/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "sam.h" #include "bsp/board_api.h" #include "board.h" // Suppress warning caused by mcu driver #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif #include "hal/include/hal_gpio.h" #include "hal/include/hal_init.h" #include "hri/hri_nvmctrl_d21.h" #include "hpl/gclk/hpl_gclk_base.h" #include "hpl_pm_config.h" #include "hpl/pm/hpl_pm_base.h" #ifdef __GNUC__ #pragma GCC diagnostic pop #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ /* Referenced GCLKs, should be initialized firstly */ #define _GCLK_INIT_1ST (1 << 0 | 1 << 1) /* Not referenced GCLKs, initialized last */ #define _GCLK_INIT_LAST (~_GCLK_INIT_1ST) //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB_Handler(void) { tud_int_handler(0); } //--------------------------------------------------------------------+ // Implementation //--------------------------------------------------------------------+ static void uart_init(void); #if CFG_TUH_ENABLED && defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421 #define MAX3421_SERCOM TU_XSTRCAT(SERCOM, MAX3421_SERCOM_ID) static void max3421_init(void); #endif void board_init(void) { // Clock init ( follow hpl_init.c ) hri_nvmctrl_set_CTRLB_RWS_bf(NVMCTRL, 2); _pm_init(); _sysctrl_init_sources(); #if _GCLK_INIT_1ST _gclk_init_generators_by_fref(_GCLK_INIT_1ST); #endif _sysctrl_init_referenced_generators(); _gclk_init_generators_by_fref(_GCLK_INIT_LAST); // Update SystemCoreClock since it is hard coded with asf4 and not correct // Init 1ms tick timer (samd SystemCoreClock may not correct) SystemCoreClock = CONF_CPU_FREQUENCY; #if CFG_TUSB_OS == OPT_OS_NONE SysTick_Config(CONF_CPU_FREQUENCY / 1000); #endif // Led init #ifdef LED_PIN gpio_set_pin_direction(LED_PIN, GPIO_DIRECTION_OUT); board_led_write(false); #endif // Button init #ifdef BUTTON_PIN gpio_set_pin_direction(BUTTON_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(BUTTON_PIN, BUTTON_STATE_ACTIVE ? GPIO_PULL_DOWN : GPIO_PULL_UP); #endif uart_init(); #if CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); #endif /* USB Clock init * The USB module requires a GCLK_USB of 48 MHz ~ 0.25% clock * for low speed and full speed operation. */ _pm_enable_bus_clock(PM_BUS_APBB, USB); _pm_enable_bus_clock(PM_BUS_AHB, USB); _gclk_enable_channel(USB_GCLK_ID, GCLK_CLKCTRL_GEN_GCLK0_Val); // USB Pin Init gpio_set_pin_direction(PIN_PA24, GPIO_DIRECTION_OUT); gpio_set_pin_level(PIN_PA24, false); gpio_set_pin_pull_mode(PIN_PA24, GPIO_PULL_OFF); gpio_set_pin_direction(PIN_PA25, GPIO_DIRECTION_OUT); gpio_set_pin_level(PIN_PA25, false); gpio_set_pin_pull_mode(PIN_PA25, GPIO_PULL_OFF); gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM); gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP); // Output 500hz PWM on D12 (PA19 - TCC0 WO[3]) so we can validate the GCLK0 clock speed with a Saleae. _pm_enable_bus_clock(PM_BUS_APBC, TCC0); TCC0->PER.bit.PER = 48000000 / 1000; TCC0->CC[3].bit.CC = 48000000 / 2000; TCC0->CTRLA.bit.ENABLE = true; gpio_set_pin_function(PIN_PA19, PINMUX_PA19F_TCC0_WO3); _gclk_enable_channel(TCC0_GCLK_ID, GCLK_CLKCTRL_GEN_GCLK0_Val); #if CFG_TUH_ENABLED && defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421 max3421_init(); #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { (void) state; #ifdef LED_PIN gpio_set_pin_level(LED_PIN, state ? LED_STATE_ON : (1 - LED_STATE_ON)); #endif } uint32_t board_button_read(void) { #ifdef BUTTON_PIN return BUTTON_STATE_ACTIVE == gpio_get_pin_level(BUTTON_PIN); #else return 0; #endif } #if defined(UART_SERCOM) #define BOARD_SERCOM2(n) SERCOM ## n #define