//***************************************************************************** // +--+ // | ++----+ // +-++ | // | | // +-+--+ | // | +--+--+ // +----+ Copyright (c) 2011 Code Red Technologies Ltd. // // Microcontroller Startup code for use with Red Suite // // Version : 110323 // // Software License Agreement // // The software is owned by Code Red Technologies and/or its suppliers, and is // protected under applicable copyright laws. All rights are reserved. Any // use in violation of the foregoing restrictions may subject the user to criminal // sanctions under applicable laws, as well as to civil liability for the breach // of the terms and conditions of this license. // // THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED // OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. // USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT // TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH // CODE RED TECHNOLOGIES LTD. // //***************************************************************************** #if defined (__cplusplus) #ifdef __REDLIB__ #error Redlib does not support C++ #else //***************************************************************************** // // The entry point for the C++ library startup // //***************************************************************************** extern "C" { extern void __libc_init_array(void); } #endif #endif #define WEAK __attribute__ ((weak)) #define ALIAS(f) __attribute__ ((weak, alias (#f))) // Code Red - if CMSIS is being used, then SystemInit() routine // will be called by startup code rather than in application's main() #if defined (__USE_CMSIS) #include "LPC11Uxx.h" #endif //***************************************************************************** #if defined (__cplusplus) extern "C" { #endif //***************************************************************************** // // Forward declaration of the default handlers. These are aliased. // When the application defines a handler (with the same name), this will // automatically take precedence over these weak definitions // //***************************************************************************** void ResetISR(void); WEAK void NMI_Handler(void); WEAK void HardFault_Handler(void); WEAK void SVCall_Handler(void); WEAK void PendSV_Handler(void); WEAK void SysTick_Handler(void); WEAK void IntDefaultHandler(void); //***************************************************************************** // // Forward declaration of the specific IRQ handlers. These are aliased // to the IntDefaultHandler, which is a 'forever' loop. When the application // defines a handler (with the same name), this will automatically take // precedence over these weak definitions // //***************************************************************************** void FLEX_INT0_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT1_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT2_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT3_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT4_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT5_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT6_IRQHandler (void) ALIAS(IntDefaultHandler); void FLEX_INT7_IRQHandler (void) ALIAS(IntDefaultHandler); void GINT0_IRQHandler (void) ALIAS(IntDefaultHandler); void GINT1_IRQHandler (void) ALIAS(IntDefaultHandler); void SSP1_IRQHandler (void) ALIAS(IntDefaultHandler); void I2C_IRQHandler (void) ALIAS(IntDefaultHandler); void TIMER16_0_IRQHandler (void) ALIAS(IntDefaultHandler); void TIMER16_1_IRQHandler (void) ALIAS(IntDefaultHandler); void TIMER32_0_IRQHandler (void) ALIAS(IntDefaultHandler); void TIMER32_1_IRQHandler (void) ALIAS(IntDefaultHandler); void SSP0_IRQHandler (void) ALIAS(IntDefaultHandler); void UART_IRQHandler (void) ALIAS(IntDefaultHandler); void USB_IRQHandler (void) ALIAS(IntDefaultHandler); void USB_FIQHandler (void) ALIAS(IntDefaultHandler); void ADC_IRQHandler (void) ALIAS(IntDefaultHandler); void WDT_IRQHandler (void) ALIAS(IntDefaultHandler); void BOD_IRQHandler (void) ALIAS(IntDefaultHandler); void FMC_IRQHandler (void) ALIAS(IntDefaultHandler); void USBWakeup_IRQHandler (void) ALIAS(IntDefaultHandler); //***************************************************************************** // // The entry point for the application. // __main() is