hacky, but ftdi work with hard code baudrate = 9600

This commit is contained in:
hathach 2023-04-26 12:43:46 +07:00
parent 1a229f3ce2
commit 45169d833d
5 changed files with 549 additions and 83 deletions

View File

@ -1,6 +1,7 @@
synopsys
sie
tre
thre
hsi
fro
dout

View File

@ -33,6 +33,10 @@
#include "cdc_host.h"
#if CFG_TUH_CDC_FTDI
#include "serial/ftdi_host.h"
#endif
// Debug level, TUSB_CFG_DEBUG must be at least this level for debug message
#define CDCH_DEBUG 2
@ -43,12 +47,18 @@
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
enum {
SERIAL_PROTOCOL_ACM = 0,
SERIAL_PROTOCOL_FTDI = 1,
};
typedef struct {
uint8_t daddr;
uint8_t bInterfaceNumber;
uint8_t bInterfaceSubClass;
uint8_t bInterfaceProtocol;
uint8_t serial_protocol;
cdc_acm_capability_t acm_capability;
uint8_t ep_notif;
@ -111,6 +121,11 @@ static cdch_interface_t* find_new_itf(void)
return NULL;
}
static inline bool support_line_request(cdch_interface_t const* p_cdc) {
return (p_cdc->serial_protocol == SERIAL_PROTOCOL_ACM && p_cdc->acm_capability.support_line_request) ||
(p_cdc->serial_protocol == SERIAL_PROTOCOL_FTDI);
}
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
@ -270,21 +285,32 @@ static void cdch_internal_control_complete(tuh_xfer_t* xfer)
if (xfer->result == XFER_RESULT_SUCCESS)
{
switch(xfer->setup->bRequest)
{
case CDC_REQUEST_SET_CONTROL_LINE_STATE:
p_cdc->line_state = (uint8_t) tu_le16toh(xfer->setup->wValue);
break;
if (p_cdc->serial_protocol == SERIAL_PROTOCOL_ACM) {
switch (xfer->setup->bRequest) {
case CDC_REQUEST_SET_CONTROL_LINE_STATE:
p_cdc->line_state = (uint8_t) tu_le16toh(xfer->setup->wValue);
break;
case CDC_REQUEST_SET_LINE_CODING:
{
uint16_t const len = tu_min16(sizeof(cdc_line_coding_t), tu_le16toh(xfer->setup->wLength));
memcpy(&p_cdc->line_coding, xfer->buffer, len);
case CDC_REQUEST_SET_LINE_CODING: {
uint16_t const len = tu_min16(sizeof(cdc_line_coding_t), tu_le16toh(xfer->setup->wLength));
memcpy(&p_cdc->line_coding, xfer->buffer, len);
}
break;
default: break;
}
break;
default: break;
}
#if CFG_TUH_CDC_FTDI
else if (p_cdc->serial_protocol == SERIAL_PROTOCOL_FTDI) {
switch (xfer->setup->bRequest) {
case FTDI_SIO_MODEM_CTRL:
p_cdc->line_state = (uint8_t) (tu_le16toh(xfer->setup->wValue) & 0x00ff);
break;
default: break;
}
}
#endif
}
xfer->complete_cb = p_cdc->user_control_cb;
@ -294,27 +320,51 @@ static void cdch_internal_control_complete(tuh_xfer_t* xfer)
bool tuh_cdc_set_control_line_state(uint8_t idx, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->acm_capability.support_line_request);
TU_VERIFY(p_cdc && support_line_request(p_cdc));
TU_LOG_CDCH("CDC Set Control Line State\r\n");
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_CONTROL_LINE_STATE,
.wValue = tu_htole16(line_state),
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
.wLength = 0
};
tusb_control_request_t request;
if(p_cdc->serial_protocol == SERIAL_PROTOCOL_ACM ) {
tusb_control_request_t const acm_request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_CONTROL_LINE_STATE,
.wValue = tu_htole16(line_state),
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
.wLength = 0
};
request = acm_request;
}
#if CFG_TUH_CDC_FTDI
else if (p_cdc->serial_protocol == SERIAL_PROTOCOL_FTDI) {
// FTDI use vendor specific request to set control line state
tusb_control_request_t const ftdi_request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = FTDI_SIO_MODEM_CTRL,
.wValue = tu_htole16(0x0300 | line_state), // 0x0300 is DTR and RTS enable
.wIndex = 0, // port
.wLength = 0
};
request = ftdi_request;
}
#endif
else {
return false;
}
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer =
{
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
@ -324,34 +374,60 @@ bool tuh_cdc_set_control_line_state(uint8_t idx, uint16_t line_state, tuh_xfer_c
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
bool tuh_cdc_set_line_coding(uint8_t idx, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->acm_capability.support_line_request);
TU_VERIFY(p_cdc && support_line_request(p_cdc));
TU_LOG_CDCH("CDC Set Line Conding\r\n");
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_LINE_CODING,
.wValue = 0,
.wIndex = tu_htole16(p_cdc->bInterfaceNumber),
.wLength = tu_htole16(sizeof(cdc_line_coding_t))
};
tusb_control_request_t request;
uint8_t* enum_buf = NULL;
// use usbh enum buf to hold line coding since user line_coding variable may not live long enough
// for the transfer to complete
uint8_t* enum_buf = usbh_get_enum_buf();
memcpy(enum_buf, line_coding, sizeof(cdc_line_coding_t));
if (p_cdc->serial_protocol == SERIAL_PROTOCOL_ACM) {
tusb_control_request_t const acm_request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_LINE_CODING,
.wValue = 0,
.wIndex = tu_htole16(p_cdc->bInterfaceNumber),
.wLength = tu_htole16(sizeof(cdc_line_coding_t))
};
request = acm_request;
// use usbh enum buf to hold line coding since user line_coding variable does not live long enough
enum_buf = usbh_get_enum_buf();
memcpy(enum_buf, line_coding, sizeof(cdc_line_coding_t));
}
#if CFG_TUH_CDC_FTDI
else if (p_cdc->serial_protocol == SERIAL_PROTOCOL_FTDI) {
// FTDI need to set baud rate and data bits, parity, stop bits separately
tusb_control_request_t const ftdi_request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = FTDI_SIO_SET_BAUD_RATE,
.wValue = 0x4138, // FIXME hardcoded to 9600 baud
.wIndex = 0, // port
.wLength = tu_htole16(sizeof(cdc_line_coding_t))
};
request = ftdi_request;
}
#endif
else {
return false;
}
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer =
@ -434,8 +510,17 @@ bool cdch_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t
{
tu_edpt_stream_read_xfer_complete(&p_cdc->stream.rx, xferred_bytes);
#if CFG_TUH_CDC_FTDI
// FTDI reserve 2 bytes for status
if (p_cdc->serial_protocol == SERIAL_PROTOCOL_FTDI) {
uint8_t status[2];
tu_edpt_stream_read(&p_cdc->stream.rx, status, 2);
(void) status; // TODO handle status
}
#endif
// invoke receive callback
if (tuh_cdc_rx_cb) tuh_cdc_rx_cb(idx);
if (tuh_cdc_rx_cb) tuh_cdc_rx_cb(idx);
// prepare for next transfer if needed
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
@ -453,17 +538,99 @@ bool cdch_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t
//--------------------------------------------------------------------+
// Enumeration
//--------------------------------------------------------------------+
bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
enum
{
(void) rhport;
// ACM
CONFIG_SET_CONTROL_LINE_STATE,
CONFIG_SET_LINE_CODING,
CONFIG_COMPLETE,
// Only support ACM subclass
// Protocol 0xFF can be RNDIS device for windows XP
TU_VERIFY( TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass &&
0xFF != itf_desc->bInterfaceProtocol);
// FTDI
CONFIG_FTDI_RESET
};
static bool open_ep_stream_pair(cdch_interface_t* p_cdc , tusb_desc_endpoint_t const *desc_ep)
{
for(size_t i=0; i<2; i++)
{
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType &&
TUSB_XFER_BULK == desc_ep->bmAttributes.xfer);
TU_ASSERT(tuh_edpt_open(p_cdc->daddr, desc_ep));
if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN )
{
tu_edpt_stream_open(&p_cdc->stream.rx, p_cdc->daddr, desc_ep);
}else
{
tu_edpt_stream_open(&p_cdc->stream.tx, p_cdc->daddr, desc_ep);
}
desc_ep = (tusb_desc_endpoint_t const*) tu_desc_next(desc_ep);
}
return true;
}
#if CFG_TUH_CDC_FTDI
bool ftdih_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
// FTDI configuration includes 1 vendor interface + 2 bulk endpoints
TU_VERIFY(itf_desc->bInterfaceSubClass == 0xff && itf_desc->bInterfaceProtocol == 0xff && itf_desc->bNumEndpoints == 2);
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t * p_cdc = find_new_itf();
TU_VERIFY(p_cdc);
p_cdc->daddr = daddr;
p_cdc->bInterfaceNumber = itf_desc->bInterfaceNumber;
p_cdc->bInterfaceSubClass = itf_desc->bInterfaceSubClass;
p_cdc->bInterfaceProtocol = itf_desc->bInterfaceProtocol;
p_cdc->line_state = 0;
p_cdc->serial_protocol = SERIAL_PROTOCOL_FTDI;
// endpoint pair
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
// data endpoints expected to be in pairs
TU_ASSERT(open_ep_stream_pair(p_cdc, desc_ep));
return true;
}
static bool ftdih_sio_reset(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = FTDI_SIO_RESET,
.wValue = tu_htole16(FTDI_SIO_RESET_SIO),
.wIndex = 0,
.wLength = 0
};
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
#endif
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
uint8_t const * p_desc_end = ((uint8_t const*) itf_desc) + max_len;
cdch_interface_t * p_cdc = find_new_itf();
@ -474,6 +641,7 @@ bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_d
p_cdc->bInterfaceSubClass = itf_desc->bInterfaceSubClass;
p_cdc->bInterfaceProtocol = itf_desc->bInterfaceProtocol;
p_cdc->line_state = 0;
p_cdc->serial_protocol = SERIAL_PROTOCOL_ACM;
//------------- Control Interface -------------//
uint8_t const * p_desc = tu_desc_next(itf_desc);
@ -510,35 +678,45 @@ bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_d
p_desc = tu_desc_next(p_desc);
// data endpoints expected to be in pairs
for(uint32_t i=0; i<2; i++)
{
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) p_desc;
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType &&
TUSB_XFER_BULK == desc_ep->bmAttributes.xfer);
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN )
{
tu_edpt_stream_open(&p_cdc->stream.rx, daddr, desc_ep);
}else
{
tu_edpt_stream_open(&p_cdc->stream.tx, daddr, desc_ep);
}
p_desc = tu_desc_next(p_desc);
}
TU_ASSERT(open_ep_stream_pair(p_cdc, (tusb_desc_endpoint_t const *) p_desc));
}
return true;
}
enum
bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
CONFIG_SET_CONTROL_LINE_STATE,
CONFIG_SET_LINE_CODING,
CONFIG_COMPLETE
};
(void) rhport;
// Only support ACM subclass
// Note: Protocol 0xFF can be RNDIS device
if ( TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass)
{
return acm_open(daddr, itf_desc, max_len);
}
else if ( 0xff == itf_desc->bInterfaceClass )
{
uint16_t vid, pid;
TU_VERIFY(tuh_vid_pid_get(daddr, &vid, &pid));
#if CFG_TUH_CDC_FTDI
if (TU_FTDI_VID == vid) {
uint16_t const ftdi_pids[] = {TU_FTDI_PID_LIST};
enum { FTDI_PID_COUNT = sizeof(ftdi_pids) / sizeof(ftdi_pids[0]) };
for (size_t i = 0; i < FTDI_PID_COUNT; i++) {
if (ftdi_pids[i] == pid) {
return ftdih_open(daddr, itf_desc, max_len);
}
}
}
#endif
}
return false;
}
static void process_cdc_config(tuh_xfer_t* xfer)
{
@ -550,9 +728,16 @@ static void process_cdc_config(tuh_xfer_t* xfer)
switch(state)
{
#if CFG_TUH_CDC_FTDI
// Note may need to read FTDI eeprom
case CONFIG_FTDI_RESET:
TU_ASSERT(ftdih_sio_reset(p_cdc, process_cdc_config, CONFIG_SET_CONTROL_LINE_STATE), );
break;
#endif
case CONFIG_SET_CONTROL_LINE_STATE:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
if (p_cdc->acm_capability.support_line_request)
if (support_line_request(p_cdc))
{
TU_ASSERT( tuh_cdc_set_control_line_state(idx, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, process_cdc_config, CONFIG_SET_LINE_CODING), );
break;
@ -562,7 +747,7 @@ static void process_cdc_config(tuh_xfer_t* xfer)
case CONFIG_SET_LINE_CODING:
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
if (p_cdc->acm_capability.support_line_request)
if (support_line_request(p_cdc))
{
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT( tuh_cdc_set_line_coding(idx, &line_coding, process_cdc_config, CONFIG_COMPLETE), );
@ -588,7 +773,6 @@ static void process_cdc_config(tuh_xfer_t* xfer)
bool cdch_set_config(uint8_t daddr, uint8_t itf_num)
{
// fake transfer to kick-off process
tusb_control_request_t request;
request.wIndex = tu_htole16((uint16_t) itf_num);
@ -596,7 +780,25 @@ bool cdch_set_config(uint8_t daddr, uint8_t itf_num)
xfer.daddr = daddr;
xfer.result = XFER_RESULT_SUCCESS;
xfer.setup = &request;
xfer.user_data = CONFIG_SET_CONTROL_LINE_STATE;
// fake transfer to kick-off process
uint8_t const idx = tuh_cdc_itf_get_index(daddr, itf_num);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc);
switch (p_cdc->serial_protocol) {
case SERIAL_PROTOCOL_ACM:
xfer.user_data = CONFIG_SET_CONTROL_LINE_STATE;
break;
#if CFG_TUH_CDC_FTDI
case SERIAL_PROTOCOL_FTDI:
xfer.user_data = CONFIG_FTDI_RESET;
break;
#endif
default: return false;
}
process_cdc_config(&xfer);

View File

@ -0,0 +1,258 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2023 Ha Thach (thach@tinyusb.org) for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef TUSB_FTDI_HOST_H
#define TUSB_FTDI_HOST_H
// VID/PID for matching FTDI devices
#define TU_FTDI_VID 0x0403
#define TU_FTDI_PID_LIST \
0x6001, 0x6006, 0x6010, 0x6011, 0x6014, 0x6015, 0x8372, 0xFBFA, \
0xcd18
// Commands
#define FTDI_SIO_RESET 0 /* Reset the port */
#define FTDI_SIO_MODEM_CTRL 1 /* Set the modem control register */
#define FTDI_SIO_SET_FLOW_CTRL 2 /* Set flow control register */
#define FTDI_SIO_SET_BAUD_RATE 3 /* Set baud rate */
#define FTDI_SIO_SET_DATA 4 /* Set the data characteristics of the port */
#define FTDI_SIO_GET_MODEM_STATUS 5 /* Retrieve current value of modem status register */
#define FTDI_SIO_SET_EVENT_CHAR 6 /* Set the event character */
#define FTDI_SIO_SET_ERROR_CHAR 7 /* Set the error character */
#define FTDI_SIO_SET_LATENCY_TIMER 9 /* Set the latency timer */
#define FTDI_SIO_GET_LATENCY_TIMER 0x0a /* Get the latency timer */
#define FTDI_SIO_SET_BITMODE 0x0b /* Set bitbang mode */
#define FTDI_SIO_READ_PINS 0x0c /* Read immediate value of pins */
#define FTDI_SIO_READ_EEPROM 0x90 /* Read EEPROM */
/* FTDI_SIO_RESET */
#define FTDI_SIO_RESET_SIO 0
#define FTDI_SIO_RESET_PURGE_RX 1
#define FTDI_SIO_RESET_PURGE_TX 2
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_RESET
* wValue: Control Value
* 0 = Reset SIO
* 1 = Purge RX buffer
* 2 = Purge TX buffer
* wIndex: Port
* wLength: 0
* Data: None
*
* The Reset SIO command has this effect:
*
* Sets flow control set to 'none'
* Event char = $0D
* Event trigger = disabled
* Purge RX buffer
* Purge TX buffer
* Clear DTR
* Clear RTS
* baud and data format not reset
*
* The Purge RX and TX buffer commands affect nothing except the buffers
*
*/
/* FTDI_SIO_MODEM_CTRL */
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_MODEM_CTRL
* wValue: ControlValue (see below)
* wIndex: Port
* wLength: 0
* Data: None
*
* NOTE: If the device is in RTS/CTS flow control, the RTS set by this
* command will be IGNORED without an error being returned
* Also - you can not set DTR and RTS with one control message
*/
#define FTDI_SIO_SET_DTR_MASK 0x1
#define FTDI_SIO_SET_DTR_HIGH ((FTDI_SIO_SET_DTR_MASK << 8) | 1)
#define FTDI_SIO_SET_DTR_LOW ((FTDI_SIO_SET_DTR_MASK << 8) | 0)
#define FTDI_SIO_SET_RTS_MASK 0x2
#define FTDI_SIO_SET_RTS_HIGH ((FTDI_SIO_SET_RTS_MASK << 8) | 2)
#define FTDI_SIO_SET_RTS_LOW ((FTDI_SIO_SET_RTS_MASK << 8) | 0)
/*
* ControlValue
* B0 DTR state
* 0 = reset
* 1 = set
* B1 RTS state
* 0 = reset
* 1 = set
* B2..7 Reserved
* B8 DTR state enable
* 0 = ignore
* 1 = use DTR state
* B9 RTS state enable
* 0 = ignore
* 1 = use RTS state
* B10..15 Reserved
*/
/* FTDI_SIO_SET_FLOW_CTRL */
#define FTDI_SIO_DISABLE_FLOW_CTRL 0x0
#define FTDI_SIO_RTS_CTS_HS (0x1 << 8)
#define FTDI_SIO_DTR_DSR_HS (0x2 << 8)
#define FTDI_SIO_XON_XOFF_HS (0x4 << 8)
/*
* BmRequestType: 0100 0000b
* bRequest: FTDI_SIO_SET_FLOW_CTRL
* wValue: Xoff/Xon
* wIndex: Protocol/Port - hIndex is protocol / lIndex is port
* wLength: 0
* Data: None
*
* hIndex protocol is:
* B0 Output handshaking using RTS/CTS
* 0 = disabled
* 1 = enabled
* B1 Output handshaking using DTR/DSR
* 0 = disabled
* 1 = enabled
* B2 Xon/Xoff handshaking
* 0 = disabled
* 1 = enabled
*
* A value of zero in the hIndex field disables handshaking
*
* If Xon/Xoff handshaking is specified, the hValue field should contain the
* XOFF character and the lValue field contains the XON character.
*/
/* FTDI_SIO_SET_BAUD_RATE */
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_SET_BAUDRATE
* wValue: BaudDivisor value - see below
* wIndex: Port
* wLength: 0
* Data: None
* The BaudDivisor values are calculated as follows (too complicated):
*/
/* FTDI_SIO_SET_DATA */
#define FTDI_SIO_SET_DATA_PARITY_NONE (0x0 << 8)
#define FTDI_SIO_SET_DATA_PARITY_ODD (0x1 << 8)
#define FTDI_SIO_SET_DATA_PARITY_EVEN (0x2 << 8)
#define FTDI_SIO_SET_DATA_PARITY_MARK (0x3 << 8)
#define FTDI_SIO_SET_DATA_PARITY_SPACE (0x4 << 8)
#define FTDI_SIO_SET_DATA_STOP_BITS_1 (0x0 << 11)
#define FTDI_SIO_SET_DATA_STOP_BITS_15 (0x1 << 11)
#define FTDI_SIO_SET_DATA_STOP_BITS_2 (0x2 << 11)
#define FTDI_SIO_SET_BREAK (0x1 << 14)
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_SET_DATA
* wValue: Data characteristics (see below)
* wIndex: Port
* wLength: 0
* Data: No
*
* Data characteristics
*
* B0..7 Number of data bits
* B8..10 Parity
* 0 = None
* 1 = Odd
* 2 = Even
* 3 = Mark
* 4 = Space
* B11..13 Stop Bits
* 0 = 1
* 1 = 1.5
* 2 = 2
* B14
* 1 = TX ON (break)
* 0 = TX OFF (normal state)
* B15 Reserved
*
*/
/*
* DATA FORMAT
*
* IN Endpoint
*
* The device reserves the first two bytes of data on this endpoint to contain
* the current values of the modem and line status registers. In the absence of
* data, the device generates a message consisting of these two status bytes
* every 40 ms
*
* Byte 0: Modem Status
*
* Offset Description
* B0 Reserved - must be 1
* B1 Reserved - must be 0
* B2 Reserved - must be 0
* B3 Reserved - must be 0
* B4 Clear to Send (CTS)
* B5 Data Set Ready (DSR)
* B6 Ring Indicator (RI)
* B7 Receive Line Signal Detect (RLSD)
*
* Byte 1: Line Status
*
* Offset Description
* B0 Data Ready (DR)
* B1 Overrun Error (OE)
* B2 Parity Error (PE)
* B3 Framing Error (FE)
* B4 Break Interrupt (BI)
* B5 Transmitter Holding Register (THRE)
* B6 Transmitter Empty (TEMT)
* B7 Error in RCVR FIFO
*
*/
#define FTDI_RS0_CTS (1 << 4)
#define FTDI_RS0_DSR (1 << 5)
#define FTDI_RS0_RI (1 << 6)
#define FTDI_RS0_RLSD (1 << 7)
#define FTDI_RS_DR 1
#define FTDI_RS_OE (1<<1)
#define FTDI_RS_PE (1<<2)
#define FTDI_RS_FE (1<<3)
#define FTDI_RS_BI (1<<4)
#define FTDI_RS_THRE (1<<5)
#define FTDI_RS_TEMT (1<<6)
#define FTDI_RS_FIFO (1<<7)
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void ftdih_init (void);
bool ftdih_open (uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
bool ftdih_set_config (uint8_t daddr, uint8_t itf_num);
bool ftdih_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void ftdih_close (uint8_t daddr);
#endif //TUSB_FTDI_HOST_H

View File

@ -286,7 +286,7 @@ bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t* vid, uint16_t* pid)
*vid = *pid = 0;
usbh_device_t const* dev = get_device(dev_addr);
TU_VERIFY(dev && dev->configured);
TU_VERIFY(dev && dev->addressed && dev->vid != 0);
*vid = dev->vid;
*pid = dev->pid;

View File

@ -439,6 +439,11 @@
#define CFG_TUH_CDC 0
#endif
#ifndef CFG_TUH_CDC_FTDI
// FTDI is not part of CDC class, CDC is used for Serial-over-USB here
#define CFG_TUH_CDC_FTDI 0
#endif
#ifndef CFG_TUH_HID
#define CFG_TUH_HID 0
#endif