/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_CDC) #include "cdc_device.h" #include "device/usbd_pvt.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ enum { BULK_PACKET_SIZE = (TUD_OPT_HIGH_SPEED ? 512 : 64) }; typedef struct { uint8_t itf_num; uint8_t ep_notif; uint8_t ep_in; uint8_t ep_out; // Bit 0: DTR (Data Terminal Ready), Bit 1: RTS (Request to Send) uint8_t line_state; /*------------- From this point, data is not cleared by bus reset -------------*/ char wanted_char; cdc_line_coding_t line_coding; // FIFO tu_fifo_t rx_ff; tu_fifo_t tx_ff; uint8_t rx_ff_buf[CFG_TUD_CDC_RX_BUFSIZE]; uint8_t tx_ff_buf[CFG_TUD_CDC_TX_BUFSIZE]; #if CFG_FIFO_MUTEX osal_mutex_def_t rx_ff_mutex; osal_mutex_def_t tx_ff_mutex; #endif // Endpoint Transfer buffer CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_CDC_EP_BUFSIZE]; CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_CDC_EP_BUFSIZE]; }cdcd_interface_t; #define ITF_MEM_RESET_SIZE offsetof(cdcd_interface_t, wanted_char) //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ CFG_TUSB_MEM_SECTION static cdcd_interface_t _cdcd_itf[CFG_TUD_CDC]; static void _prep_out_transaction (cdcd_interface_t* p_cdc) { uint8_t const rhport = TUD_OPT_RHPORT; uint16_t available = tu_fifo_remaining(&p_cdc->rx_ff); // Prepare for incoming data but only allow what we can store in the ring buffer. // TODO Actually we can still carry out the transfer, keeping count of received bytes // and slowly move it to the FIFO when read(). // This pre-check reduces endpoint claiming TU_VERIFY(available >= sizeof(p_cdc->epout_buf), ); // claim endpoint TU_VERIFY(usbd_edpt_claim(rhport, p_cdc->ep_out), ); // fifo can be changed before endpoint is claimed available = tu_fifo_remaining(&p_cdc->rx_ff); if ( available >= sizeof(p_cdc->epout_buf) ) { usbd_edpt_xfer(rhport, p_cdc->ep_out, p_cdc->epout_buf, sizeof(p_cdc->epout_buf)); }else { // Release endpoint since we don't make any transfer usbd_edpt_release(rhport, p_cdc->ep_out); } } //--------------------------------------------------------------------+ // APPLICATION API //--------------------------------------------------------------------+ bool tud_cdc_n_connected(uint8_t itf) { // DTR (bit 0) active is considered as connected return tud_ready() && tu_bit_test(_cdcd_itf[itf].line_state, 0); } uint8_t tud_cdc_n_get_line_state (uint8_t itf) { return _cdcd_itf[itf].line_state; } void tud_cdc_n_get_line_coding (uint8_t itf, cdc_line_coding_t* coding) { (*coding) = _cdcd_itf[itf].line_coding; } void tud_cdc_n_set_wanted_char (uint8_t itf, char wanted) { _cdcd_itf[itf].wanted_char = wanted; } //--------------------------------------------------------------------+ // READ API //--------------------------------------------------------------------+ uint32_t tud_cdc_n_available(uint8_t itf) { return tu_fifo_count(&_cdcd_itf[itf].rx_ff); } uint32_t tud_cdc_n_read(uint8_t itf, void* buffer, uint32_t bufsize) { cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; uint32_t num_read = tu_fifo_read_n(&p_cdc->rx_ff, buffer, bufsize); _prep_out_transaction(p_cdc); return num_read; } bool tud_cdc_n_peek(uint8_t itf, int pos, uint8_t* chr) { return tu_fifo_peek_at(&_cdcd_itf[itf].rx_ff, pos, chr); } void tud_cdc_n_read_flush (uint8_t itf) { cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; tu_fifo_clear(&p_cdc->rx_ff); _prep_out_transaction(p_cdc); } //--------------------------------------------------------------------+ // WRITE API //--------------------------------------------------------------------+ uint32_t tud_cdc_n_write(uint8_t itf, void const* buffer, uint32_t bufsize) { cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; uint16_t ret = tu_fifo_write_n(&p_cdc->tx_ff, buffer, bufsize); // flush if queue more than packet size if ( tu_fifo_count(&p_cdc->tx_ff) >= BULK_PACKET_SIZE ) { tud_cdc_n_write_flush(itf); } return ret; } uint32_t tud_cdc_n_write_flush (uint8_t itf) { cdcd_interface_t* p_cdc = &_cdcd_itf[itf]; // Skip if usb is not ready yet TU_VERIFY( tud_ready(), 0 ); // No data to send if ( !tu_fifo_count(&p_cdc->tx_ff) ) return 0; uint8_t const rhport = TUD_OPT_RHPORT; // Claim the endpoint TU_VERIFY( usbd_edpt_claim(rhport, p_cdc->ep_in), 0 ); // Pull data from FIFO uint16_t const count = tu_fifo_read_n(&p_cdc->tx_ff, p_cdc->epin_buf, sizeof(p_cdc->epin_buf)); if ( count ) { TU_ASSERT( usbd_edpt_xfer(rhport, p_cdc->ep_in, p_cdc->epin_buf, count), 0 ); return count; }else { // Release endpoint since we don't make any transfer // Note: data is dropped if terminal is not connected usbd_edpt_release(rhport, p_cdc->ep_in); return 0; } } uint32_t tud_cdc_n_write_available (uint8_t itf) { return tu_fifo_remaining(&_cdcd_itf[itf].tx_ff); } bool tud_cdc_n_write_clear (uint8_t itf) { return tu_fifo_clear(&_cdcd_itf[itf].tx_ff); } //--------------------------------------------------------------------+ // USBD Driver API //--------------------------------------------------------------------+ void cdcd_init(void) { tu_memclr(_cdcd_itf, sizeof(_cdcd_itf)); for(uint8_t i=0; iwanted_char = -1; // default line coding is : stop bit = 1, parity = none, data bits = 8 p_cdc->line_coding.bit_rate = 115200; p_cdc->line_coding.stop_bits = 0; p_cdc->line_coding.parity = 0; p_cdc->line_coding.data_bits = 8; // Config RX fifo tu_fifo_config(&p_cdc->rx_ff, p_cdc->rx_ff_buf, TU_ARRAY_SIZE(p_cdc->rx_ff_buf), 1, false); // Config TX fifo as overwritable at initialization and will be changed to non-overwritable // if terminal supports DTR bit. Without DTR we do not know if data is actually polled by terminal. // In this way, the most current data is prioritized. tu_fifo_config(&p_cdc->tx_ff, p_cdc->tx_ff_buf, TU_ARRAY_SIZE(p_cdc->tx_ff_buf), 1, true); #if CFG_FIFO_MUTEX tu_fifo_config_mutex(&p_cdc->rx_ff, osal_mutex_create(&p_cdc->rx_ff_mutex)); tu_fifo_config_mutex(&p_cdc->tx_ff, osal_mutex_create(&p_cdc->tx_ff_mutex)); #endif } } void cdcd_reset(uint8_t rhport) { (void) rhport; for(uint8_t i=0; irx_ff); tu_fifo_clear(&p_cdc->tx_ff); tu_fifo_set_overwritable(&p_cdc->tx_ff, true); } } uint16_t cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len) { // Only support ACM subclass TU_VERIFY( TUSB_CLASS_CDC == itf_desc->bInterfaceClass && CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass, 0); // Note: 0xFF can be used with RNDIS TU_VERIFY(tu_within(CDC_COMM_PROTOCOL_NONE, itf_desc->bInterfaceProtocol, CDC_COMM_PROTOCOL_ATCOMMAND_CDMA), 0); // Find available interface cdcd_interface_t * p_cdc = NULL; for(uint8_t cdc_id=0; cdc_iditf_num = itf_desc->bInterfaceNumber; uint16_t drv_len = sizeof(tusb_desc_interface_t); uint8_t const * p_desc = tu_desc_next( itf_desc ); // Communication Functional Descriptors while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len ) { drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); } if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) ) { // notification endpoint if any TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0 ); p_cdc->ep_notif = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress; drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); } //------------- Data Interface (if any) -------------// if ( (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) && (TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const *) p_desc)->bInterfaceClass) ) { // next to endpoint descriptor drv_len += tu_desc_len(p_desc); p_desc = tu_desc_next(p_desc); // Open endpoint pair TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in), 0 ); drv_len += 2*sizeof(tusb_desc_endpoint_t); } // Prepare for incoming data _prep_out_transaction(p_cdc); return drv_len; } // Invoked when a control transfer occurred on an interface of this class // Driver response accordingly to the request and the transfer stage (setup/data/ack) // return false to stall control endpoint (e.g unsupported request) bool cdcd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request) { // Handle class request only TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS); uint8_t itf = 0; cdcd_interface_t* p_cdc = _cdcd_itf; // Identify which interface to use for ( ; ; itf++, p_cdc++) { if (itf >= TU_ARRAY_SIZE(_cdcd_itf)) return false; if ( p_cdc->itf_num == request->wIndex ) break; } switch ( request->bRequest ) { case CDC_REQUEST_SET_LINE_CODING: if (stage == CONTROL_STAGE_SETUP) { TU_LOG2(" Set Line Coding\r\n"); tud_control_xfer(rhport, request, &p_cdc->line_coding, sizeof(cdc_line_coding_t)); } else if ( stage == CONTROL_STAGE_ACK) { if ( tud_cdc_line_coding_cb ) tud_cdc_line_coding_cb(itf, &p_cdc->line_coding); } break; case CDC_REQUEST_GET_LINE_CODING: if (stage == CONTROL_STAGE_SETUP) { TU_LOG2(" Get Line Coding\r\n"); tud_control_xfer(rhport, request, &p_cdc->line_coding, sizeof(cdc_line_coding_t)); } break; case CDC_REQUEST_SET_CONTROL_LINE_STATE: if (stage == CONTROL_STAGE_SETUP) { tud_control_status(rhport, request); } else if (stage == CONTROL_STAGE_ACK) { // CDC PSTN v1.2 section 6.3.12 // Bit 0: Indicates if DTE is present or not. // This signal corresponds to V.24 signal 108/2 and RS-232 signal DTR (Data Terminal Ready) // Bit 1: Carrier control for half-duplex modems. // This signal corresponds to V.24 signal 105 and RS-232 signal RTS (Request to Send) bool const dtr = tu_bit_test(request->wValue, 0); bool const rts = tu_bit_test(request->wValue, 1); p_cdc->line_state = (uint8_t) request->wValue; // Disable fifo overwriting if DTR bit is set tu_fifo_set_overwritable(&p_cdc->tx_ff, !dtr); TU_LOG2(" Set Control Line State: DTR = %d, RTS = %d\r\n", dtr, rts); // Invoke callback if ( tud_cdc_line_state_cb ) tud_cdc_line_state_cb(itf, dtr, rts); } break; default: return false; // stall unsupported request } return true; } bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { (void) result; uint8_t itf; cdcd_interface_t* p_cdc; // Identify which interface to use for (itf = 0; itf < CFG_TUD_CDC; itf++) { p_cdc = &_cdcd_itf[itf]; if ( ( ep_addr == p_cdc->ep_out ) || ( ep_addr == p_cdc->ep_in ) ) break; } TU_ASSERT(itf < CFG_TUD_CDC); // Received new data if ( ep_addr == p_cdc->ep_out ) { // TODO search for wanted char first for better performance for(uint32_t i=0; irx_ff, &p_cdc->epout_buf[i]); // Check for wanted char and invoke callback if needed if ( tud_cdc_rx_wanted_cb && ( ((signed char) p_cdc->wanted_char) != -1 ) && ( p_cdc->wanted_char == p_cdc->epout_buf[i] ) ) { tud_cdc_rx_wanted_cb(itf, p_cdc->wanted_char); } } // invoke receive callback (if there is still data) if (tud_cdc_rx_cb && tu_fifo_count(&p_cdc->rx_ff) ) tud_cdc_rx_cb(itf); // prepare for OUT transaction _prep_out_transaction(p_cdc); } // Data sent to host, we continue to fetch from tx fifo to send. // Note: This will cause incorrect baudrate set in line coding. // Though maybe the baudrate is not really important !!! if ( ep_addr == p_cdc->ep_in ) { // invoke transmit callback to possibly refill tx fifo if ( tud_cdc_tx_complete_cb ) tud_cdc_tx_complete_cb(itf); if ( 0 == tud_cdc_n_write_flush(itf) ) { // If there is no data left, a ZLP should be sent if // xferred_bytes is multiple of EP Packet size and not zero if ( !tu_fifo_count(&p_cdc->tx_ff) && xferred_bytes && (0 == (xferred_bytes & (BULK_PACKET_SIZE-1))) ) { if ( usbd_edpt_claim(rhport, p_cdc->ep_in) ) { usbd_edpt_xfer(rhport, p_cdc->ep_in, NULL, 0); } } } } // nothing to do with notif endpoint for now return true; } #endif