the entry point for redlib based applications // main() is the entry point for newlib based applications // //***************************************************************************** // // The entry point for the application. // __main() is the entry point for Redlib based applications // main() is the entry point for Newlib based applications // //***************************************************************************** #if defined (__REDLIB__) extern void __main(void); #endif extern int main(void); //***************************************************************************** // // External declaration for the pointer to the stack top from the Linker Script // //***************************************************************************** extern void _vStackTop(void); //***************************************************************************** #if defined (__cplusplus) } // extern "C" #endif //***************************************************************************** // // The vector table. Note that the proper constructs must be placed on this to // ensure that it ends up at physical address 0x0000.0000. // //***************************************************************************** extern void (* const g_pfnVectors[])(void); __attribute__ ((section(".isr_vector"))) void (* const g_pfnVectors[])(void) = { &_vStackTop, // The initial stack pointer ResetISR, // The reset handler NMI_Handler, // The NMI handler HardFault_Handler, // The hard fault handler 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved 0, // Reserved SVCall_Handler, // SVCall handler 0, // Reserved 0, // Reserved PendSV_Handler, // The PendSV handler SysTick_Handler, // The SysTick handler // LPC11U specific handlers FLEX_INT0_IRQHandler, // 0 - GPIO pin interrupt 0 FLEX_INT1_IRQHandler, // 1 - GPIO pin interrupt 1 FLEX_INT2_IRQHandler, // 2 - GPIO pin interrupt 2 FLEX_INT3_IRQHandler, // 3 - GPIO pin interrupt 3 FLEX_INT4_IRQHandler, // 4 - GPIO pin interrupt 4 FLEX_INT5_IRQHandler, // 5 - GPIO pin interrupt 5 FLEX_INT6_IRQHandler, // 6 - GPIO pin interrupt 6 FLEX_INT7_IRQHandler, // 7 - GPIO pin interrupt 7 GINT0_IRQHandler, // 8 - GPIO GROUP0 interrupt GINT1_IRQHandler, // 9 - GPIO GROUP1 interrupt 0, // 10 - Reserved 0, // 11 - Reserved 0, // 12 - Reserved 0, // 13 - Reserved SSP1_IRQHandler, // 14 - SPI/SSP1 Interrupt I2C_IRQHandler, // 15 - I2C0 TIMER16_0_IRQHandler, // 16 - CT16B0 (16-bit Timer 0) TIMER16_1_IRQHandler, // 17 - CT16B1 (16-bit Timer 1) TIMER32_0_IRQHandler, // 18 - CT32B0 (32-bit Timer 0) TIMER32_1_IRQHandler, // 19 - CT32B1 (32-bit Timer 1) SSP0_IRQHandler, // 20 - SPI/SSP0 Interrupt UART_IRQHandler, // 21 - UART0 USB_IRQHandler, // 22 - USB IRQ USB_FIQHandler, // 23 - USB FIQ ADC_IRQHandler, // 24 - ADC (A/D Converter) WDT_IRQHandler, // 25 - WDT (Watchdog Timer) BOD_IRQHandler, // 26 - BOD (Brownout Detect) FMC_IRQHandler, // 27 - IP2111 Flash Memory Controller 0, // 28 - Reserved 0, // 29 - Reserved USBWakeup_IRQHandler, // 30 - USB wake-up interrupt 0, // 31 - Reserved }; //***************************************************************************** // Functions to carry out the initialization of RW and BSS data sections. These // are written as separate functions rather than being inlined within the // ResetISR() function in order to cope with MCUs with multiple banks of // memory. //***************************************************************************** __attribute__ ((section(".after_vectors"))) void data_init(unsigned int romstart, unsigned int start, unsigned int len) { unsigned int *pulDest = (unsigned int*) start; unsigned int *pulSrc = (unsigned int*) romstart; unsigned int loop; for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = *pulSrc++; } __attribute__ ((section(".after_vectors"))) void bss_init(unsigned int start, unsigned int len) { unsigned int *pulDest = (unsigned int*) start; unsigned int loop; for (loop = 0; loop < len; loop = loop + 4) *pulDest++ = 0; } #ifndef USE_OLD_STYLE_DATA_BSS_INIT //***************************************************************************** // The following symbols are constructs generated by the linker, indicating // the location of various points in the "Global Section Table". This table is // created by the linker via the Code Red managed linker script mechanism. It // contains the load address, execution address and length of each RW data // section and the execution and length of each BSS (zero initialized) section. //***************************************************************************** extern unsigned int __data_section_table; extern unsigned int __data_section_table_end; extern unsigned int __bss_section_table; extern unsigned int __bss_section_table_end; #else //***************************************************************************** // The following symbols are constructs generated by the linker, indicating // the load address, execution address and length of the RW data section and // the execution and length of the BSS (zero initialized) section. // Note that these symbols are not normally used by the managed linker script // mechanism in Red Suite/LPCXpresso 3.6 (Windows) and LPCXpresso 3.8 (Linux). // They are provide here simply so this startup code can be used with earlier // versions of Red Suite which do not support the more advanced managed linker // script mechanism introduced in the above version. To enable their use, // define "USE_OLD_STYLE_DATA_BSS_INIT". //***************************************************************************** extern unsigned int _etext; extern unsigned int _data; extern unsigned int _edata; extern unsigned int _bss; extern unsigned int _ebss; #endif //***************************************************************************** // Reset entry point for your code. // Sets up a simple runtime environment and initializes the C/C++ // library. //***************************************************************************** __attribute__ ((section(".after_vectors"))) void ResetISR(void) { #ifndef USE_OLD_STYLE_DATA_BSS_INIT // // Copy the data sections from flash to SRAM. // unsigned int LoadAddr, ExeAddr, SectionLen; unsigned int *SectionTableAddr; // Load base address of Global Section Table SectionTableAddr = &__data_section_table; // Copy the data sections from flash to SRAM. while (SectionTableAddr < &__data_section_table_end) { LoadAddr = *SectionTableAddr++; ExeAddr = *SectionTableAddr++; SectionLen = *SectionTableAddr++; data_init(LoadAddr, ExeAddr, SectionLen); } // At this point, SectionTableAddr = &__bss_section_table; // Zero fill the bss segment while (SectionTableAddr < &__bss_section_table_end) { ExeAddr = *SectionTableAddr++; SectionLen = *SectionTableAddr++; bss_init(ExeAddr, SectionLen); } #else // Use Old Style Data and BSS section initialization. // This will only initialize a single RAM bank. unsigned int * LoadAddr, *ExeAddr, *EndAddr, SectionLen; // Copy the data segment from flash to SRAM. LoadAddr = &_etext; ExeAddr = &_data; EndAddr = &_edata; SectionLen = (void*)EndAddr - (void*)ExeAddr; data_init((unsigned int)LoadAddr, (unsigned int)ExeAddr, SectionLen); // Zero fill the bss segment ExeAddr = &_bss; EndAddr = &_ebss; SectionLen = (void*)EndAddr - (void*)ExeAddr; bss_init ((unsigned int)ExeAddr, SectionLen); #endif #ifdef __USE_CMSIS SystemInit(); #endif #if defined (__cplusplus) // // Call C++ library initialisation // __libc_init_array(); #endif #if defined (__REDLIB__) // Call the Redlib library, which in turn calls main() __main() ; #else main(); #endif // // main() shouldn't return, but if it does, we'll just enter an infinite loop // while (1) { ; } } //***************************************************************************** // Default exception handlers. Override the ones here by defining your own // handler routines in your application code. //***************************************************************************** __attribute__ ((section(".after_vectors"))) void NMI_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void HardFault_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void SVCall_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void PendSV_Handler(void) { while(1) { } } __attribute__ ((section(".after_vectors"))) void SysTick_Handler(void) { while(1) { } } //***************************************************************************** // // Processor ends up here if an unexpected interrupt occurs or a specific // handler is not present in the application code. // //***************************************************************************** __attribute__ ((section(".after_vectors"))) void IntDefaultHandler(void) { while(1) { } }