//***************************************************************************** // +--+ // | ++----+ // +-++ | // | | // +-+--+ | // | +--+--+ // +----+ Copyright (c) 2009-10 Code Red Technologies Ltd. // // Microcontroller Startup code for use with Red Suite // // Version : 101130 // // Software License Agreement // // The software is owned by Code Red Technologies and/or its suppliers, and is // protected under applicable copyright laws. All rights are reserved. Any // use in violation of the foregoing restrictions may subject the user to criminal // sanctions under applicable laws, as well as to civil liability for the breach // of the terms and conditions of this license. // // THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED // OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. // USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT // TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH // CODE RED TECHNOLOGIES LTD. // //***************************************************************************** #if defined (__cplusplus) #ifdef __REDLIB__ #error Redlib does not support C++ #else //***************************************************************************** // // The entry point for the C++ library startup // //***************************************************************************** extern "C" { extern void __libc_init_array(void); } #endif #endif #define WEAK __attribute__ ((weak)) #define ALIAS(f) __attribute__ ((weak, alias (#f))) // Code Red - if CMSIS is being used, then SystemInit() routine // will be called by startup code rather than in application's main() #if defined (__USE_CMSIS) #include "system_LPC17xx.h" #endif //***************************************************************************** #if defined (__cplusplus) extern "C" { #endif //***************************************************************************** // // Forward declaration of the default handlers. These are aliased. // When the application defines a handler (with the same name), this will // automatically take precedence over these weak definitions // //***************************************************************************** void ResetISR(void); WEAK void NMI_Handler(void); WEAK void HardFault_Handler(void); WEAK void MemManage_Handler(void); WEAK void BusFault_Handler(void); WEAK void UsageFault_Handler(void); WEAK void SVCall_Handler(void); WEAK void DebugMon_Handler(void); WEAK void PendSV_Handler(void); WEAK void SysTick_Handler(void); WEAK void IntDefaultHandler(void); //***************************************************************************** // // Forward declaration of the specific IRQ handlers. These are aliased // to the IntDefaultHandler, which is a 'forever' loop. When the application // defines a handler (with the same name), this will automatically take // precedence over these weak definitions // //***************************************************************************** void WDT_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER0_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER1_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER2_IRQHandler(void) ALIAS(IntDefaultHandler); void TIMER3_IRQHandler(void) ALIAS(IntDefaultHandler); void UART0_IRQHandler(void) ALIAS(IntDefaultHandler); void UART1_IRQHandler(void) ALIAS(IntDefaultHandler); void UART2_IRQHandler(void) ALIAS(IntDefaultHandler); void UART3_IRQHandler(void) ALIAS(IntDefaultHandler); void PWM1_IRQHandler(void) ALIAS(IntDefaultHandler); void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler); void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler); void I2C2_IRQHandler(void) ALIAS(IntDefaultHandler); void SPI_IRQHandler(void) ALIAS(IntDefaultHandler); void SSP0_IRQHandler(void) ALIAS(IntDefaultHandler); void SSP1_IRQHandler(void) ALIAS(IntDefaultHandler); void PLL0_IRQHandler(void) ALIAS(IntDefaultHandler); void RTC_IRQHandler(void) ALIAS(IntDefaultHandler); void EINT0_IRQHandler(void) ALIAS(IntDefaultHandler); void EINT1_IRQHandler(void) ALIAS(IntDefaultHandler); void EINT2_IRQHandler(void) ALIAS(IntDefaultHandler); void EINT3_IRQHandler(void) ALIAS(IntDefaultHandler); void ADC_IRQHandler(void) ALIAS(IntDefaultHandler); void BOD_IRQHandler(void) ALIAS(IntDefaultHandler); void USB_IRQHandler(void) ALIAS(IntDefaultHandler); void CAN_IRQHandler(void) ALIAS(IntDefaultHandler); void DMA_IRQHandler(void) ALIAS(IntDefaultHandler); void I2S_IRQHandler(void) ALIAS(IntDefaultHandler); void ENET_IRQHandler(void) ALIAS(IntDefaultHandler); void RIT_IRQHandler(void) ALIAS(IntDefaultHandler); void MCPWM_IRQHandler(void) ALIAS(IntDefaultHandler); void