/* * The MIT License (MIT) * * Copyright (c) 2020 MM32 SE TEAM * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "hal_conf.h" #include "mm32_device.h" #include "bsp/board_api.h" #include "board.h" //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ #ifdef __GNUC__ // caused by extra declaration of SystemCoreClock in freeRTOSConfig.h #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wredundant-decls" #endif extern u32 SystemCoreClock; #ifdef __GNUC__ #pragma GCC diagnostic pop #endif //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void OTG_FS_IRQHandler(void) { tud_int_handler(0); } void USB_DeviceClockInit(void) { /* Select USBCLK source */ // RCC_USBCLKConfig(RCC_USBCLKSource_PLLCLK_Div1); RCC->CFGR &= ~(0x3 << 22); RCC->CFGR |= (0x1 << 22); /* Enable USB clock */ RCC->AHB2ENR |= 0x1 << 7; } void board_init(void) { // usb clock USB_DeviceClockInit(); SysTick_Config(SystemCoreClock / 1000); NVIC_SetPriority(SysTick_IRQn, 0x0); RCC_AHBPeriphClockCmd(RCC_AHBENR_GPIOA, ENABLE); // LED GPIO_InitTypeDef GPIO_InitStruct; GPIO_StructInit(&GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStruct); board_led_write(true); #ifdef BUTTON_PORT GPIO_StructInit(&GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = BUTTON_PIN; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStruct.GPIO_Mode = BUTTON_STATE_ACTIVE ? GPIO_Mode_IPD : GPIO_Mode_IPU; GPIO_Init(BUTTON_PORT, &GPIO_InitStruct); #endif #ifdef UART_DEV // UART UART_InitTypeDef UART_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2ENR_UART1, ENABLE); //enableUART1,GPIOAclock GPIO_PinAFConfig(GPIOA, UART_TX_PIN, UART_GPIO_AF); GPIO_PinAFConfig(GPIOA, UART_RX_PIN, UART_GPIO_AF); UART_StructInit(&UART_InitStruct); UART_InitStruct.UART_BaudRate = CFG_BOARD_UART_BAUDRATE; UART_InitStruct.UART_WordLength = UART_WordLength_8b; UART_InitStruct.UART_StopBits = UART_StopBits_1; UART_InitStruct.UART_Parity = UART_Parity_No; UART_InitStruct.UART_HardwareFlowControl = UART_HardwareFlowControl_None; UART_InitStruct.UART_Mode = UART_Mode_Rx | UART_Mode_Tx; UART_Init(UART_DEV, &UART_InitStruct); UART_Cmd(UART_DEV, ENABLE); GPIO_StructInit(&GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = 1 << UART_TX_PIN; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(UART_GPIO_PORT, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = 1 << UART_RX_PIN; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(UART_GPIO_PORT, &GPIO_InitStruct); #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { GPIO_WriteBit(LED_PORT, LED_PIN, state ? LED_STATE_ON : (1 - LED_STATE_ON)); } uint32_t board_button_read(void) { #ifdef BUTTON_PORT return GPIO_ReadInputDataBit(BUTTON_PORT, BUTTON_PIN) == BUTTON_STATE_ACTIVE; #else return 0; #endif } int board_uart_read(uint8_t* buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const* buf, int len) { #ifdef UART_DEV const char* buff = buf; while (len) { while ((UART1->CSR & UART_IT_TXIEN) == 0); //The loop is sent until it is finished UART1->TDR = (*buff & 0xFF); buff++; len--; } return len; #else (void) buf; (void) len; return 0; #endif } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif // Required by __libc_init_array in startup code if we are compiling using // -nostdlib/-nostartfiles. void _init(void) { }