/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "../board.h" #include "msp430.h" #define LED_PORT P1OUT #define LED_PIN BIT0 #define LED_STATE_ON 1 #define BUTTON_PORT P1IN #define BUTTON_PIN BIT1 #define BUTTON_STATE_ACTIVE 1 uint32_t cnt = 0; static void SystemClock_Config(void) { WDTCTL = WDTPW + WDTHOLD; // Disable watchdog. // Increase VCore to level 2- required for 16 MHz operation on this MCU. PMMCTL0 = PMMPW + PMMCOREV_2; UCSCTL3 = SELREF__XT2CLK; // FLL is fed by XT2. // XT1 used for ACLK (default- not used in this demo) P5SEL |= BIT4; // Required to enable XT1 // Loop until XT1 fault flag is cleared. do { UCSCTL7 &= ~XT1LFOFFG; }while(UCSCTL7 & XT1LFOFFG); // XT2 is 4 MHz an external oscillator, use PLL to boost to 16 MHz. P5SEL |= BIT2; // Required to enable XT2. // Loop until XT2 fault flag is cleared do { UCSCTL7 &= ~XT2OFFG; }while(UCSCTL7 & XT2OFFG); // Kickstart the DCO into the correct frequency range, otherwise a // fault will occur. // FIXME: DCORSEL_6 should work according to datasheet params, but generates // a fault. I am not sure why it faults. UCSCTL1 = DCORSEL_7; UCSCTL2 = FLLD_2 + 3; // DCO freq = D * (N + 1) * (FLLREFCLK / n) // DCOCLKDIV freq = (N + 1) * (FLLREFCLK / n) // N = 3, D = 2, thus DCO freq = 32 MHz. // MCLK configured for 16 MHz using XT2. // SMCLK configured for 8 MHz using XT2. UCSCTL4 |= SELM__DCOCLKDIV + SELS__DCOCLKDIV; UCSCTL5 |= DIVM__16 + DIVS__2; // Now wait till everything's stabilized. do { UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG); SFRIFG1 &= ~OFIFG; }while(SFRIFG1 & OFIFG); // Configure Timer A to use SMCLK as a source. Count 1000 ticks at 1 MHz. TA0CCTL0 |= CCIE; TA0CCR0 = 999; // 1000 ticks. TA0CTL |= TASSEL_2 + ID_3 + MC__UP; // Use SMCLK, divide by 8, start timer. // Initialize USB power and PLL. USBKEYPID = USBKEY; // VUSB enabled automatically. // Wait two milliseconds to stabilize, per manual recommendation. uint32_t ms_elapsed = board_millis(); do { while((board_millis() - ms_elapsed) < 2); }while(!(USBPWRCTL & USBBGVBV)); // USB uses XT2 (4 MHz) directly. Enable the PLL. USBPLLDIVB |= USBPLL_SETCLK_4_0; USBPLLCTL |= (UPFDEN | UPLLEN); // Wait until PLL locks. Check every 2ms, per manual. ms_elapsed = board_millis(); do { USBPLLIR &= ~USBOOLIFG; while((board_millis() - ms_elapsed) < 2); }while(USBPLLIR & USBOOLIFG); USBKEYPID = 0; } uint32_t wait = 0; void board_init(void) { __bis_SR_register(GIE); // Enable interrupts. SystemClock_Config(); // Enable basic I/O. P1DIR |= LED_PIN; // LED output. P1REN |= BUTTON_PIN; // Internal resistor enable. P1OUT |= BUTTON_PIN; // Pullup. // Enable the backchannel UART (115200) P4DIR |= BIT5; P4SEL |= (BIT5 | BIT4); UCA1CTL1 |= (UCSSEL__SMCLK | UCSWRST); // Hold in reset, use SMCLK. UCA1BRW = 4; UCA1MCTL |= (UCBRF_3 | UCBRS_5 | UCOS16); // Overampling mode, 115200 baud. // Copied from manual. UCA1CTL1 &= ~UCSWRST; // Set up USB pins. USBKEYPID = USBKEY; USBPHYCTL |= PUSEL; // Convert USB D+/D- pins to USB functionality. USBKEYPID = 0; } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { if(state) { LED_PORT |= LED_PIN; } else { LED_PORT &= ~LED_PIN; } } uint32_t board_button_read(void) { return (P1IN & BIT1); } int board_uart_read(uint8_t * buf, int len) { for(int i = 0; i < len; i++) { // Wait until something to receive (cleared by reading buffer). while(!(UCA1IFG & UCRXIFG)); buf[i] = UCA1RXBUF; } return 0; } int board_uart_write(void const * buf, int len) { const char * char_buf = (const char *) buf; for(int i = 0; i < len; i++) { // Wait until TX buffer is empty (cleared by writing buffer). while(!(UCA1IFG & UCTXIFG)); UCA1TXBUF = char_buf[i]; } return 0; } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void __attribute__ ((interrupt(TIMER0_A0_VECTOR))) TIMER0_A0_ISR (void) { system_ticks++; // TAxCCR0 CCIFG resets itself as soon as interrupt is invoked. } uint32_t board_millis(void) { return system_ticks; } #endif