/**************************************************************************/ /*! @file dcd_nrf5x.c @author hathach @section LICENSE Software License Agreement (BSD License) Copyright (c) 2018, hathach (tinyusb.org) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This file is part of the tinyusb stack. */ /**************************************************************************/ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_NRF5X #include "nrf.h" #include "nrf_power.h" #include "nrf_usbd.h" #include "nrf_clock.h" #include "device/dcd.h" // TODO remove later #include "device/usbd.h" #include "device/usbd_pvt.h" // to use defer function helper /*------------------------------------------------------------------*/ /* MACRO TYPEDEF CONSTANT ENUM *------------------------------------------------------------------*/ enum { // Max allowed by USB specs MAX_PACKET_SIZE = 64, // Mask of all END event (IN & OUT) for all endpoints. ENDEPIN0-7, ENDEPOUT0-7, ENDISOIN, ENDISOOUT EDPT_END_ALL_MASK = (0xff << USBD_INTEN_ENDEPIN0_Pos) | (0xff << USBD_INTEN_ENDEPOUT0_Pos) | USBD_INTENCLR_ENDISOIN_Msk | USBD_INTEN_ENDISOOUT_Msk }; // Transfer descriptor typedef struct { uint8_t* buffer; uint16_t total_len; volatile uint16_t actual_len; uint8_t mps; // max packet size // nrf52840 will auto ACK OUT packet after DMA is done // indicate packet is already ACK volatile bool data_received; } xfer_td_t; // Data for managing dcd static struct { // All 8 endpoints including control IN & OUT (offset 1) xfer_td_t xfer[8][2]; // Only one DMA can run at a time volatile bool dma_running; }_dcd; /*------------------------------------------------------------------*/ /* Control / Bulk / Interrupt (CBI) Transfer *------------------------------------------------------------------*/ // helper to start DMA static void edpt_dma_start(volatile uint32_t* reg_startep) { // Only one dma can be active if ( _dcd.dma_running ) { if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) { // If called within ISR, use usbd task to defer later usbd_defer_func( (osal_task_func_t) edpt_dma_start, (void*) reg_startep, true ); return; } else { // Otherwise simply block wait while ( _dcd.dma_running ) { } } } _dcd.dma_running = true; (*reg_startep) = 1; __ISB(); __DSB(); } // DMA is complete static void edpt_dma_end(void) { TU_ASSERT(_dcd.dma_running, ); _dcd.dma_running = false; } // helper getting td static inline xfer_td_t* get_td(uint8_t epnum, uint8_t dir) { return &_dcd.xfer[epnum][dir]; } /*------------- CBI OUT Transfer -------------*/ // Prepare for a CBI transaction OUT, call at the start // Allow ACK incoming data static void xact_out_prepare(uint8_t epnum) { if ( epnum == 0 ) { NRF_USBD->TASKS_EP0RCVOUT = 1; } else { // Write zero value to SIZE register will allow hw to ACK (accept data) // If it is not already done by DMA NRF_USBD->SIZE.EPOUT[epnum] = 0; } __ISB(); __DSB(); } // Start DMA to move data from Endpoint -> RAM static void xact_out_dma(uint8_t epnum) { xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT); uint8_t const xact_len = NRF_USBD->SIZE.EPOUT[epnum]; // Trigger DMA move data from Endpoint -> SRAM NRF_USBD->EPOUT[epnum].PTR = (uint32_t) xfer->buffer; NRF_USBD->EPOUT[epnum].MAXCNT = xact_len; edpt_dma_start(&NRF_USBD->TASKS_STARTEPOUT[epnum]); xfer->buffer += xact_len; xfer->actual_len += xact_len; } /*------------- CBI IN Transfer -------------*/ // Prepare for a CBI transaction IN, call at the start // it start DMA to transfer data from RAM -> Endpoint static void xact_in_prepare(uint8_t epnum) { xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN); // Each transaction is up to Max Packet Size uint8_t const xact_len = tu_min16(xfer->total_len - xfer->actual_len, xfer->mps); NRF_USBD->EPIN[epnum].PTR = (uint32_t) xfer->buffer; NRF_USBD->EPIN[epnum].MAXCNT = xact_len; xfer->buffer += xact_len; edpt_dma_start(&NRF_USBD->TASKS_STARTEPIN[epnum]); } //--------------------------------------------------------------------+ // Tinyusb DCD API //--------------------------------------------------------------------+ bool dcd_init (uint8_t rhport) { (void) rhport; return true; } void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { (void) rhport; (void) dev_addr; // Set Address is automatically update by hw controller } void dcd_set_config (uint8_t rhport, uint8_t config_num) { (void) rhport; (void) config_num; // Nothing to do } bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) { (void) rhport; uint8_t const epnum = edpt_number(desc_edpt->bEndpointAddress); uint8_t const dir = edpt_dir(desc_edpt->bEndpointAddress); _dcd.xfer[epnum][dir].mps = desc_edpt->wMaxPacketSize.size; if ( dir == TUSB_DIR_OUT ) { NRF_USBD->INTENSET = BIT_(USBD_INTEN_ENDEPOUT0_Pos + epnum); NRF_USBD->EPOUTEN |= BIT_(epnum); }else { NRF_USBD->INTENSET = BIT_(USBD_INTEN_ENDEPIN0_Pos + epnum); NRF_USBD->EPINEN |= BIT_(epnum); } __ISB(); __DSB(); return true; } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { (void) rhport; uint8_t const epnum = edpt_number(ep_addr); uint8_t const dir = edpt_dir(ep_addr); xfer_td_t* xfer = get_td(epnum, dir); xfer->buffer = buffer; xfer->total_len = total_bytes; xfer->actual_len = 0; // Control endpoint with zero-length packet --> status stage if ( epnum == 0 && total_bytes == 0 ) { // Status Phase also require Easy DMA has to be free as well !!!! edpt_dma_start(&NRF_USBD->TASKS_EP0STATUS); edpt_dma_end(); // The nRF doesn't interrupt on status transmit so we queue up a success response. dcd_event_xfer_complete(0, ep_addr, 0, XFER_RESULT_SUCCESS, false); } else if ( dir == TUSB_DIR_OUT ) { if ( xfer->data_received ) { // nrf52840 auto ACK OUT packet after DMA is done // Data already received previously --> trigger DMA to copy to SRAM xact_out_dma(epnum); } else { xact_out_prepare(epnum); } } else { xact_in_prepare(epnum); } return true; } bool dcd_edpt_stalled (uint8_t rhport, uint8_t ep_addr) { (void) rhport; // control is never got halted if ( ep_addr == 0 ) return false; uint8_t const epnum = edpt_number(ep_addr); return (edpt_dir(ep_addr) == TUSB_DIR_IN ) ? NRF_USBD->HALTED.EPIN[epnum] : NRF_USBD->HALTED.EPOUT[epnum]; } void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; if ( edpt_number(ep_addr) == 0 ) { NRF_USBD->TASKS_EP0STALL = 1; }else { NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep_addr; } __ISB(); __DSB(); } void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; if ( edpt_number(ep_addr) ) { NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr; __ISB(); __DSB(); } } bool dcd_edpt_busy (uint8_t rhport, uint8_t ep_addr) { (void) rhport; // USBD shouldn't check control endpoint state if ( 0 == edpt_number(ep_addr) ) return false; uint8_t const epnum = edpt_number(ep_addr); uint8_t const dir = edpt_dir(ep_addr); xfer_td_t* xfer = get_td(epnum, dir); return xfer->actual_len < xfer->total_len; } /*------------------------------------------------------------------*/ /* Interrupt Handler *------------------------------------------------------------------*/ void bus_reset(void) { for(int i=0; i<8; i++) { NRF_USBD->TASKS_STARTEPIN[i] = 0; NRF_USBD->TASKS_STARTEPOUT[i] = 0; } NRF_USBD->TASKS_STARTISOIN = 0; NRF_USBD->TASKS_STARTISOOUT = 0; tu_varclr(&_dcd); _dcd.xfer[0][TUSB_DIR_IN].mps = MAX_PACKET_SIZE; _dcd.xfer[0][TUSB_DIR_OUT].mps = MAX_PACKET_SIZE; } void USBD_IRQHandler(void) { uint32_t const inten = NRF_USBD->INTEN; uint32_t int_status = 0; volatile uint32_t* regevt = &NRF_USBD->EVENTS_USBRESET; for(uint8_t i=0; i Endpoint edpt_dma_end(); } // Setup tokens are specific to the Control endpoint. if ( int_status & USBD_INTEN_EP0SETUP_Msk ) { uint8_t const setup[8] = { NRF_USBD->BMREQUESTTYPE , NRF_USBD->BREQUEST, NRF_USBD->WVALUEL , NRF_USBD->WVALUEH, NRF_USBD->WINDEXL , NRF_USBD->WINDEXH , NRF_USBD->WLENGTHL, NRF_USBD->WLENGTHH }; // nrf5x hw auto handle set address, there is no need to inform usb stack tusb_control_request_t const * request = (tusb_control_request_t const *) setup; if ( !