buf_id*64, xferred_bytes);
ep->xferred_len = (uint16_t)(ep->xferred_len + xferred_bytes);
memcpy(ep->user_buf, ep->hw_data_buf + buf_id * 64, xferred_bytes);
ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes);
ep->user_buf += xferred_bytes;
}
// Short packet
if (xferred_bytes < ep->wMaxPacketSize)
{
if (xferred_bytes < ep->wMaxPacketSize) {
pico_trace(" Short packet on buffer %d with %u bytes\r\n", buf_id, xferred_bytes);
// Reduce total length as this is last packet
ep->remaining_len = 0;
@ -284,8 +262,7 @@ static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint *ep, uin
return xferred_bytes;
}
static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep)
{
static void __tusb_irq_path_func(_hw_endpoint_xfer_sync)(struct hw_endpoint* ep) {
// Update hw endpoint struct with info from hardware
// after a buff status interrupt
@ -296,14 +273,11 @@ static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep
uint16_t buf0_bytes = sync_ep_buffer(ep, 0);
// sync buffer 1 if double buffered
if ( (*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS )
{
if (buf0_bytes == ep->wMaxPacketSize)
{
if ((*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS) {
if (buf0_bytes == ep->wMaxPacketSize) {
// sync buffer 1 if not short packet
sync_ep_buffer(ep, 1);
}else
{
} else {
// short packet on buffer 0
// TODO couldn't figure out how to handle this case which happen with net_lwip_webserver example
// At this time (currently trigger per 2 buffer), the buffer1 is probably filled with data from
@ -335,14 +309,13 @@ static void __tusb_irq_path_func(_hw_endpoint_xfer_sync) (struct hw_endpoint *ep
}
// Returns true if transfer is complete
bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep)
{
bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint* ep) {
hw_endpoint_lock_update(ep, 1);
// Part way through a transfer
if (!ep->active)
{
panic("Can't continue xfer on inactive ep %d %s", tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
if (!ep->active) {
panic("Can't continue xfer on inactive ep %d %s", tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
}
// Update EP struct from hardware state
@ -350,21 +323,16 @@ bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep)
// Now we have synced our state with the hardware. Is there more data to transfer?
// If we are done then notify tinyusb
if (ep->remaining_len == 0)
{
if (ep->remaining_len == 0) {
pico_trace("Completed transfer of %d bytes on ep %d %s\r\n",
ep->xferred_len, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)]);
// Notify caller we are done so it can notify the tinyusb stack
hw_endpoint_lock_update(ep, -1);
return true;
}
else
{
if ( e15_is_critical_frame_period(ep) )
{
} else {
if (e15_is_critical_frame_period(ep)) {
ep->pending = 1;
} else
{
} else {
hw_endpoint_start_next_buffer(ep);
}
}
@ -399,16 +367,14 @@ bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint *ep)
volatile uint32_t e15_last_sof = 0;
// check if Errata 15 is needed for this endpoint i.e device bulk-in
static bool __tusb_irq_path_func(e15_is_bulkin_ep) (struct hw_endpoint *ep)
{
static bool __tusb_irq_path_func(e15_is_bulkin_ep)(struct hw_endpoint* ep) {
return (!is_host_mode() && tu_edpt_dir(ep->ep_addr) == TUSB_DIR_IN &&
ep->transfer_type == TUSB_XFER_BULK);
}
// check if we need to apply Errata 15 workaround : i.e
// Endpoint is BULK IN and is currently in critical frame period i.e 20% of last usb frame
static bool __tusb_irq_path_func(e15_is_critical_frame_period) (struct hw_endpoint *ep)
{
static bool __tusb_irq_path_func(e15_is_critical_frame_period)(struct hw_endpoint* ep) {
TU_VERIFY(e15_is_bulkin_ep(ep));
/* Avoid the last 200us (uframe 6.5-7) of a frame, up to the EOF2 point.
@ -419,11 +385,10 @@ static bool __tusb_irq_path_func(e15_is_critical_frame_period) (struct hw_endpoi
if (delta < 800 || delta > 998) {
return false;
}
TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(), e15_last_sof);
TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(),
e15_last_sof);
return true;
}
#endif
#endif // TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
#endif

View File

@ -112,8 +112,7 @@ uint8_t const * tu_desc_find3(uint8_t const* desc, uint8_t const* end, uint8_t b
// Endpoint Helper for both Host and Device stack
//--------------------------------------------------------------------+
bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
{
bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex) {
(void) mutex;
// pre-check to help reducing mutex lock
@ -122,8 +121,7 @@ bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
// can only claim the endpoint if it is not busy and not claimed yet.
bool const available = (ep_state->busy == 0) && (ep_state->claimed == 0);
if (available)
{
if (available) {
ep_state->claimed = 1;
}
@ -132,16 +130,14 @@ bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
return available;
}
bool tu_edpt_release(tu_edpt_state_t* ep_state, osal_mutex_t mutex)
{
bool tu_edpt_release(tu_edpt_state_t* ep_state, osal_mutex_t mutex) {
(void) mutex;
(void) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER);
// can only release the endpoint if it is claimed and not busy
bool const ret = (ep_state->claimed == 1) && (ep_state->busy == 0);
if (ret)
{
if (ret) {
ep_state->claimed = 0;
}
@ -477,7 +473,7 @@ void tu_print_mem(void const *buf, uint32_t count, uint8_t indent)
uint8_t const *buf8 = (uint8_t const *) buf;
char format[] = "%00X";
format[2] += 2*size;
format[2] += (uint8_t) (2*size); // 1 byte = 2 hex digits
const uint8_t item_per_line = 16 / size;

View File

@ -44,12 +44,13 @@
# in order to add common defines:
# 1) remove the trailing [] from the :common: section
# 2) add entries to the :common: section (e.g. :test: has TEST defined)
:common: &common_defines
- _UNITY_TEST_
:common: &common_defines []
:test:
- *common_defines
- _UNITY_TEST_
#- *common_defines
:test_preprocess:
- *common_defines
- _UNITY_TEST_
#- *common_defines
:cmock:
:mock_prefix: mock_
@ -106,9 +107,9 @@
:flag: "${1}" # or "-L ${1}" for example
:common: &common_libraries []
:test:
- *common_libraries
#- *common_libraries
:release:
- *common_libraries
#- *common_libraries
:plugins:
:load_paths: