audio_4_channel_mic_freertos : merge changes from audio_4_channel_mic.

This commit is contained in:
HiFiPhile 2024-04-28 00:09:06 +02:00
parent bb89a5a5bf
commit a29a3af218
5 changed files with 190 additions and 83 deletions

View File

@ -29,6 +29,11 @@ target_include_directories(${PROJECT} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/src
)
# Add libm for GCC
if (CMAKE_C_COMPILER_ID STREQUAL "GNU")
target_link_libraries(${PROJECT} PUBLIC m)
endif()
# Configure compilation flags and libraries for the example with FreeRTOS.
# See the corresponding function in hw/bsp/FAMILY/family.cmake for details.
family_configure_device_example(${PROJECT} freertos)

View File

@ -1,3 +1,4 @@
CONFIG_IDF_CMAKE=y
CONFIG_FREERTOS_HZ=1000
CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK=y
CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION=y

View File

@ -34,6 +34,7 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "bsp/board_api.h"
#include "tusb.h"
@ -60,13 +61,13 @@
#define USBD_STACK_SIZE (4*configMINIMAL_STACK_SIZE/2) * (CFG_TUSB_DEBUG ? 2 : 1)
#endif
#define BLINKY_STACK_SIZE configMINIMAL_STACK_SIZE
#define AUDIO_STACK_SIZE configMINIMAL_STACK_SIZE
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF PROTYPES
//--------------------------------------------------------------------+
#ifndef AUDIO_SAMPLE_RATE
#define AUDIO_SAMPLE_RATE 48000
#endif
#define AUDIO_SAMPLE_RATE CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE
/* Blink pattern
* - 250 ms : device not mounted
@ -79,12 +80,19 @@ enum {
BLINK_SUSPENDED = 2500,
};
// static timer
StaticTimer_t blinky_tmdef;
TimerHandle_t blinky_tm;
// static task
#if configSUPPORT_STATIC_ALLOCATION
StackType_t blinky_stack[BLINKY_STACK_SIZE];
StaticTask_t blinky_taskdef;
StackType_t usb_device_stack[USBD_STACK_SIZE];
StaticTask_t usb_device_taskdef;
StackType_t audio_stack[AUDIO_STACK_SIZE];
StaticTask_t audio_taskdef;
#endif
static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
@ -97,23 +105,23 @@ uint8_t clkValid;
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
// Audio test data
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_EP_SZ_IN/2]; // Ensure half word aligned
uint16_t samples[] = {0, 0, 0, 0};
#if CFG_TUD_AUDIO_ENABLE_ENCODING
// Audio test data, each buffer contains 2 channels, buffer[0] for CH0-1, buffer[1] for CH1-2
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX*CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE/1000/CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO];
#else
// Audio test data, 4 channels muxed together, buffer[0] for CH0, buffer[1] for CH1, buffer[2] for CH2, buffer[3] for CH3
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX*CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE/1000];
#endif
void led_blinky_cb(TimerHandle_t xTimer);
void led_blinking_task(void* param);
void usb_device_task(void* param);
void audio_task(void);
void audio_task(void* param);
/*------------- MAIN -------------*/
int main(void)
{
board_init();
// soft timer for blinky
blinky_tm = xTimerCreateStatic(NULL, pdMS_TO_TICKS(BLINK_NOT_MOUNTED), true, NULL, led_blinky_cb, &blinky_tmdef);
xTimerStart(blinky_tm, 0);
// Init values
sampFreq = AUDIO_SAMPLE_RATE;
clkValid = 1;
@ -123,11 +131,58 @@ int main(void)
sampleFreqRng.subrange[0].bMax = AUDIO_SAMPLE_RATE;
sampleFreqRng.subrange[0].bRes = 0;
// Generate dummy data
#if CFG_TUD_AUDIO_ENABLE_ENCODING
uint16_t * p_buff = i2s_dummy_buffer[0];
uint16_t dataVal = 0;
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++)
{
// CH0 saw wave
*p_buff++ = dataVal;
// CH1 inverted saw wave
*p_buff++ = 3200 + AUDIO_SAMPLE_RATE/1000 - dataVal;
dataVal+= 32;
}
p_buff = i2s_dummy_buffer[1];
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++)
{
// CH3 square wave
*p_buff++ = cnt < (AUDIO_SAMPLE_RATE/1000/2) ? 3400:5000;
// CH4 sinus wave
float t = 2*3.1415f * cnt / (AUDIO_SAMPLE_RATE/1000);
*p_buff++ = (uint16_t)((int16_t)(sinf(t) * 750) + 6000);
}
#else
uint16_t * p_buff = i2s_dummy_buffer;
uint16_t dataVal = 0;
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++)
{
// CH0 saw wave
*p_buff++ = dataVal;
// CH1 inverted saw wave
*p_buff++ = 3200 + AUDIO_SAMPLE_RATE/1000 - dataVal;
dataVal+= 32;
// CH3 square wave
*p_buff++ = cnt < (AUDIO_SAMPLE_RATE/1000/2) ? 3400:5000;
// CH4 sinus wave
float t = 2*3.1415f * cnt / (AUDIO_SAMPLE_RATE/1000);
*p_buff++ = (uint16_t)((int16_t)(sinf(t) * 750) + 6000);
}
#endif
#if configSUPPORT_STATIC_ALLOCATION
// blinky task
xTaskCreateStatic(led_blinking_task, "blinky", BLINKY_STACK_SIZE, NULL, 1, blinky_stack, &blinky_taskdef);
// Create a task for tinyusb device stack
xTaskCreateStatic(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES-1, usb_device_stack, &usb_device_taskdef);
// Create a task for audio
xTaskCreateStatic(audio_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES-1, audio_stack, &audio_taskdef);
#else
xTaskCreate(led_blinking_task, "blinky", BLINKY_STACK_SIZE, NULL, 1, NULL);
xTaskCreate(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
xTaskCreate(audio_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
#endif
// skip starting scheduler (and return) for ESP32-S2 or ESP32-S3
@ -175,13 +230,13 @@ void usb_device_task(void* param)
// Invoked when device is mounted
void tud_mount_cb(void)
{
xTimerChangePeriod(blinky_tm, pdMS_TO_TICKS(BLINK_MOUNTED), 0);
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
xTimerChangePeriod(blinky_tm, pdMS_TO_TICKS(BLINK_NOT_MOUNTED), 0);
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
@ -190,23 +245,36 @@ void tud_umount_cb(void)
void tud_suspend_cb(bool remote_wakeup_en)
{
(void) remote_wakeup_en;
xTimerChangePeriod(blinky_tm, pdMS_TO_TICKS(BLINK_SUSPENDED), 0);
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
xTimerChangePeriod(blinky_tm, pdMS_TO_TICKS(BLINK_MOUNTED), 0);
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
//--------------------------------------------------------------------+
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
void audio_task(void* param)
{
// Yet to be filled - e.g. put meas data into TX FIFOs etc.
// asm("nop");
(void) param;
// Yet to be filled - e.g. read audio from I2S buffer.
// Here we simulate a I2S receive callback every 1ms.
while (1) {
vTaskDelay(1);
#if CFG_TUD_AUDIO_ENABLE_ENCODING
// Write I2S buffer into FIFO
for (uint8_t cnt=0; cnt < 2; cnt++)
{
tud_audio_write_support_ff(cnt, i2s_dummy_buffer[cnt], AUDIO_SAMPLE_RATE/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX);
}
#else
tud_audio_write(i2s_dummy_buffer, AUDIO_SAMPLE_RATE/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX);
#endif
}
}
//--------------------------------------------------------------------+
@ -427,7 +495,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
{
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Sample Freq.\r\n");
return tud_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
// Buffered control transfer is needed for IN flow control to work
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Sample Freq. range\r\n");
@ -463,7 +532,14 @@ bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, u
(void) ep_in;
(void) cur_alt_setting;
tud_audio_write((uint8_t*)i2s_dummy_buffer, CFG_TUD_AUDIO_EP_SZ_IN);
// In read world application data flow is driven by I2S clock,
// both tud_audio_tx_done_pre_load_cb() & tud_audio_tx_done_post_load_cb() are hardly used.
// For example in your I2S receive callback:
// void I2S_Rx_Callback(int channel, const void* data, uint16_t samples)
// {
// tud_audio_write_support_ff(channel, data, samples * N_BYTES_PER_SAMPLE * N_CHANNEL_PER_FIFO);
// }
return true;
}
@ -476,14 +552,6 @@ bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uin
(void) ep_in;
(void) cur_alt_setting;
uint16_t* p_buff = i2s_dummy_buffer;
for (int samples_num = 0; samples_num < AUDIO_SAMPLE_RATE/1000; samples_num++) {
for (int ch=0; ch < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX; ch++) {
*p_buff++ = samples[ch];
samples[ch] = samples[ch]+(ch+1);
}
}
return true;
}
@ -498,11 +566,17 @@ bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const
///--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinky_cb(TimerHandle_t xTimer)
{
(void) xTimer;
void led_blinking_task(void* param) {
(void) param;
static uint32_t start_ms = 0;
static bool led_state = false;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
while (1) {
// Blink every interval ms
vTaskDelay(blink_interval_ms / portTICK_PERIOD_MS);
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
}
}

View File

@ -109,24 +109,37 @@ extern "C" {
//--------------------------------------------------------------------
// Have a look into audio_device.h for all configurations
#define CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE 48000
#define CFG_TUD_AUDIO_FUNC_1_DESC_LEN TUD_AUDIO_MIC_FOUR_CH_DESC_LEN
#define CFG_TUD_AUDIO_FUNC_1_DESC_LEN TUD_AUDIO_MIC_FOUR_CH_DESC_LEN
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 1
#define CFG_TUD_AUDIO_FUNC_1_CTRL_BUF_SZ 64
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 1
#define CFG_TUD_AUDIO_FUNC_1_CTRL_BUF_SZ 64
#define CFG_TUD_AUDIO_ENABLE_EP_IN 1
#define CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX 2 // This value is not required by the driver, it parses this information from the descriptor once the alternate interface is set by the host - we use it for the setup
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 4 // This value is not required by the driver, it parses this information from the descriptor once the alternate interface is set by the host - we use it for the setup
#define CFG_TUD_AUDIO_EP_SZ_IN 48 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX // 48 Samples (48 kHz) x 2 Bytes/Sample x CFG_TUD_AUDIO_N_CHANNELS_TX Channels - the Windows driver always needs an extra sample per channel of space more, otherwise it complains... found by trial and error
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_ENABLE_EP_IN 1
#define CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX 2 // This value is not required by the driver, it parses this information from the descriptor once the alternate interface is set by the host - we use it for the setup
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 4 // This value is not required by the driver, it parses this information from the descriptor once the alternate interface is set by the host - we use it for the setup
#define CFG_TUD_AUDIO_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_ENABLE_ENCODING 0
#define CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING 0
#define CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX 2 // One I2S stream contains two channels, each stream is saved within one support FIFO - this value is currently fixed, the driver does not support a changing value
#define CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO (CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX / CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX)
#define CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ (CFG_TUD_AUDIO_EP_SZ_IN / CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO)
#define CFG_TUD_AUDIO_ENABLE_ENCODING 1
#define CFG_TUD_AUDIO_EP_IN_FLOW_CONTROL 1
#if CFG_TUD_AUDIO_ENABLE_ENCODING
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_ENABLE_TYPE_I_ENCODING 1
#define CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX 2 // One I2S stream contains two channels, each stream is saved within one support FIFO - this value is currently fixed, the driver does not support a changing value
#define CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO (CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX / CFG_TUD_AUDIO_FUNC_1_CHANNEL_PER_FIFO_TX)
#define CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * (CFG_TUD_AUDIO_EP_SZ_IN / CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO) // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#else
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_EP_SZ_IN // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#endif
#ifdef __cplusplus
}

View File

@ -23,6 +23,7 @@
*
*/
#include "bsp/board_api.h"
#include "tusb.h"
/* A combination of interfaces must have a unique product id, since PC will save device driver after the first plug.
@ -44,7 +45,7 @@ tusb_desc_device_t const desc_device =
.bDescriptorType = TUSB_DESC_DEVICE,
.bcdUSB = 0x0200,
// Use Interface Association Descriptor (IAD) for CDC
// Use Interface Association Descriptor (IAD) for Audio
// As required by USB Specs IAD's subclass must be common class (2) and protocol must be IAD (1)
.bDeviceClass = TUSB_CLASS_MISC,
.bDeviceSubClass = MISC_SUBCLASS_COMMON,
@ -96,7 +97,7 @@ enum
uint8_t const desc_configuration[] =
{
// Interface count, string index, total length, attribute, power in mA
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
@ -116,50 +117,63 @@ uint8_t const * tud_descriptor_configuration_cb(uint8_t index)
// String Descriptors
//--------------------------------------------------------------------+
// array of pointer to string descriptors
char const* string_desc_arr [] =
{
(const char[]) { 0x09, 0x04 }, // 0: is supported language is English (0x0409)
"PaniRCorp", // 1: Manufacturer
"MicNode_4_Ch", // 2: Product
"123458", // 3: Serials, should use chip ID
"UAC2", // 4: Audio Interface
// String Descriptor Index
enum {
STRID_LANGID = 0,
STRID_MANUFACTURER,
STRID_PRODUCT,
STRID_SERIAL,
};
static uint16_t _desc_str[32];
// array of pointer to string descriptors
char const* string_desc_arr [] = {
(const char[]) { 0x09, 0x04 }, // 0: is supported language is English (0x0409)
"PaniRCorp", // 1: Manufacturer
"MicNode_4_Ch", // 2: Product
NULL, // 3: Serials will use unique ID if possible
"UAC2", // 4: Audio Interface
};
static uint16_t _desc_str[32 + 1];
// Invoked when received GET STRING DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete
uint16_t const* tud_descriptor_string_cb(uint8_t index, uint16_t langid)
{
uint16_t const *tud_descriptor_string_cb(uint8_t index, uint16_t langid) {
(void) langid;
size_t chr_count;
uint8_t chr_count;
switch ( index ) {
case STRID_LANGID:
memcpy(&_desc_str[1], string_desc_arr[0], 2);
chr_count = 1;
break;
if ( index == 0)
{
memcpy(&_desc_str[1], string_desc_arr[0], 2);
chr_count = 1;
}else
{
// Convert ASCII string into UTF-16
case STRID_SERIAL:
chr_count = board_usb_get_serial(_desc_str + 1, 32);
break;
if ( !(index < sizeof(string_desc_arr)/sizeof(string_desc_arr[0])) ) return NULL;
default:
// Note: the 0xEE index string is a Microsoft OS 1.0 Descriptors.
// https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
const char* str = string_desc_arr[index];
if ( !(index < sizeof(string_desc_arr) / sizeof(string_desc_arr[0])) ) return NULL;
// Cap at max char
chr_count = strlen(str);
if ( chr_count > 31 ) chr_count = 31;
const char *str = string_desc_arr[index];
for(uint8_t i=0; i<chr_count; i++)
{
_desc_str[1+i] = str[i];
}
// Cap at max char
chr_count = strlen(str);
size_t const max_count = sizeof(_desc_str) / sizeof(_desc_str[0]) - 1; // -1 for string type
if ( chr_count > max_count ) chr_count = max_count;
// Convert ASCII string into UTF-16
for ( size_t i = 0; i < chr_count; i++ ) {
_desc_str[1 + i] = str[i];
}
break;
}
// first byte is length (including header), second byte is string type
_desc_str[0] = (TUSB_DESC_STRING << 8 ) | (2*chr_count + 2);
_desc_str[0] = (uint16_t) ((TUSB_DESC_STRING << 8) | (2 * chr_count + 2));
return _desc_str;
}