QEI_IRQHandler(void) ALIAS(IntDefaultHandler); void PLL1_IRQHandler(void) ALIAS(IntDefaultHandler); void USBActivity_IRQHandler(void) ALIAS(IntDefaultHandler); void CANActivity_IRQHandler(void) ALIAS(IntDefaultHandler); //***************************************************************************** // // The entry point for the application. // __main() is the entry point for Redlib based applications // main() is the entry point for Newlib based applications // //***************************************************************************** #if defined (__REDLIB__) extern void __main(void); #endif extern int main(void); //***************************************************************************** // // External declaration for the pointer to the stack top from the Linker Script // //***************************************************************************** extern void _vStackTop(void); //***************************************************************************** #if defined (__cplusplus) } // extern "C" #endif //***************************************************************************** // // The vector table. // This relies on the linker script to place at correct location in memory. // //***************************************************************************** extern void (* const g_pfnVectors[])(void); __attribute__ ((section(".isr_vector"))) void (* const g_pfnVectors[])(void) = { // Core Level - CM3 &_vStackTop, // The initial stack pointer ResetISR, // The reset handler NMI_Handler, // The NMI handler HardFault_Handler, // The hard fault handler MemManage_Handler, // The MPU fault handler BusFault_Handler, // The bus fault handler UsageFault_Handler, // The usage fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved SVCall_Handler, // SVCall handler DebugMon_Handler, // Debug monitor handler 0, // Reserved PendSV_Handler, // The PendSV handler SysTick_Handler, // The SysTick handler // Chip Level - LPC17 WDT_IRQHandler, // 16, 0x40 - WDT TIMER0_IRQHandler, // 17, 0x44 - TIMER0 TIMER1_IRQHandler, // 18, 0x48 - TIMER1 TIMER2_IRQHandler, // 19, 0x4c - TIMER2 TIMER3_IRQHandler, // 20, 0x50 - TIMER3 UART0_IRQHandler, // 21, 0x54 - UART0 UART1_IRQHandler, // 22, 0x58 - UART1 UART2_IRQHandler, // 23, 0x5c - UART2 UART3_IRQHandler, // 24, 0x60 - UART3 PWM1_IRQHandler, // 25, 0x64 - PWM1 I2C0_IRQHandler, // 26, 0x68 - I2C0 I2C1_IRQHandler, // 27, 0x6c - I2C1 I2C2_IRQHandler, // 28, 0x70 - I2C2 SPI_IRQHandler, // 29, 0x74 - SPI SSP0_IRQHandler, // 30, 0x78 - SSP0 SSP1_IRQHandler, // 31, 0x7c - SSP1 PLL0_IRQHandler, // 32, 0x80 - PLL0 (Main PLL) RTC_IRQHandler, // 33, 0x84 - RTC EINT0_IRQHandler, // 34, 0x88 - EINT0 EINT1_IRQHandler, // 35, 0x8c - EINT1 EINT2_IRQHandler, // 36, 0x90 - EINT2 EINT3_IRQHandler, // 37, 0x94 - EINT3 ADC_IRQHandler, // 38, 0x98 - ADC BOD_IRQHandler, // 39, 0x9c - BOD USB_IRQHandler, // 40, 0xA0 - USB CAN_IRQHandler, // 41, 0xa4 - CAN DMA_IRQHandler, // 42, 0xa8 - GP DMA I2S_IRQHandler, // 43, 0xac - I2S ENET_IRQHandler, // 44, 0xb0 - Ethernet RIT_IRQHandler, // 45, 0xb4 - RITINT MCPWM_IRQHandler, // 46, 0xb8 - Motor Control PWM QEI_IRQHandler, // 47, 0xbc - Quadrature Encoder PLL1_IRQHandler, // 48, 0xc0 - PLL1 (USB PLL) USBActivity_IRQHandler, // 49, 0xc4 - USB Activity interrupt to wakeup CANActivity_IRQHandler, // 50, 0xc8 - CAN Activity interrupt to wakeup }; //***************************************************************************** // Functions to carry out the initialization of RW and BSS data sections. These // are written as separate functions rather than being inlined within the // ResetISR() function in order to cope with MCUs with multiple banks of // memory. //***************************************************************************** __attribute__ ((section(".after_vectors"))) void data_init(unsigned int romstart, unsigned int start, unsigned int len) { unsigned int *pulDest = (unsigned int*) start; unsigned int *pulSrc = (unsigned int*) romstart; unsigned int loop; for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = *pulSrc++; } __attribute__ ((section(".after_vectors"))) void bss_init(unsigned int start, unsigned int len) { unsigned int *pulDest = (unsigned int*) start; unsigned int loop; for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = 0; } #ifndef USE_OLD_STYLE_DATA_BSS_INIT //***************************************************************************** // The following symbols are constructs generated by the linker, indicating // the location of various points in the "Global Section Table". This table is // created by the linker via the Code Red managed linker script mechanism. It // contains the load address, execution address and length of each RW data // section and the execution and length of each BSS (zero initialized) section. //***************************************************************************** extern unsigned int __data_section_table; extern unsigned int __data_section_table_end; extern unsigned int __bss_section_table; extern unsigned int __bss_section_table_end; #else //***************************************************************************** // The following symbols are constructs generated by the linker, indicating // the load address, execution address and length of the RW data section and // the execution and length of the BSS (zero initialized) section. // Note that these symbols are not normally used by the managed linker script // mechanism in Red Suite/LPCXpresso 3.6 (Windows) and LPCXpresso 3.8 (Linux). // They are provide here simply so this startup code can be used with earlier // versions of Red Suite which do not support the more advanced managed linker // script mechanism introduced in the above version. To enable their use, // define "USE_OLD_STYLE_DATA_BSS_INIT". //***************************************************************************** extern unsigned int _etext; extern unsigned int _data; extern unsigned int _edata; extern unsigned int _bss; extern unsigned int _ebss; #endif //***************************************************************************** // Reset entry point for your code. // Sets up a simple runtime environment and initializes the C/C++ // library. //***************************************************************************** __attribute__ ((section(".after_vectors"))) void ResetISR(void) { #ifndef USE_OLD_STYLE_DATA_BSS_INIT // // Copy the data sections from flash to SRAM. // unsigned int LoadAddr, ExeAddr, SectionLen; unsigned int *SectionTableAddr; // Load base address of Global Section Table SectionTableAddr = &__data_section_table; // Copy the data sections from flash to SRAM. while (SectionTableAddr < &__data_section_table_end) { LoadAddr = *SectionTableAddr++; ExeAddr = *SectionTableAddr++; SectionLen = *SectionTableAddr++; data_init(LoadAddr, ExeAddr, SectionLen); } // At this point, SectionTableAddr = &__bss_section_table; // Zero fill the bss segment while (SectionTableAddr < &__bss_section_table_end) { ExeAddr = *SectionTableAddr++; SectionLen = *SectionTableAddr++; bss_init(ExeAddr, SectionLen); } #else // Use Old Style Data and BSS section initialization. // This will only initialize a single RAM bank. unsigned int * LoadAddr, *ExeAddr, *EndAddr, SectionLen; // Copy the data segment from flash to SRAM. LoadAddr = &_etext; ExeAddr = &_data; EndAddr = &_edata; SectionLen = (void*)EndAddr - (void*)ExeAddr; data_init((unsigned int)LoadAddr, (unsigned int)ExeAddr, SectionLen); // Zero fill the bss segment ExeAddr = &_bss; EndAddr = &_ebss; SectionLen = (void*)EndAddr - (void*)ExeAddr; bss_init ((unsigned int)ExeAddr, SectionLen); #endif #ifdef __USE_CMSIS SystemInit(); #endif #if defined (__cplusplus) // // Call C++ library initialisation // __libc_init_array(); #endif #if defined (__REDLIB__) // Call the Redlib library, which in turn calls main() __main() ; #else main(); #endif // // main() shouldn't return, but if it does, we'll just enter an infinite loop // while (1) { ; } } //***************************************************************************** // Default exception handlers. Override the ones here by defining your own // handler routines in your application code. //***************************************************************************** __attribute__ ((section(".after_vectors"))) void NMI_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void HardFault_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void MemManage_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void BusFault_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void UsageFault_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void SVCall_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void DebugMon_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void PendSV_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void SysTick_Handler(void) { while(1) { } } //***************************************************************************** // // Processor ends up here if an unexpected interrupt occurs or a specific // handler is not present in the application code. // //***************************************************************************** __attribute__ ((section(".after_vectors"))) void IntDefaultHandler(void) { while(1) { } }