(TUSB_REQ_RCPT_DEVICE == request->bmRequestType_bit.recipient && TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type && TUSB_REQ_SET_ADDRESS == request->bRequest) ) { dcd_event_setup_received(0, setup, true); } } //--------------------------------------------------------------------+ /* Control/Bulk/Interrupt (CBI) Transfer * * Data flow is: * (bus) (dma) * Host <-------> Endpoint <-------> RAM * * For CBI OUT: * - Host -> Endpoint * EPDATA (or EP0DATADONE) interrupted, check EPDATASTATUS.EPOUT[i] * to start DMA. This step can occur automatically (without sw), * which means data may or may not ready (data_received flag). * - Endpoint -> RAM * ENDEPOUT[i] interrupted, transaction complete, sw prepare next transaction * * For CBI IN: * - RAM -> Endpoint * ENDEPIN[i] interrupted indicate DMA is complete. HW will start * to move daat to host * - Endpoint -> Host * EPDATA (or EP0DATADONE) interrupted, check EPDATASTATUS.EPIN[i]. * Transaction is complete, sw prepare next transaction * * Note: in both Control In and Out of Data stage from Host <-> Endpoint * EP0DATADONE will be set as interrupt source */ //--------------------------------------------------------------------+ /* CBI OUT: Endpoint -> SRAM (aka transaction complete) * Note: Since nRF controller auto ACK next packet without SW awareness * We must handle this stage before Host -> Endpoint just in case * 2 event happens at once */ for(uint8_t epnum=0; epnum<8; epnum++) { if ( BIT_TEST_(int_status, USBD_INTEN_ENDEPOUT0_Pos+epnum)) { xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT); uint8_t const xact_len = NRF_USBD->EPOUT[epnum].AMOUNT; // Data in endpoint has been consumed xfer->data_received = false; // Transfer complete if transaction len < Max Packet Size or total len is transferred if ( (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) ) { // Prepare for next transaction xact_out_prepare(epnum); }else { xfer->total_len = xfer->actual_len; // BULK/INT OUT complete dcd_event_xfer_complete(0, epnum, xfer->actual_len, XFER_RESULT_SUCCESS, true); } } // Ended event for CBI IN : nothing to do } // Endpoint <-> Host if ( int_status & (USBD_INTEN_EPDATA_Msk | USBD_INTEN_EP0DATADONE_Msk) ) { uint32_t data_status = NRF_USBD->EPDATASTATUS; nrf_usbd_epdatastatus_clear(data_status); // EP0DATADONE is set with either Control Out on IN Data // Since EPDATASTATUS cannot be used to determine whether it is control OUT or IN. // We will use BMREQUESTTYPE in setup packet to determine the direction bool const is_control_in = (int_status & USBD_INTEN_EP0DATADONE_Msk) && (NRF_USBD->BMREQUESTTYPE & TUSB_DIR_IN_MASK); bool const is_control_out = (int_status & USBD_INTEN_EP0DATADONE_Msk) && !(NRF_USBD->BMREQUESTTYPE & TUSB_DIR_IN_MASK); // CBI In: Endpoint -> Host (transaction complete) for(uint8_t epnum=0; epnum<8; epnum++) { if ( BIT_TEST_(data_status, epnum ) || ( epnum == 0 && is_control_in) ) { xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN); xfer->actual_len += NRF_USBD->EPIN[epnum].MAXCNT; if ( xfer->actual_len < xfer->total_len ) { // prepare next transaction xact_in_prepare(epnum); } else { // Bulk/Int IN complete dcd_event_xfer_complete(0, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true); } } } // CBI OUT: Host -> Endpoint for(uint8_t epnum=0; epnum<8; epnum++) { if ( BIT_TEST_(data_status, 16+epnum ) || ( epnum == 0 && is_control_out) ) { xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT); if (xfer->actual_len < xfer->total_len) { xact_out_dma(epnum); }else { // Data overflow !!! Nah, nrf52840 will auto ACK OUT packet after DMA is done // Mark this endpoint with data received xfer->data_received = true; } } } } // SOF interrupt if ( int_status & USBD_INTEN_SOF_Msk ) { dcd_event_bus_signal(0, DCD_EVENT_SOF, true); } } #endif