/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "chip.h" #include "../board.h" #define LED_PORT 1 #define LED_PIN 12 #define LED_STATE_ON 0 #define BUTTON_PORT 0 #define BUTTON_PIN 7 #define BUTTON_STATE_ACTIVE 0 #define BOARD_UART_PORT LPC_USART0 #define BOARD_UART_PIN_PORT 0x0f #define BOARD_UART_PIN_TX 10 // PF.10 : UART0_TXD #define BOARD_UART_PIN_RX 11 // PF.11 : UART0_RXD /*------------------------------------------------------------------*/ /* BOARD API *------------------------------------------------------------------*/ /* System configuration variables used by chip driver */ const uint32_t OscRateIn = 12000000; const uint32_t ExtRateIn = 0; static const PINMUX_GRP_T pinmuxing[] = { // LED P2.12 as GPIO 1.12 {2, 11, (SCU_MODE_INBUFF_EN | SCU_MODE_PULLDOWN | SCU_MODE_FUNC0)}, // Button P2.7 as GPIO 0.7 {2, 7, (SCU_MODE_PULLUP | SCU_MODE_INBUFF_EN | SCU_MODE_ZIF_DIS | SCU_MODE_FUNC0)}, // USB {2, 6, (SCU_MODE_PULLUP | SCU_MODE_INBUFF_EN | SCU_MODE_FUNC4)}, // USB1_PWR_EN {2, 5, (SCU_MODE_INACT | SCU_MODE_INBUFF_EN | SCU_MODE_ZIF_DIS | SCU_MODE_FUNC2)}, // USB1_VBUS {1, 7, (SCU_MODE_PULLUP | SCU_MODE_INBUFF_EN | SCU_MODE_FUNC4)}, // USB0_PWRN_EN // SPIFI {3, 3, (SCU_PINIO_FAST | SCU_MODE_FUNC3)}, /* SPIFI CLK */ {3, 4, (SCU_PINIO_FAST | SCU_MODE_FUNC3)}, /* SPIFI D3 */ {3, 5, (SCU_PINIO_FAST | SCU_MODE_FUNC3)}, /* SPIFI D2 */ {3, 6, (SCU_PINIO_FAST | SCU_MODE_FUNC3)}, /* SPIFI D1 */ {3, 7, (SCU_PINIO_FAST | SCU_MODE_FUNC3)}, /* SPIFI D0 */ {3, 8, (SCU_PINIO_FAST | SCU_MODE_FUNC3)} /* SPIFI CS/SSEL */ }; // Invoked by startup code extern void (* const g_pfnVectors[])(void); void SystemInit(void) { // Remap isr vector *((uint32_t *) 0xE000ED08) = (uint32_t) &g_pfnVectors; // Set up pinmux Chip_SCU_SetPinMuxing(pinmuxing, sizeof(pinmuxing) / sizeof(PINMUX_GRP_T)); //------------- Set up clock -------------// Chip_Clock_SetBaseClock(CLK_BASE_SPIFI, CLKIN_IRC, true, false); // change SPIFI to IRC during clock programming LPC_SPIFI->CTRL |= SPIFI_CTRL_FBCLK(1); // and set FBCLK in SPIFI controller Chip_SetupCoreClock(CLKIN_CRYSTAL, MAX_CLOCK_FREQ, true); /* Reset and enable 32Khz oscillator */ LPC_CREG->CREG0 &= ~((1 << 3) | (1 << 2)); LPC_CREG->CREG0 |= (1 << 1) | (1 << 0); /* Setup a divider E for main PLL clock switch SPIFI clock to that divider. Divide rate is based on CPU speed and speed of SPI FLASH part. */ #if (MAX_CLOCK_FREQ > 180000000) Chip_Clock_SetDivider(CLK_IDIV_E, CLKIN_MAINPLL, 5); #else Chip_Clock_SetDivider(CLK_IDIV_E, CLKIN_MAINPLL, 4); #endif Chip_Clock_SetBaseClock(CLK_BASE_SPIFI, CLKIN_IDIVE, true, false); /* Setup system base clocks and initial states. This won't enable and disable individual clocks, but sets up the base clock sources for each individual peripheral clock. */ Chip_Clock_SetBaseClock(CLK_BASE_USB1, CLKIN_IDIVD, true, true); } void board_init(void) { SystemCoreClockUpdate(); #if CFG_TUSB_OS == OPT_OS_NONE // 1ms tick timer SysTick_Config(SystemCoreClock / 1000); #elif CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) //NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY ); #endif Chip_GPIO_Init(LPC_GPIO_PORT); // LED Chip_GPIO_SetPinDIROutput(LPC_GPIO_PORT, LED_PORT, LED_PIN); // Button Chip_GPIO_SetPinDIRInput(LPC_GPIO_PORT, BUTTON_PORT, BUTTON_PIN); #if 0 //------------- UART -------------// scu_pinmux(BOARD_UART_PIN_PORT, BOARD_UART_PIN_TX, MD_PDN, FUNC1); scu_pinmux(BOARD_UART_PIN_PORT, BOARD_UART_PIN_RX, MD_PLN | MD_EZI | MD_ZI, FUNC1); UART_CFG_Type UARTConfigStruct; UART_ConfigStructInit(&UARTConfigStruct); UARTConfigStruct.Baud_rate = CFG_BOARD_UART_BAUDRATE; UARTConfigStruct.Clock_Speed = 0; UART_Init(BOARD_UART_PORT, &UARTConfigStruct); UART_TxCmd(BOARD_UART_PORT, ENABLE); // Enable UART Transmit #endif //------------- USB -------------// enum { USBMODE_DEVICE = 2, USBMODE_HOST = 3 }; enum { USBMODE_VBUS_LOW = 0, USBMODE_VBUS_HIGH = 1 }; /* USB0 * For USB Device operation; insert jumpers in position 1-2 in JP17/JP18/JP19. GPIO28 controls USB * connect functionality and LED32 lights when the USB Device is connected. SJ4 has pads 1-2 shorted * by default. LED33 is controlled by GPIO27 and signals USB-up state. GPIO54 is used for VBUS * sensing. * For USB Host operation; insert jumpers in position 2-3 in JP17/JP18/JP19. USB Host power is * controlled via distribution switch U20 (found in schematic page 11). Signal GPIO26 is active low and * enables +5V on VBUS2. LED35 light whenever +5V is present on VBUS2. GPIO55 is connected to * status feedback from the distribution switch. GPIO54 is used for VBUS sensing. 