Merge pull request #1058 from hathach/usbcv-compliant-test

nrf5x USB Compliance Verification Test suite
This commit is contained in:
Ha Thach 2021-08-30 17:31:50 +07:00 committed by GitHub
commit 38f5aee9c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
47 changed files with 728 additions and 241 deletions

View File

@ -92,7 +92,7 @@ enum
uint8_t const desc_configuration[] =
{
// Interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_AUDIO_MIC_FOUR_CH_DESCRIPTOR(/*_itfnum*/ ITF_NUM_AUDIO_CONTROL, /*_stridx*/ 0, /*_nBytesPerSample*/ CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX, /*_nBitsUsedPerSample*/ CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX*8, /*_epin*/ 0x80 | EPNUM_AUDIO, /*_epsize*/ CFG_TUD_AUDIO_EP_SZ_IN)

View File

@ -92,7 +92,7 @@ enum
uint8_t const desc_configuration[] =
{
// Interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_AUDIO_MIC_ONE_CH_DESCRIPTOR(/*_itfnum*/ ITF_NUM_AUDIO_CONTROL, /*_stridx*/ 0, /*_nBytesPerSample*/ CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX, /*_nBitsUsedPerSample*/ CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX*8, /*_epin*/ 0x80 | EPNUM_AUDIO, /*_epsize*/ CFG_TUD_AUDIO_EP_SZ_IN)

View File

@ -118,7 +118,7 @@ enum
uint8_t const desc_fs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// 1st CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, 4, EPNUM_CDC_0_NOTIF, 8, EPNUM_CDC_0_OUT, EPNUM_CDC_0_IN, 64),
@ -131,7 +131,7 @@ uint8_t const desc_fs_configuration[] =
uint8_t const desc_hs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// 1st CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, 4, EPNUM_CDC_0_NOTIF, 8, EPNUM_CDC_0_OUT, EPNUM_CDC_0_IN, 512),

View File

@ -188,18 +188,35 @@ int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void* buff
{
(void) lun;
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
uint8_t const* addr = msc_disk[lba] + offset;
memcpy(buffer, addr, bufsize);
return bufsize;
}
bool tud_msc_is_writable_cb (uint8_t lun)
{
(void) lun;
#ifdef CFG_EXAMPLE_MSC_READONLY
return false;
#else
return true;
#endif
}
// Callback invoked when received WRITE10 command.
// Process data in buffer to disk's storage and return number of written bytes
int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t* buffer, uint32_t bufsize)
{
(void) lun;
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
#ifndef CFG_EXAMPLE_MSC_READONLY
uint8_t* addr = msc_disk[lba] + offset;
memcpy(addr, buffer, bufsize);
@ -218,7 +235,7 @@ int32_t tud_msc_scsi_cb (uint8_t lun, uint8_t const scsi_cmd[16], void* buffer,
// read10 & write10 has their own callback and MUST not be handled here
void const* response = NULL;
uint16_t resplen = 0;
int32_t resplen = 0;
// most scsi handled is input
bool in_xfer = true;

View File

@ -129,7 +129,7 @@ enum
uint8_t const desc_fs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 64),
@ -142,7 +142,7 @@ uint8_t const desc_fs_configuration[] =
uint8_t const desc_hs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 512),

View File

@ -178,6 +178,9 @@ int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void* buff
{
(void) lun;
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
uint8_t const* addr = msc_disk[lba] + offset;
memcpy(buffer, addr, bufsize);
@ -190,6 +193,9 @@ int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t*
{
(void) lun;
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
#ifndef CFG_EXAMPLE_MSC_READONLY
uint8_t* addr = msc_disk[lba] + offset;
memcpy(addr, buffer, bufsize);
@ -208,7 +214,7 @@ int32_t tud_msc_scsi_cb (uint8_t lun, uint8_t const scsi_cmd[16], void* buffer,
// read10 & write10 has their own callback and MUST not be handled here
void const* response = NULL;
uint16_t resplen = 0;
int32_t resplen = 0;
// most scsi handled is input
bool in_xfer = true;

View File

@ -117,7 +117,7 @@ enum
uint8_t const desc_fs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 64),
@ -130,7 +130,7 @@ uint8_t const desc_fs_configuration[] =
uint8_t const desc_hs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 512),

View File

@ -97,7 +97,7 @@ enum
uint8_t const desc_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, Alternate count, starting string index, attributes, detach timeout, transfer size
TUD_DFU_DESCRIPTOR(ITF_NUM_DFU_MODE, ALT_COUNT, 4, FUNC_ATTRS, 1000, CFG_TUD_DFU_XFER_BUFSIZE),

View File

@ -92,7 +92,7 @@ enum
uint8_t const desc_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, attributes, detach timeout, transfer size */
TUD_DFU_RT_DESCRIPTOR(ITF_NUM_DFU_RT, 4, 0x0d, 1000, 4096),

View File

@ -178,6 +178,9 @@ int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void* buff
{
(void) lun;
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
uint8_t const* addr = msc_disk[lba] + offset;
memcpy(buffer, addr, bufsize);
@ -190,6 +193,9 @@ int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t*
{
(void) lun;
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
#ifndef CFG_EXAMPLE_MSC_READONLY
uint8_t* addr = msc_disk[lba] + offset;
memcpy(addr, buffer, bufsize);
@ -208,7 +214,7 @@ int32_t tud_msc_scsi_cb (uint8_t lun, uint8_t const scsi_cmd[16], void* buffer,
// read10 & write10 has their own callback and MUST not be handled here
void const* response = NULL;
uint16_t resplen = 0;
int32_t resplen = 0;
// most scsi handled is input
bool in_xfer = true;

View File

@ -160,7 +160,7 @@ enum
uint8_t const desc_configuration_0[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_0_NUM_TOTAL, 0, CONFIG_0_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_0_NUM_TOTAL, 0, CONFIG_0_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_0_NUM_CDC, 0, EPNUM_0_CDC_NOTIF, 8, EPNUM_0_CDC_OUT, EPNUM_0_CDC_IN, 64),
@ -173,7 +173,7 @@ uint8_t const desc_configuration_0[] =
uint8_t const desc_configuraiton_1[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_1_NUM_TOTAL, 0, CONFIG_1_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_1_NUM_TOTAL, 0, CONFIG_1_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_MSC_DESCRIPTOR(ITF_1_NUM_MSC, 0, EPNUM_1_MSC_OUT, EPNUM_1_MSC_IN, TUD_OPT_HIGH_SPEED ? 512 : 64),

View File

@ -101,7 +101,7 @@ enum
uint8_t const desc_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, protocol, report descriptor len, EP In & Out address, size & polling interval
TUD_HID_INOUT_DESCRIPTOR(ITF_NUM_HID, 0, HID_ITF_PROTOCOL_NONE, sizeof(desc_hid_report), EPNUM_HID, 0x80 | EPNUM_HID, CFG_TUD_HID_EP_BUFSIZE, 10)

View File

@ -91,7 +91,7 @@ enum
uint8_t const desc_fs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_MIDI_DESCRIPTOR(ITF_NUM_MIDI, 0, EPNUM_MIDI, 0x80 | EPNUM_MIDI, 64)
@ -101,7 +101,7 @@ uint8_t const desc_fs_configuration[] =
uint8_t const desc_hs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_MIDI_DESCRIPTOR(ITF_NUM_MIDI, 0, EPNUM_MIDI, 0x80 | EPNUM_MIDI, 512)

View File

@ -268,16 +268,33 @@ bool tud_msc_start_stop_cb(uint8_t lun, uint8_t power_condition, bool start, boo
// Copy disk's data to buffer (up to bufsize) and return number of copied bytes.
int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void* buffer, uint32_t bufsize)
{
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
uint8_t const* addr = (lun ? msc_disk1[lba] : msc_disk0[lba]) + offset;
memcpy(buffer, addr, bufsize);
return bufsize;
}
bool tud_msc_is_writable_cb (uint8_t lun)
{
(void) lun;
#ifdef CFG_EXAMPLE_MSC_READONLY
return false;
#else
return true;
#endif
}
// Callback invoked when received WRITE10 command.
// Process data in buffer to disk's storage and return number of written bytes
int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t* buffer, uint32_t bufsize)
{
// out of ramdisk
if ( lba >= DISK_BLOCK_NUM ) return -1;
#ifndef CFG_EXAMPLE_MSC_READONLY
uint8_t* addr = (lun ? msc_disk1[lba] : msc_disk0[lba]) + offset;
memcpy(addr, buffer, bufsize);
@ -296,7 +313,7 @@ int32_t tud_msc_scsi_cb (uint8_t lun, uint8_t const scsi_cmd[16], void* buffer,
// read10 & write10 has their own callback and MUST not be handled here
void const* response = NULL;
uint16_t resplen = 0;
int32_t resplen = 0;
// most scsi handled is input
bool in_xfer = true;

View File

@ -99,7 +99,7 @@ enum
uint8_t const desc_fs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_MSC_DESCRIPTOR(ITF_NUM_MSC, 0, EPNUM_MSC_OUT, EPNUM_MSC_IN, 64),
@ -109,7 +109,7 @@ uint8_t const desc_fs_configuration[] =
uint8_t const desc_hs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_MSC_DESCRIPTOR(ITF_NUM_MSC, 0, EPNUM_MSC_OUT, EPNUM_MSC_IN, 512),

View File

@ -98,7 +98,7 @@ uint8_t const * tud_descriptor_device_cb(void)
uint8_t const desc_configuration[] =
{
// Interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(2, EPNUM_AUDIO_OUT, EPNUM_AUDIO_IN | 0x80)

View File

@ -122,7 +122,7 @@ enum
uint8_t const desc_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
TUD_USBTMC_DESC(ITF_NUM_USBTMC),
};

View File

@ -107,7 +107,7 @@ enum
uint8_t const desc_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, 0x81, 8, EPNUM_CDC_OUT, 0x80 | EPNUM_CDC_IN, TUD_OPT_HIGH_SPEED ? 512 : 64),

View File

@ -195,16 +195,7 @@ static inline bool tud_hid_gamepad_report(uint8_t report_id, int8_t x, int8_t y
HID_REPORT_COUNT ( 1 ) ,\
HID_REPORT_SIZE ( 8 ) ,\
HID_INPUT ( HID_CONSTANT ) ,\
/* 6-byte Keycodes */ \
HID_USAGE_PAGE ( HID_USAGE_PAGE_KEYBOARD ) ,\
HID_USAGE_MIN ( 0 ) ,\
HID_USAGE_MAX_N ( 255, 2 ) ,\
HID_LOGICAL_MIN ( 0 ) ,\
HID_LOGICAL_MAX_N( 255, 2 ) ,\
HID_REPORT_COUNT ( 6 ) ,\
HID_REPORT_SIZE ( 8 ) ,\
HID_INPUT ( HID_DATA | HID_ARRAY | HID_ABSOLUTE ) ,\
/* 5-bit LED Indicator Kana | Compose | ScrollLock | CapsLock | NumLock */ \
/* Output 5-bit LED Indicator Kana | Compose | ScrollLock | CapsLock | NumLock */ \
HID_USAGE_PAGE ( HID_USAGE_PAGE_LED ) ,\
HID_USAGE_MIN ( 1 ) ,\
HID_USAGE_MAX ( 5 ) ,\
@ -215,6 +206,15 @@ static inline bool tud_hid_gamepad_report(uint8_t report_id, int8_t x, int8_t y
HID_REPORT_COUNT ( 1 ) ,\
HID_REPORT_SIZE ( 3 ) ,\
HID_OUTPUT ( HID_CONSTANT ) ,\
/* 6-byte Keycodes */ \
HID_USAGE_PAGE ( HID_USAGE_PAGE_KEYBOARD ) ,\
HID_USAGE_MIN ( 0 ) ,\
HID_USAGE_MAX_N ( 255, 2 ) ,\
HID_LOGICAL_MIN ( 0 ) ,\
HID_LOGICAL_MAX_N( 255, 2 ) ,\
HID_REPORT_COUNT ( 6 ) ,\
HID_REPORT_SIZE ( 8 ) ,\
HID_INPUT ( HID_DATA | HID_ARRAY | HID_ABSOLUTE ) ,\
HID_COLLECTION_END \
// Mouse Report Descriptor Template

View File

@ -46,7 +46,8 @@ enum
MSC_STAGE_CMD = 0,
MSC_STAGE_DATA,
MSC_STAGE_STATUS,
MSC_STAGE_STATUS_SENT
MSC_STAGE_STATUS_SENT,
MSC_STAGE_NEED_RESET,
};
typedef struct
@ -61,7 +62,7 @@ typedef struct
// Bulk Only Transfer (BOT) Protocol
uint8_t stage;
uint32_t total_len;
uint32_t total_len; // byte to be transferred, can be smaller than total_bytes in cbw
uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage
// Sense Response Data
@ -78,7 +79,55 @@ CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _mscd_buf[CFG_TUD_MSC_EP_
//--------------------------------------------------------------------+
static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize);
static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc);
static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc);
static void proc_write10_new_data(uint8_t rhport, mscd_interface_t* p_msc, uint32_t xferred_bytes);
TU_ATTR_ALWAYS_INLINE static inline bool is_data_in(uint8_t dir)
{
return tu_bit_test(dir, 7);
}
static inline bool send_csw(uint8_t rhport, mscd_interface_t* p_msc)
{
// Data residue is always = host expect - actual transferred
p_msc->csw.data_residue = p_msc->cbw.total_bytes - p_msc->xferred_len;
p_msc->stage = MSC_STAGE_STATUS_SENT;
return usbd_edpt_xfer(rhport, p_msc->ep_in , (uint8_t*) &p_msc->csw, sizeof(msc_csw_t));
}
static inline bool prepare_cbw(uint8_t rhport, mscd_interface_t* p_msc)
{
p_msc->stage = MSC_STAGE_CMD;
return usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t));
}
static void fail_scsi_op(uint8_t rhport, mscd_interface_t* p_msc, uint8_t status)
{
msc_cbw_t const * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
p_csw->status = status;
p_csw->data_residue = p_msc->cbw.total_bytes - p_msc->xferred_len;
p_msc->stage = MSC_STAGE_STATUS;
// failed but sense key is not set: default to Illegal Request
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00);
// If there is data stage and not yet complete, stall it
if ( p_cbw->total_bytes && p_csw->data_residue )
{
if ( is_data_in(p_cbw->dir) )
{
usbd_edpt_stall(rhport, p_msc->ep_in);
}
else
{
usbd_edpt_stall(rhport, p_msc->ep_out);
}
}
}
static inline uint32_t rdwr10_get_lba(uint8_t const command[])
{
@ -89,15 +138,60 @@ static inline uint32_t rdwr10_get_lba(uint8_t const command[])
return tu_ntohl(lba);
}
static inline uint16_t rdwr10_get_blockcount(uint8_t const command[])
static inline uint16_t rdwr10_get_blockcount(msc_cbw_t const* cbw)
{
// use offsetof to avoid pointer to the odd/misaligned address
uint16_t const block_count = tu_unaligned_read16(command + offsetof(scsi_write10_t, block_count));
// block count is in Big Endian
uint16_t const block_count = tu_unaligned_read16(cbw->command + offsetof(scsi_write10_t, block_count));
return tu_ntohs(block_count);
}
static inline uint16_t rdwr10_get_blocksize(msc_cbw_t const* cbw)
{
// first extract block count in the command
uint16_t const block_count = rdwr10_get_blockcount(cbw);
// invalid block count
if (block_count == 0) return 0;
return cbw->total_bytes / block_count;
}
uint8_t rdwr10_validate_cmd(msc_cbw_t const* cbw)
{
uint8_t status = MSC_CSW_STATUS_PASSED;
uint16_t const block_count = rdwr10_get_blockcount(cbw);
if ( cbw->total_bytes == 0 )
{
if ( block_count )
{
TU_LOG(MSC_DEBUG, " SCSI case 2 (Hn < Di) or case 3 (Hn < Do) \r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
}else
{
// no data transfer, only exist in complaint test suite
}
}else
{
if ( SCSI_CMD_READ_10 == cbw->command[0] && !is_data_in(cbw->dir) )
{
TU_LOG(MSC_DEBUG, " SCSI case 10 (Ho <> Di)\r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
}
else if ( SCSI_CMD_WRITE_10 == cbw->command[0] && is_data_in(cbw->dir) )
{
TU_LOG(MSC_DEBUG, " SCSI case 8 (Hi <> Do)\r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
}
else if ( !block_count )
{
TU_LOG(MSC_DEBUG, " SCSI case 4 Hi > Dn\r\n");
status = MSC_CSW_STATUS_FAILED;
}
}
return status;
}
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
@ -174,35 +268,89 @@ uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint1
TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0 );
// Prepare for Command Block Wrapper
if ( !usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) )
{
TU_LOG_FAILED();
TU_BREAKPOINT();
}
TU_ASSERT( prepare_cbw(rhport, p_msc), drv_len);
return drv_len;
}
static void proc_bot_reset(mscd_interface_t* p_msc)
{
p_msc->stage = MSC_STAGE_CMD;
p_msc->total_len = 0;
p_msc->xferred_len = 0;
p_msc->sense_key = 0;
p_msc->add_sense_code = 0;
p_msc->add_sense_qualifier = 0;
}
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * p_request)
bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request)
{
// nothing to do with DATA & ACK stage
if (stage != CONTROL_STAGE_SETUP) return true;
// Handle class request only
TU_VERIFY(p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
mscd_interface_t* p_msc = &_mscd_itf;
switch ( p_request->bRequest )
// Clear Endpoint Feature (stall) for recovery
if ( TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type &&
TUSB_REQ_RCPT_ENDPOINT == request->bmRequestType_bit.recipient &&
TUSB_REQ_CLEAR_FEATURE == request->bRequest &&
TUSB_REQ_FEATURE_EDPT_HALT == request->wValue )
{
uint8_t const ep_addr = tu_u16_low(request->wIndex);
if ( p_msc->stage == MSC_STAGE_NEED_RESET )
{
// reset recovery is required to recover from this stage
// Clear Stall request cannot resolve this -> continue to stall endpoint
usbd_edpt_stall(rhport, ep_addr);
}
else
{
if ( ep_addr == p_msc->ep_in )
{
if ( p_msc->stage == MSC_STAGE_STATUS )
{
// resume sending SCSI status if we are in this stage previously before stalled
TU_ASSERT( send_csw(rhport, p_msc) );
}
}
else if ( ep_addr == p_msc->ep_out )
{
if ( p_msc->stage == MSC_STAGE_CMD )
{
// part of reset recovery (probably due to invalid CBW) -> prepare for new command
TU_ASSERT( prepare_cbw(rhport, p_msc) );
}
}
}
return true;
}
// From this point only handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
switch ( request->bRequest )
{
case MSC_REQ_RESET:
// TODO: Actually reset interface.
tud_control_status(rhport, p_request);
TU_LOG(MSC_DEBUG, " MSC BOT Reset\r\n");
TU_VERIFY(request->wValue == 0 && request->wLength == 0);
// driver state reset
proc_bot_reset(p_msc);
tud_control_status(rhport, request);
break;
case MSC_REQ_GET_MAX_LUN:
{
TU_LOG(MSC_DEBUG, " MSC Get Max Lun\r\n");
TU_VERIFY(request->wValue == 0 && request->wLength == 1);
uint8_t maxlun = 1;
if (tud_msc_get_maxlun_cb) maxlun = tud_msc_get_maxlun_cb();
TU_VERIFY(maxlun);
@ -210,7 +358,7 @@ bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t
// MAX LUN is minus 1 by specs
maxlun--;
tud_control_xfer(rhport, p_request, &maxlun, 1);
tud_control_xfer(rhport, request, &maxlun, 1);
}
break;
@ -222,6 +370,8 @@ bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t
bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes)
{
(void) event;
mscd_interface_t* p_msc = &_mscd_itf;
msc_cbw_t const * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
@ -233,46 +383,79 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
// Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it
if(ep_addr != p_msc->ep_out) return true;
TU_ASSERT( event == XFER_RESULT_SUCCESS &&
xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE );
if ( !(xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE) )
{
TU_LOG(MSC_DEBUG, " SCSI CBW is not valid\r\n");
// BOT 6.6.1 If CBW is not valid stall both endpoints until reset recovery
p_msc->stage = MSC_STAGE_NEED_RESET;
// invalid CBW stall both endpoints
usbd_edpt_stall(rhport, p_msc->ep_in);
usbd_edpt_stall(rhport, p_msc->ep_out);
return false;
}
TU_LOG(MSC_DEBUG, " SCSI Command: %s\r\n", tu_lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0]));
// TU_LOG_MEM(MSC_DEBUG, p_cbw, xferred_bytes, 2);
//TU_LOG_MEM(MSC_DEBUG, p_cbw, xferred_bytes, 2);
p_csw->signature = MSC_CSW_SIGNATURE;
p_csw->tag = p_cbw->tag;
p_csw->data_residue = 0;
p_csw->status = MSC_CSW_STATUS_PASSED;
/*------------- Parse command and prepare DATA -------------*/
p_msc->stage = MSC_STAGE_DATA;
p_msc->total_len = p_cbw->total_bytes;
p_msc->xferred_len = 0;
if (SCSI_CMD_READ_10 == p_cbw->command[0])
// Read10 or Write10
if ( (SCSI_CMD_READ_10 == p_cbw->command[0]) || (SCSI_CMD_WRITE_10 == p_cbw->command[0]) )
{
proc_read10_cmd(rhport, p_msc);
}
else if (SCSI_CMD_WRITE_10 == p_cbw->command[0])
{
proc_write10_cmd(rhport, p_msc);
uint8_t const status = rdwr10_validate_cmd(p_cbw);
if ( status != MSC_CSW_STATUS_PASSED)
{
fail_scsi_op(rhport, p_msc, status);
}else if ( p_cbw->total_bytes )
{
if (SCSI_CMD_READ_10 == p_cbw->command[0])
{
proc_read10_cmd(rhport, p_msc);
}else
{
proc_write10_cmd(rhport, p_msc);
}
}else
{
// no data transfer, only exist in complaint test suite
p_msc->stage = MSC_STAGE_STATUS;
}
}
else
{
// For other SCSI commands
// 1. OUT : queue transfer (invoke app callback after done)
// 2. IN & Zero: Process if is built-in, else Invoke app callback. Skip DATA if zero length
if ( (p_cbw->total_bytes > 0 ) && !tu_bit_test(p_cbw->dir, 7) )
if ( (p_cbw->total_bytes > 0 ) && !is_data_in(p_cbw->dir) )
{
// queue transfer
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, p_msc->total_len) );
if (p_cbw->total_bytes > sizeof(_mscd_buf))
{
TU_LOG(MSC_DEBUG, " SCSI reject non READ10/WRITE10 with large data\r\n");
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}else
{
// Didn't check for case 9 (Ho > Dn), which requires examining scsi command first
// but it is OK to just receive data then responded with failed status
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, p_msc->total_len) );
}
}else
{
int32_t resplen;
// First process if it is a built-in commands
resplen = proc_builtin_scsi(p_cbw->lun, p_cbw->command, _mscd_buf, sizeof(_mscd_buf));
int32_t resplen = proc_builtin_scsi(p_cbw->lun, p_cbw->command, _mscd_buf, sizeof(_mscd_buf));
// Not built-in, invoke user callback
// Invoke user callback if not built-in
if ( (resplen < 0) && (p_msc->sense_key == 0) )
{
resplen = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->total_len);
@ -280,28 +463,35 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
if ( resplen < 0 )
{
p_msc->total_len = 0;
p_csw->status = MSC_CSW_STATUS_FAILED;
p_msc->stage = MSC_STAGE_STATUS;
// failed but senskey is not set: default to Illegal Request
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00);
// Stall bulk In if needed
if (p_cbw->total_bytes) usbd_edpt_stall(rhport, p_msc->ep_in);
// unsupported command
TU_LOG(MSC_DEBUG, " SCSI unsupported command\r\n");
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}
else if (resplen == 0)
{
if (p_cbw->total_bytes)
{
// 6.7 The 13 Cases: case 4 (Hi > Dn)
TU_LOG(MSC_DEBUG, " SCSI case 4 (Hi > Dn): %lu\r\n", p_cbw->total_bytes);
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}else
{
// case 1 Hn = Dn: all good
p_msc->stage = MSC_STAGE_STATUS;
}
}
else
{
p_msc->total_len = (uint32_t) resplen;
p_csw->status = MSC_CSW_STATUS_PASSED;
if (p_msc->total_len)
if ( p_cbw->total_bytes == 0 )
{
TU_ASSERT( p_cbw->total_bytes >= p_msc->total_len ); // cannot return more than host expect
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, p_msc->total_len) );
// 6.7 The 13 Cases: case 2 (Hn < Di)
TU_LOG(MSC_DEBUG, " SCSI case 2 (Hn < Di): %lu\r\n", p_cbw->total_bytes);
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}else
{
p_msc->stage = MSC_STAGE_STATUS;
// cannot return more than host expect
p_msc->total_len = tu_min32((uint32_t) resplen, p_cbw->total_bytes);
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, p_msc->total_len) );
}
}
}
@ -312,87 +502,51 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
TU_LOG(MSC_DEBUG, " SCSI Data\r\n");
//TU_LOG_MEM(MSC_DEBUG, _mscd_buf, xferred_bytes, 2);
// OUT transfer, invoke callback if needed
if ( !tu_bit_test(p_cbw->dir, 7) )
if (SCSI_CMD_READ_10 == p_cbw->command[0])
{
if ( SCSI_CMD_WRITE_10 != p_cbw->command[0] )
p_msc->xferred_len += xferred_bytes;
if ( p_msc->xferred_len >= p_msc->total_len )
{
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
}else
{
proc_read10_cmd(rhport, p_msc);
}
}
else if (SCSI_CMD_WRITE_10 == p_cbw->command[0])
{
proc_write10_new_data(rhport, p_msc, xferred_bytes);
}
else
{
p_msc->xferred_len += xferred_bytes;
// OUT transfer, invoke callback if needed
if ( !is_data_in(p_cbw->dir) )
{
int32_t cb_result = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->total_len);
if ( cb_result < 0 )
{
p_csw->status = MSC_CSW_STATUS_FAILED;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation
// unsupported command
TU_LOG(MSC_DEBUG, " SCSI unsupported command\r\n");
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}else
{
p_csw->status = MSC_CSW_STATUS_PASSED;
// TODO haven't implement this scenario any further yet
}
}
if ( p_msc->xferred_len >= p_msc->total_len )
{
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
}
else
{
uint16_t const block_sz = p_cbw->total_bytes / rdwr10_get_blockcount(p_cbw->command);
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
// Application can consume smaller bytes
int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, xferred_bytes);
if ( nbytes < 0 )
{
// negative means error -> skip to status phase, status in CSW set to failed
p_csw->data_residue = p_cbw->total_bytes - p_msc->xferred_len;
p_csw->status = MSC_CSW_STATUS_FAILED;
p_msc->stage = MSC_STAGE_STATUS;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation
break;
}else
{
// Application consume less than what we got (including zero)
if ( nbytes < (int32_t) xferred_bytes )
{
if ( nbytes > 0 )
{
p_msc->xferred_len += nbytes;
memmove(_mscd_buf, _mscd_buf+nbytes, xferred_bytes-nbytes);
}
// simulate an transfer complete with adjusted parameters --> this driver callback will fired again
dcd_event_xfer_complete(rhport, p_msc->ep_out, xferred_bytes-nbytes, XFER_RESULT_SUCCESS, false);
return true; // skip the rest
}
else
{
// Application consume all bytes in our buffer. Nothing to do, process with normal flow
}
}
}
}
// Accumulate data so far
p_msc->xferred_len += xferred_bytes;
if ( p_msc->xferred_len >= p_msc->total_len )
{
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
}
else
{
// READ10 & WRITE10 Can be executed with large bulk of data e.g write 8K bytes (several flash write)
// We break it into multiple smaller command whose data size is up to CFG_TUD_MSC_EP_BUFSIZE
if (SCSI_CMD_READ_10 == p_cbw->command[0])
{
proc_read10_cmd(rhport, p_msc);
}
else if (SCSI_CMD_WRITE_10 == p_cbw->command[0])
{
proc_write10_cmd(rhport, p_msc);
}else
{
// No other command take more than one transfer yet -> unlikely error
// This scenario with command that take more than one transfer is already rejected at Command stage
TU_BREAKPOINT();
}
}
@ -406,7 +560,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
// Wait for the Status phase to complete
if( (ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t)) )
{
TU_LOG(MSC_DEBUG, " SCSI Status: %u\r\n", p_csw->status);
TU_LOG(MSC_DEBUG, " SCSI Status = %u\r\n", p_csw->status);
// TU_LOG_MEM(MSC_DEBUG, p_csw, xferred_bytes, 2);
// Invoke complete callback if defined
@ -427,11 +581,11 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
break;
}
// Move to default CMD stage
p_msc->stage = MSC_STAGE_CMD;
// Queue for the next CBW
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) );
TU_ASSERT( prepare_cbw(rhport, p_msc) );
}else
{
// Any xfer ended here is consider unknown error, ignore it
TU_LOG1(" Warning expect SCSI Status but received unknown data\r\n");
}
break;
@ -440,21 +594,18 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
if ( p_msc->stage == MSC_STAGE_STATUS )
{
// Either endpoints is stalled, need to wait until it is cleared by host
if ( usbd_edpt_stalled(rhport, p_msc->ep_in) || usbd_edpt_stalled(rhport, p_msc->ep_out) )
// skip status if epin is currently stalled, will do it when received Clear Stall request
if ( !usbd_edpt_stalled(rhport, p_msc->ep_in) )
{
// simulate an transfer complete with adjusted parameters --> this driver callback will fired again
// and response with status phase after halted endpoints are cleared.
// note: use ep_out to prevent confusing with STATUS complete
dcd_event_xfer_complete(rhport, p_msc->ep_out, 0, XFER_RESULT_SUCCESS, false);
}
else
{
// Move to Status Sent stage
p_msc->stage = MSC_STAGE_STATUS_SENT;
// Send SCSI Status
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in , (uint8_t*) &p_msc->csw, sizeof(msc_csw_t)));
if ( (p_cbw->total_bytes > p_msc->xferred_len) && is_data_in(p_cbw->dir) )
{
// 6.7 The 13 Cases: case 5 (Hi > Di): STALL before status
TU_LOG(MSC_DEBUG, " SCSI case 5 (Hi > Di): %lu > %lu\r\n", p_cbw->total_bytes, p_msc->xferred_len);
usbd_edpt_stall(rhport, p_msc->ep_in);
}else
{
TU_ASSERT( send_csw(rhport, p_msc) );
}
}
}
@ -472,6 +623,8 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
(void) bufsize; // TODO refractor later
int32_t resplen;
mscd_interface_t* p_msc = &_mscd_itf;
switch ( scsi_cmd[0] )
{
case SCSI_CMD_TEST_UNIT_READY:
@ -482,7 +635,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
resplen = - 1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}
break;
@ -498,7 +651,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
resplen = - 1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}
}
break;
@ -519,7 +672,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
resplen = -1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}else
{
scsi_read_capacity10_resp_t read_capa10;
@ -555,7 +708,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
resplen = -1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}else
{
read_fmt_capa.block_num = tu_htonl(block_count);
@ -600,9 +753,11 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
};
bool writable = true;
if (tud_msc_is_writable_cb) {
writable = tud_msc_is_writable_cb(lun);
if ( tud_msc_is_writable_cb )
{
writable = tud_msc_is_writable_cb(lun);
}
mode_resp.write_protected = !writable;
resplen = sizeof(mode_resp);
@ -620,9 +775,9 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
sense_rsp.add_sense_len = sizeof(scsi_sense_fixed_resp_t) - 8;
sense_rsp.sense_key = _mscd_itf.sense_key;
sense_rsp.add_sense_code = _mscd_itf.add_sense_code;
sense_rsp.add_sense_qualifier = _mscd_itf.add_sense_qualifier;
sense_rsp.sense_key = p_msc->sense_key;
sense_rsp.add_sense_code = p_msc->add_sense_code;
sense_rsp.add_sense_qualifier = p_msc->add_sense_qualifier;
resplen = sizeof(sense_rsp);
memcpy(buffer, &sense_rsp, resplen);
@ -641,13 +796,9 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc)
{
msc_cbw_t const * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
uint16_t const block_cnt = rdwr10_get_blockcount(p_cbw->command);
TU_ASSERT(block_cnt, ); // prevent div by zero
uint16_t const block_sz = p_cbw->total_bytes / block_cnt;
TU_ASSERT(block_sz, ); // prevent div by zero
// block size already verified not zero
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw);
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
@ -656,16 +807,18 @@ static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc)
int32_t nbytes = (int32_t) tu_min32(sizeof(_mscd_buf), p_cbw->total_bytes-p_msc->xferred_len);
// Application can consume smaller bytes
nbytes = tud_msc_read10_cb(p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, (uint32_t) nbytes);
uint32_t const offset = p_msc->xferred_len % block_sz;
nbytes = tud_msc_read10_cb(p_cbw->lun, lba, offset, _mscd_buf, (uint32_t) nbytes);
if ( nbytes < 0 )
{
// negative means error -> pipe is stalled & status in CSW set to failed
p_csw->data_residue = p_cbw->total_bytes - p_msc->xferred_len;
p_csw->status = MSC_CSW_STATUS_FAILED;
// negative means error -> endpoint is stalled & status in CSW set to failed
TU_LOG(MSC_DEBUG, " tud_msc_read10_cb() return -1\r\n");
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation
usbd_edpt_stall(rhport, p_msc->ep_in);
// Sense = Flash not ready for access
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_MEDIUM_ERROR, 0x33, 0x00);
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}
else if ( nbytes == 0 )
{
@ -682,16 +835,18 @@ static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc)
{
msc_cbw_t const * p_cbw = &p_msc->cbw;
bool writable = true;
if (tud_msc_is_writable_cb) {
if ( tud_msc_is_writable_cb )
{
writable = tud_msc_is_writable_cb(p_cbw->lun);
}
if (!writable) {
msc_csw_t* p_csw = &p_msc->csw;
p_csw->data_residue = p_cbw->total_bytes;
p_csw->status = MSC_CSW_STATUS_FAILED;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_DATA_PROTECT, 0x27, 0x00); // Sense = Write protected
usbd_edpt_stall(rhport, p_msc->ep_out);
if ( !writable )
{
// Not writable, complete this SCSI op with error
// Sense = Write protected
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_DATA_PROTECT, 0x27, 0x00);
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
return;
}
@ -702,4 +857,63 @@ static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc)
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, nbytes), );
}
// process new data arrived from WRITE10
static void proc_write10_new_data(uint8_t rhport, mscd_interface_t* p_msc, uint32_t xferred_bytes)
{
msc_cbw_t const * p_cbw = &p_msc->cbw;
// block size already verified not zero
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw);
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
// Invoke callback to consume new data
uint32_t const offset = p_msc->xferred_len % block_sz;
int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, offset, _mscd_buf, xferred_bytes);
if ( nbytes < 0 )
{
// negative means error -> failed this scsi op
TU_LOG(MSC_DEBUG, " tud_msc_write10_cb() return -1\r\n");
// update actual byte before failed
p_msc->xferred_len += xferred_bytes;
// Sense = Flash not ready for access
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_MEDIUM_ERROR, 0x33, 0x00);
fail_scsi_op(rhport, p_msc, MSC_CSW_STATUS_FAILED);
}else
{
// Application consume less than what we got (including zero)
if ( (uint32_t) nbytes < xferred_bytes )
{
if ( nbytes > 0 )
{
p_msc->xferred_len += nbytes;
memmove(_mscd_buf, _mscd_buf+nbytes, xferred_bytes-nbytes);
}
// simulate an transfer complete with adjusted parameters --> callback will be invoked with adjusted parameter
dcd_event_xfer_complete(rhport, p_msc->ep_out, xferred_bytes-nbytes, XFER_RESULT_SUCCESS, false);
}
else
{
// Application consume all bytes in our buffer
p_msc->xferred_len += xferred_bytes;
if ( p_msc->xferred_len >= p_msc->total_len )
{
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
}else
{
// prepare to receive more data from host
proc_write10_cmd(rhport, p_msc);
}
}
}
}
#endif

View File

@ -140,7 +140,7 @@ TU_ATTR_WEAK void tud_msc_write10_complete_cb(uint8_t lun);
// Invoked when command in tud_msc_scsi_cb is complete
TU_ATTR_WEAK void tud_msc_scsi_complete_cb(uint8_t lun, uint8_t const scsi_cmd[16]);
// Hook to make a mass storage device read-only. TODO remove
// Invoked to check if device is writable as part of SCSI WRITE10
TU_ATTR_WEAK bool tud_msc_is_writable_cb(uint8_t lun);
//--------------------------------------------------------------------+

View File

@ -369,12 +369,17 @@ typedef struct
static inline const char* tu_lookup_find(tu_lookup_table_t const* p_table, uint32_t key)
{
static char not_found[10];
for(uint16_t i=0; i<p_table->count; i++)
{
if (p_table->items[i].key == key) return p_table->items[i].data;
}
return NULL;
// not found return the key value in hex
sprintf(not_found, "0x%08lX", key);
return not_found;
}
#endif // CFG_TUSB_DEBUG

View File

@ -137,6 +137,11 @@ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * re
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_ep);
// Close all non-control endpoints, cancel all pending transfers if any.
// Invoked when switching from a non-zero Configuration by SET_CONFIGURE therefore
// required for multiple configuration support.
void dcd_edpt_close_all (uint8_t rhport);
// Close an endpoint.
// Since it is weak, caller must TU_ASSERT this function's existence before calling it.
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr) TU_ATTR_WEAK;

View File

@ -38,7 +38,7 @@
//--------------------------------------------------------------------+
// Debug level of USBD
#define USBD_DBG_LVL 2
#define USBD_DBG 2
#ifndef CFG_TUD_TASK_QUEUE_SZ
#define CFG_TUD_TASK_QUEUE_SZ 16
@ -432,19 +432,22 @@ bool tud_init (uint8_t rhport)
return true;
}
static void usbd_reset(uint8_t rhport)
static void configuration_reset(uint8_t rhport)
{
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
usbd_control_reset();
for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ )
{
get_driver(i)->reset(rhport);
}
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
}
static void usbd_reset(uint8_t rhport)
{
configuration_reset(rhport);
usbd_control_reset();
}
bool tud_task_event_ready(void)
@ -686,9 +689,29 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
{
uint8_t const cfg_num = (uint8_t) p_request->wValue;
if ( !_usbd_dev.cfg_num && cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
_usbd_dev.cfg_num = cfg_num;
// Only process if new configure is different
if (_usbd_dev.cfg_num != cfg_num)
{
if ( _usbd_dev.cfg_num )
{
// already configured: need to clear all endpoints and driver first
TU_LOG(USBD_DBG, " Clear current Configuration (%u) before switching\r\n", _usbd_dev.cfg_num);
// close all non-control endpoints, cancel all pending transfers if any
dcd_edpt_close_all(rhport);
// close all drivers and current configured state except bus speed
uint8_t const speed = _usbd_dev.speed;
configuration_reset(rhport);
_usbd_dev.speed = speed; // restore speed
}
// switch to new configuration if not zero
if ( cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
}
_usbd_dev.cfg_num = cfg_num;
tud_control_status(rhport, p_request);
}
break;
@ -701,7 +724,7 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
TU_LOG(USBD_DBG_LVL, " Enable Remote Wakeup\r\n");
TU_LOG(USBD_DBG, " Enable Remote Wakeup\r\n");
// Host may enable remote wake up before suspending especially HID device
_usbd_dev.remote_wakeup_en = true;
@ -712,7 +735,7 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
TU_LOG(USBD_DBG_LVL, " Disable Remote Wakeup\r\n");
TU_LOG(USBD_DBG, " Disable Remote Wakeup\r\n");
// Host may disable remote wake up after resuming
_usbd_dev.remote_wakeup_en = false;
@ -751,16 +774,24 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
// driver doesn't use alternate settings or implement this
TU_VERIFY(TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type);
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest)
switch(p_request->bRequest)
{
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
}else if (TUSB_REQ_SET_INTERFACE == p_request->bRequest)
{
tud_control_status(rhport, p_request);
} else
{
return false;
case TUSB_REQ_GET_INTERFACE:
case TUSB_REQ_SET_INTERFACE:
// Clear complete callback if driver set since it can also stall the request.
usbd_control_set_complete_callback(NULL);
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest)
{
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
}else
{
tud_control_status(rhport, p_request);
}
break;
default: return false;
}
}
}
@ -843,7 +874,8 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
// This function parse configuration descriptor & open drivers accordingly
static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
{
tusb_desc_configuration_t const * desc_cfg = (tusb_desc_configuration_t const *) tud_descriptor_configuration_cb(cfg_num-1); // index is cfg_num-1
// index is cfg_num-1
tusb_desc_configuration_t const * desc_cfg = (tusb_desc_configuration_t const *) tud_descriptor_configuration_cb(cfg_num-1);
TU_ASSERT(desc_cfg != NULL && desc_cfg->bDescriptorType == TUSB_DESC_CONFIGURATION);
// Parse configuration descriptor
@ -1301,7 +1333,7 @@ bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
TU_LOG(USBD_DBG_LVL, " Stall EP %02X", ep_addr);
TU_LOG(USBD_DBG, " Stall EP %02X\r\n", ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
@ -1313,12 +1345,11 @@ void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
TU_LOG(USBD_DBG_LVL, " Clear Stall EP %02X", ep_addr);
TU_LOG(USBD_DBG, " Clear Stall EP %02X\r\n", ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = false;
_usbd_dev.ep_status[epnum][dir].busy = false;

View File

@ -847,6 +847,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);

View File

@ -312,6 +312,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_edpt)
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;

View File

@ -240,6 +240,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;

View File

@ -269,6 +269,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{

View File

@ -544,6 +544,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
}
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;

View File

@ -339,6 +339,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;

View File

@ -206,7 +206,8 @@ static void xact_out_dma(uint8_t epnum)
}
else
{
xact_len = (uint8_t)NRF_USBD->SIZE.EPOUT[epnum];
// limit xact len to remaining length
xact_len = tu_min16((uint16_t) NRF_USBD->SIZE.EPOUT[epnum], xfer->total_len - xfer->actual_len);
// Trigger DMA move data from Endpoint -> SRAM
NRF_USBD->EPOUT[epnum].PTR = (uint32_t) xfer->buffer;
@ -306,8 +307,9 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
uint8_t const ep_addr = desc_edpt->bEndpointAddress;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
_dcd.xfer[epnum][dir].mps = desc_edpt->wMaxPacketSize.size;
@ -359,11 +361,48 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
NRF_USBD->EPINEN |= USBD_EPINEN_ISOIN_Msk;
}
}
// clear stall and reset DataToggle
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr;
NRF_USBD->DTOGGLE = (USBD_DTOGGLE_VALUE_Data0 << USBD_DTOGGLE_VALUE_Pos) | ep_addr;
__ISB(); __DSB();
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
// disable interrupt to prevent race condition
dcd_int_disable(rhport);
// disable all non-control (bulk + interrupt) endpoints
for ( uint8_t ep = 1; ep < EP_CBI_COUNT; ep++ )
{
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + ep) | TU_BIT(USBD_INTEN_ENDEPIN0_Pos + ep);
NRF_USBD->TASKS_STARTEPIN[ep] = 0;
NRF_USBD->TASKS_STARTEPOUT[ep] = 0;
tu_memclr(_dcd.xfer[ep], 2*sizeof(xfer_td_t));
}
// disable both ISO
NRF_USBD->INTENCLR = USBD_INTENCLR_SOF_Msk | USBD_INTENCLR_ENDISOOUT_Msk | USBD_INTENCLR_ENDISOIN_Msk;
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_OneDir;
NRF_USBD->TASKS_STARTISOIN = 0;
NRF_USBD->TASKS_STARTISOOUT = 0;
tu_memclr(_dcd.xfer[EP_ISO_NUM], 2*sizeof(xfer_td_t));
// de-activate all non-control
NRF_USBD->EPOUTEN = 1UL;
NRF_USBD->EPINEN = 1UL;
dcd_int_enable(rhport);
}
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
@ -442,10 +481,9 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
{
if ( xfer->data_received )
{
// Data may already be received previously
xfer->data_received = false;
// Data is already received previously
// start DMA to copy to SRAM
xfer->data_received = false;
xact_out_dma(epnum);
}
else
@ -467,7 +505,11 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_td_t* xfer = get_td(epnum, dir);
if ( epnum == 0 )
{
@ -475,6 +517,15 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
}else if (epnum != EP_ISO_NUM)
{
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep_addr;
// Note: nRF can auto ACK packet OUT before get stalled.
// There maybe data in endpoint fifo already, we need to pull it out
if ( (dir == TUSB_DIR_OUT) && xfer->data_received )
{
TU_LOG_LOCATION();
xfer->data_received = false;
xact_out_dma(epnum);
}
}
__ISB(); __DSB();
@ -488,14 +539,16 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
if ( epnum != 0 && epnum != EP_ISO_NUM )
{
// reset data toggle to DATA0
// First write this register with VALUE=Nop to select the endpoint, then either read it to get the status from
// VALUE, or write it again with VALUE=Data0 or Data1
NRF_USBD->DTOGGLE = ep_addr;
NRF_USBD->DTOGGLE = (USBD_DTOGGLE_VALUE_Data0 << USBD_DTOGGLE_VALUE_Pos) | ep_addr;
// clear stall
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr;
// reset data toggle to DATA0
NRF_USBD->DTOGGLE = (USBD_DTOGGLE_VALUE_Data0 << USBD_DTOGGLE_VALUE_Pos) | ep_addr;
// Write any value to SIZE register will allow nRF to ACK/accept data
// Drop any pending data
if (dir == TUSB_DIR_OUT) NRF_USBD->SIZE.EPOUT[epnum] = 0;
__ISB(); __DSB();
@ -508,7 +561,9 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
void bus_reset(void)
{
// 6.35.6 USB controller automatically disabled all endpoints (except control)
// i.e EPOUTEN and EPINEN and reset USBADDR to 0
NRF_USBD->EPOUTEN = 1UL;
NRF_USBD->EPINEN = 1UL;
for(int i=0; i<8; i++)
{
NRF_USBD->TASKS_STARTEPIN[i] = 0;

View File

@ -273,6 +273,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;

View File

@ -289,6 +289,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;

View File

@ -353,6 +353,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;

View File

@ -347,6 +347,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;

View File

@ -326,6 +326,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;

View File

@ -323,6 +323,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
static void prepare_setup_packet(uint8_t rhport)
{
if (_dcd_controller[rhport].max_speed == TUSB_SPEED_FULL )

View File

@ -366,6 +366,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;

View File

@ -428,6 +428,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
assert(rhport == 0);

View File

@ -733,6 +733,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;

View File

@ -434,6 +434,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;

View File

@ -312,6 +312,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;

View File

@ -800,6 +800,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
/**
* Close an endpoint.
*

View File

@ -670,6 +670,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);

View File

@ -94,6 +94,11 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
return false;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{

View File

@ -298,6 +298,12 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;

View File

@ -429,6 +429,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;