BOARD_SERCOM(n) BOARD_SERCOM2(n) static void uart_init(void) { #if UART_SERCOM == 0 gpio_set_pin_function(PIN_PA06, PINMUX_PA06D_SERCOM0_PAD2); gpio_set_pin_function(PIN_PA07, PINMUX_PA07D_SERCOM0_PAD3); // setup clock (48MHz) _pm_enable_bus_clock(PM_BUS_APBC, SERCOM0); _gclk_enable_channel(SERCOM0_GCLK_ID_CORE, GCLK_CLKCTRL_GEN_GCLK0_Val); SERCOM0->USART.CTRLA.bit.SWRST = 1; /* reset SERCOM & enable config */ while(SERCOM0->USART.SYNCBUSY.bit.SWRST); SERCOM0->USART.CTRLA.reg = /* CMODE = 0 -> async, SAMPA = 0, FORM = 0 -> USART frame, SMPR = 0 -> arithmetic baud rate */ SERCOM_USART_CTRLA_SAMPR(1) | /* 0 = 16x / arithmetic baud rate, 1 = 16x / fractional baud rate */ // SERCOM_USART_CTRLA_FORM(0) | /* 0 = USART Frame, 2 = LIN Master */ SERCOM_USART_CTRLA_DORD | /* LSB first */ SERCOM_USART_CTRLA_MODE(1) | /* 0 = Asynchronous, 1 = USART with internal clock */ SERCOM_USART_CTRLA_RXPO(3) | /* pad 3 */ SERCOM_USART_CTRLA_TXPO(1); /* pad 2 */ SERCOM0->USART.CTRLB.reg = SERCOM_USART_CTRLB_TXEN | /* tx enabled */ SERCOM_USART_CTRLB_RXEN; /* rx enabled */ SERCOM0->USART.BAUD.reg = SERCOM_USART_BAUD_FRAC_FP(0) | SERCOM_USART_BAUD_FRAC_BAUD(26); SERCOM0->USART.CTRLA.bit.ENABLE = 1; /* activate SERCOM */ while(SERCOM0->USART.SYNCBUSY.bit.ENABLE); /* wait for SERCOM to be ready */ #endif } static inline void uart_send_buffer(uint8_t const *text, size_t len) { for (size_t i = 0; i < len; ++i) { BOARD_SERCOM(UART_SERCOM)->USART.DATA.reg = text[i]; while((BOARD_SERCOM(UART_SERCOM)->USART.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) == 0); } } static inline void uart_send_str(const char* text) { while (*text) { BOARD_SERCOM(UART_SERCOM)->USART.DATA.reg = *text++; while((BOARD_SERCOM(UART_SERCOM)->USART.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) == 0); } } int board_uart_read(uint8_t* buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const * buf, int len) { if (len < 0) { uart_send_str(buf); } else { uart_send_buffer(buf, len); } return len; } #else // ! defined(UART_SERCOM) static void uart_init(void) { } int board_uart_read(uint8_t* buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const* buf, int len) { (void) buf; (void) len; return 0; } #endif #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif //--------------------------------------------------------------------+ // //--------------------------------------------------------------------+ #if CFG_TUH_ENABLED && defined(CFG_TUH_MAX3421) && CFG_TUH_MAX3421 static void max3421_init(void) { //------------- SPI Init -------------// // MAX3421E max SPI clock is 26MHz however SAMD can only work reliably at 12 Mhz uint32_t const baudrate = 12000000u; // Enable the APB clock for SERCOM PM->APBCMASK.reg |= 1u << (PM_APBCMASK_SERCOM0_Pos + MAX3421_SERCOM_ID); // Configure GCLK for SERCOM // GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_SERCOM4_CORE | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_CLKEN; GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(GCLK_CLKCTRL_ID_SERCOM0_CORE_Val + MAX3421_SERCOM_ID) | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_CLKEN; while (GCLK->STATUS.bit.SYNCBUSY); Sercom* sercom = MAX3421_SERCOM; // Disable the SPI module sercom->SPI.CTRLA.bit.ENABLE = 0; // Reset the SPI module sercom->SPI.CTRLA.bit.SWRST = 1; while (sercom->SPI.SYNCBUSY.bit.SWRST); // Set up SPI in master mode, MSB first, SPI mode 0 sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_DOPO(MAX3421_TX_PAD) | SERCOM_SPI_CTRLA_DIPO(MAX3421_RX_PAD) | SERCOM_SPI_CTRLA_MODE(3); sercom->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN; while (sercom->SPI.SYNCBUSY.bit.CTRLB == 1); // Set the baud rate sercom->SPI.BAUD.reg = (uint8_t) (SystemCoreClock / (2 * baudrate) - 1); // Configure PA12 as MOSI (PAD0), PA13 as SCK (PAD1), PA14 as MISO (PAD2), function C (sercom) gpio_set_pin_direction(MAX3421_SCK_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(MAX3421_SCK_PIN, GPIO_PULL_OFF); gpio_set_pin_function(MAX3421_SCK_PIN, MAX3421_SERCOM_FUNCTION); gpio_set_pin_direction(MAX3421_MOSI_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(MAX3421_MOSI_PIN, GPIO_PULL_OFF); gpio_set_pin_function(MAX3421_MOSI_PIN, MAX3421_SERCOM_FUNCTION); gpio_set_pin_direction(MAX3421_MISO_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(MAX3421_MISO_PIN, GPIO_PULL_OFF); gpio_set_pin_function(MAX3421_MISO_PIN, MAX3421_SERCOM_FUNCTION); // CS pin gpio_set_pin_direction(MAX3421_CS_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_level(MAX3421_CS_PIN, 1); // Enable the SPI module sercom->SPI.CTRLA.bit.ENABLE = 1; while (sercom->SPI.SYNCBUSY.bit.ENABLE); //------------- External Interrupt -------------// // Enable the APB clock for EIC (External Interrupt Controller) PM->APBAMASK.reg |= PM_APBAMASK_EIC; // Configure GCLK for EIC GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_EIC | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_CLKEN; while (GCLK->STATUS.bit.SYNCBUSY); // Configure PA20 as an input with function A (external interrupt) gpio_set_pin_direction(MAX3421_INTR_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(MAX3421_INTR_PIN, GPIO_PULL_UP); gpio_set_pin_function(MAX3421_INTR_PIN, 0); // Disable EIC EIC->CTRL.bit.ENABLE = 0; while (EIC->STATUS.bit.SYNCBUSY); // Configure EIC to trigger on falling edge uint8_t const sense_shift = MAX3421_INTR_EIC_ID * 4; EIC->CONFIG[0].reg &= ~(7 << sense_shift); EIC->CONFIG[0].reg |= 2 << sense_shift; #if CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(EIC_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); #endif // Enable External Interrupt EIC->INTENSET.reg = EIC_INTENSET_EXTINT(1 << MAX3421_INTR_EIC_ID); // Enable EIC EIC->CTRL.bit.ENABLE = 1; while (EIC->STATUS.bit.SYNCBUSY); } void EIC_Handler(void) { // Clear the interrupt flag EIC->INTFLAG.reg = EIC_INTFLAG_EXTINT(1 << MAX3421_INTR_EIC_ID); // Call the TinyUSB interrupt handler tuh_int_handler(1, true); } // API to enable/disable MAX3421 INTR pin interrupt void tuh_max3421_int_api(uint8_t rhport, bool enabled) { (void) rhport; if (enabled) { NVIC_EnableIRQ(EIC_IRQn); } else { NVIC_DisableIRQ(EIC_IRQn); } } // API to control MAX3421 SPI CS void tuh_max3421_spi_cs_api(uint8_t rhport, bool active) { (void) rhport; gpio_set_pin_level(MAX3421_CS_PIN, active ? 0 : 1); } // API to transfer data with MAX3421 SPI // Either tx_buf or rx_buf can be NULL, which means transfer is write or read only bool tuh_max3421_spi_xfer_api(uint8_t rhport, uint8_t const* tx_buf, uint8_t* rx_buf, size_t xfer_bytes) { (void) rhport; Sercom* sercom = MAX3421_SERCOM; for (size_t count = 0; count < xfer_bytes; count++) { // Wait for the transmit buffer to be empty while (!sercom->SPI.INTFLAG.bit.DRE); // Write data to be transmitted uint8_t data = 0x00; if (tx_buf) { data = tx_buf[count]; } sercom->SPI.DATA.reg = (uint32_t) data; // Wait for the receive buffer to be filled while (!sercom->SPI.INTFLAG.bit.RXC); // Read received data data = (uint8_t) sercom->SPI.DATA.reg; if (rx_buf) { rx_buf[count] = data; } } // wait for bus idle and clear flags while (!(sercom->SPI.INTFLAG.reg & (SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE))); sercom->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE; return true; } #endif