15Kohm pull-down * resistors are always active */ #if CFG_TUSB_RHPORT0_MODE & (OPT_MODE_DEVICE | OPT_MODE_HOST) Chip_USB0_Init(); // // Reset controller // LPC_USB0->USBCMD_D |= 0x02; // while( LPC_USB0->USBCMD_D & 0x02 ) {} // // // Set mode // #if CFG_TUSB_RHPORT0_MODE & OPT_MODE_HOST // LPC_USB0->USBMODE_H = USBMODE_HOST | (USBMODE_VBUS_HIGH << 5); // // LPC_USB0->PORTSC1_D |= (1<<24); // FIXME force full speed for debugging // #else // TODO OTG // LPC_USB0->USBMODE_D = USBMODE_DEVICE; // LPC_USB0->OTGSC = (1<<3) | (1<<0) /*| (1<<16)| (1<<24)| (1<<25)| (1<<26)| (1<<27)| (1<<28)| (1<<29)| (1<<30)*/; // #endif #endif /* USB1 * When USB channel #1 is used as USB Host, 15Kohm pull-down resistors are needed on the USB data * signals. These are activated inside the USB OTG chip (U31), and this has to be done via the I2C * interface of GPIO52/GPIO53. * J20 is the connector to use when USB Host is used. In order to provide +5V to the external USB * device connected to this connector (J20), channel A of U20 must be enabled. It is enabled by default * since SJ5 is normally connected between pin 1-2. LED34 lights green when +5V is available on J20. * JP15 shall not be inserted. JP16 has no effect * * When USB channel #1 is used as USB Device, a 1.5Kohm pull-up resistor is needed on the USB DP * data signal. There are two methods to create this. JP15 is inserted and the pull-up resistor is always * enabled. Alternatively, the pull-up resistor is activated inside the USB OTG chip (U31), and this has to * be done via the I2C interface of GPIO52/GPIO53. In the latter case, JP15 shall not be inserted. * J19 is the connector to use when USB Device is used. Normally it should be a USB-B connector for * creating a USB Device interface, but the mini-AB connector can also be used in this case. The status * of VBUS can be read via U31. * JP16 shall not be inserted. */ #if CFG_TUSB_RHPORT0_MODE & ((OPT_MODE_DEVICE | OPT_MODE_HOST) << 8) Chip_USB1_Init(); // // Reset controller // LPC_USB1->USBCMD_D |= 0x02; // while( LPC_USB1->USBCMD_D & 0x02 ) {} // // // Set mode // #if CFG_TUSB_RHPORT1_MODE & OPT_MODE_HOST // LPC_USB1->USBMODE_H = USBMODE_HOST | (USBMODE_VBUS_HIGH << 5); // #else // TODO OTG // LPC_USB1->USBMODE_D = USBMODE_DEVICE; // #endif // // // USB1 as fullspeed // LPC_USB1->PORTSC1_D |= (1<<24); // Chip_GPIO_SetPinDIROutput(LPC_GPIO_PORT, 5, 6); /* GPIO5[6] = USB1_PWR_EN */ // Chip_GPIO_SetPinState(LPC_GPIO_PORT, 5, 6, true); /* GPIO5[6] output high */ #endif } //--------------------------------------------------------------------+ // USB Interrupt Handler //--------------------------------------------------------------------+ void USB0_IRQHandler(void) { #if CFG_TUSB_RHPORT0_MODE & OPT_MODE_HOST tuh_isr(0); #endif #if CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE tud_int_handler(0); #endif } void USB1_IRQHandler(void) { #if CFG_TUSB_RHPORT0_MODE & (OPT_MODE_HOST << 8) tuh_isr(1); #endif #if CFG_TUSB_RHPORT0_MODE & (OPT_MODE_DEVICE << 8) tud_int_handler(1); #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { Chip_GPIO_SetPinState(LPC_GPIO_PORT, LED_PORT, LED_PIN, state ? LED_STATE_ON : (1-LED_STATE_ON)); } uint32_t board_button_read(void) { return BUTTON_STATE_ACTIVE == Chip_GPIO_GetPinState(LPC_GPIO_PORT, BUTTON_PORT, BUTTON_PIN); } int board_uart_read(uint8_t* buf, int len) { //return UART_ReceiveByte(BOARD_UART_PORT); (void) buf; (void) len; return 0; } int board_uart_write(void const * buf, int len) { //UART_Send(BOARD_UART_PORT, &c, 1, BLOCKING); (void) buf; (void) len; return 0; } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler (void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif