/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUH_ENABLED #include "tusb.h" #include "common/tusb_private.h" #include "host/usbh.h" #include "host/usbh_classdriver.h" #include "hub.h" //--------------------------------------------------------------------+ // USBH Configuration //--------------------------------------------------------------------+ #ifndef CFG_TUH_TASK_QUEUE_SZ #define CFG_TUH_TASK_QUEUE_SZ 16 #endif #ifndef CFG_TUH_INTERFACE_MAX #define CFG_TUH_INTERFACE_MAX 8 #endif // Debug level of USBD #define USBH_DBG_LVL 2 //--------------------------------------------------------------------+ // USBH-HCD common data structure //--------------------------------------------------------------------+ // device0 struct must be strictly a subset of normal device struct // TODO refactor later typedef struct { // port uint8_t rhport; uint8_t hub_addr; uint8_t hub_port; uint8_t speed; struct TU_ATTR_PACKED { volatile uint8_t connected : 1; volatile uint8_t addressed : 1; volatile uint8_t configured : 1; volatile uint8_t suspended : 1; }; } usbh_dev0_t; typedef struct { // port, must be same layout as usbh_dev0_t uint8_t rhport; uint8_t hub_addr; uint8_t hub_port; uint8_t speed; // Device State struct TU_ATTR_PACKED { volatile uint8_t connected : 1; volatile uint8_t addressed : 1; volatile uint8_t configured : 1; volatile uint8_t suspended : 1; }; // Device Descriptor uint8_t ep0_size; uint16_t vid; uint16_t pid; uint8_t i_manufacturer; uint8_t i_product; uint8_t i_serial; // Configuration Descriptor // uint8_t interface_count; // bNumInterfaces alias // Endpoint & Interface uint8_t itf2drv[CFG_TUH_INTERFACE_MAX]; // map interface number to driver (0xff is invalid) uint8_t ep2drv[CFG_TUH_ENDPOINT_MAX][2]; // map endpoint to driver ( 0xff is invalid ), can use only 4-bit each tu_edpt_state_t ep_status[CFG_TUH_ENDPOINT_MAX][2]; #if CFG_TUH_API_EDPT_XFER // ep_xfer[]; #endif } usbh_device_t; //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ // Invalid driver ID in itf2drv[] ep2drv[][] mapping enum { DRVID_INVALID = 0xFFu }; enum { ADDR_INVALID = 0xFFu }; #if CFG_TUSB_DEBUG >= 2 #define DRIVER_NAME(_name) .name = _name, #else #define DRIVER_NAME(_name) #endif static usbh_class_driver_t const usbh_class_drivers[] = { #if CFG_TUH_CDC { DRIVER_NAME("CDC") .init = cdch_init, .open = cdch_open, .set_config = cdch_set_config, .xfer_cb = cdch_xfer_cb, .close = cdch_close }, #endif #if CFG_TUH_MSC { DRIVER_NAME("MSC") .init = msch_init, .open = msch_open, .set_config = msch_set_config, .xfer_cb = msch_xfer_cb, .close = msch_close }, #endif #if CFG_TUH_HID { DRIVER_NAME("HID") .init = hidh_init, .open = hidh_open, .set_config = hidh_set_config, .xfer_cb = hidh_xfer_cb, .close = hidh_close }, #endif #if CFG_TUH_HUB { DRIVER_NAME("HUB") .init = hub_init, .open = hub_open, .set_config = hub_set_config, .xfer_cb = hub_xfer_cb, .close = hub_close }, #endif #if CFG_TUH_VENDOR { DRIVER_NAME("VENDOR") .init = cush_init, .open = cush_open_subtask, .xfer_cb = cush_isr, .close = cush_close } #endif }; enum { USBH_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) }; enum { RESET_DELAY = 500 }; // 200 USB specs say only 50ms but many devices require much longer enum { CONFIG_NUM = 1 }; // default to use configuration 1 //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ // sum of end device + hub #define TOTAL_DEVICES (CFG_TUH_DEVICE_MAX + CFG_TUH_HUB) static bool _usbh_initialized = false; // Device with address = 0 for enumeration static usbh_dev0_t _dev0; // all devices excluding zero-address // hub address start from CFG_TUH_DEVICE_MAX+1 // TODO: hub can has its own simpler struct to save memory CFG_TUSB_MEM_SECTION usbh_device_t _usbh_devices[TOTAL_DEVICES]; // Mutex for claiming endpoint, only needed when using with preempted RTOS #if TUSB_OPT_MUTEX static osal_mutex_def_t _usbh_mutexdef; static osal_mutex_t _usbh_mutex; TU_ATTR_ALWAYS_INLINE static inline void usbh_lock(void) { osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER); } TU_ATTR_ALWAYS_INLINE static inline void usbh_unlock(void) { osal_mutex_unlock(_usbh_mutex); } #else #define usbh_lock() #define usbh_unlock() #endif // Event queue // usbh_int_set is used as mutex in OS NONE config OSAL_QUEUE_DEF(usbh_int_set, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t); static osal_queue_t _usbh_q; CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _usbh_ctrl_buf[CFG_TUH_ENUMERATION_BUFSIZE]; // Control transfer: since most controller does not support multiple control transfer // on multiple devices concurrently. And control transfer is not used much except enumeration // We will only execute control transfer one at a time. struct { tusb_control_request_t request TU_ATTR_ALIGNED(4); uint8_t* buffer; tuh_xfer_cb_t complete_cb; uintptr_t user_data; uint8_t daddr; volatile uint8_t stage; volatile uint16_t actual_len; }_ctrl_xfer; //------------- Helper Function -------------// TU_ATTR_ALWAYS_INLINE static inline usbh_device_t* get_device(uint8_t dev_addr) { TU_VERIFY(dev_addr > 0 && dev_addr <= TOTAL_DEVICES, NULL); return &_usbh_devices[dev_addr-1]; } static bool enum_new_device(hcd_event_t* event); static void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port); static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size); static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes); //--------------------------------------------------------------------+ // PUBLIC API (Parameter Verification is required) //--------------------------------------------------------------------+ bool tuh_mounted(uint8_t dev_addr) { usbh_device_t* dev = get_device(dev_addr); TU_VERIFY(dev); return dev->configured; } bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t* vid, uint16_t* pid) { *vid = *pid = 0; usbh_device_t const* dev = get_device(dev_addr); TU_VERIFY(dev && dev->configured); *vid = dev->vid; *pid = dev->pid; return true; } tusb_speed_t tuh_speed_get (uint8_t dev_addr) { usbh_device_t* dev = get_device(dev_addr); return (tusb_speed_t) (dev ? get_device(dev_addr)->speed : _dev0.speed); } #if CFG_TUSB_OS == OPT_OS_NONE void osal_task_delay(uint32_t msec) { (void) msec; const uint32_t start = hcd_frame_number(TUH_OPT_RHPORT); while ( ( hcd_frame_number(TUH_OPT_RHPORT) - start ) < msec ) {} } #endif //--------------------------------------------------------------------+ // CLASS-USBD API (don't require to verify parameters) //--------------------------------------------------------------------+ static void clear_device(usbh_device_t* dev) { tu_memclr(dev, sizeof(usbh_device_t)); memset(dev->itf2drv, DRVID_INVALID, sizeof(dev->itf2drv)); // invalid mapping memset(dev->ep2drv , DRVID_INVALID, sizeof(dev->ep2drv )); // invalid mapping } bool tuh_inited(void) { return _usbh_initialized; } bool tuh_init(uint8_t rhport) { // skip if already initialized if (_usbh_initialized) return _usbh_initialized; TU_LOG2("USBH init\r\n"); TU_LOG2_INT(sizeof(usbh_device_t)); TU_LOG2_INT(sizeof(hcd_event_t)); TU_LOG2_INT(sizeof(_ctrl_xfer)); TU_LOG2_INT(sizeof(tuh_xfer_t)); // Event queue _usbh_q = osal_queue_create( &_usbh_qdef ); TU_ASSERT(_usbh_q != NULL); #if TUSB_OPT_MUTEX // Mutex _usbh_mutex = osal_mutex_create(&_usbh_mutexdef); TU_ASSERT(_usbh_mutex); #endif // Device tu_memclr(&_dev0, sizeof(_dev0)); tu_memclr(_usbh_devices, sizeof(_usbh_devices)); tu_memclr(&_ctrl_xfer, sizeof(_ctrl_xfer)); for(uint8_t i=0; iep_status[epnum][ep_dir].busy = 0; dev->ep_status[epnum][ep_dir].claimed = 0; if ( 0 == epnum ) { usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); }else { uint8_t drv_id = dev->ep2drv[epnum][ep_dir]; TU_ASSERT(drv_id < USBH_CLASS_DRIVER_COUNT, ); TU_LOG2("%s xfer callback\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); } } } break; case USBH_EVENT_FUNC_CALL: if ( event.func_call.func ) event.func_call.func(event.func_call.param); break; default: break; } } } //--------------------------------------------------------------------+ // Control transfer //--------------------------------------------------------------------+ static void _control_blocking_complete_cb(tuh_xfer_t* xfer) { // update result *((xfer_result_t*) xfer->user_data) = xfer->result; } // TODO timeout_ms is not supported yet bool tuh_control_xfer (tuh_xfer_t* xfer) { // EP0 with setup packet TU_VERIFY(xfer->ep_addr == 0 && xfer->setup); // pre-check to help reducing mutex lock TU_VERIFY(_ctrl_xfer.stage == CONTROL_STAGE_IDLE); uint8_t const daddr = xfer->daddr; // TODO probably better to use semaphore as resource management than mutex usbh_lock(); bool const is_idle = (_ctrl_xfer.stage == CONTROL_STAGE_IDLE); if (is_idle) { _ctrl_xfer.stage = CONTROL_STAGE_SETUP; _ctrl_xfer.daddr = daddr; _ctrl_xfer.actual_len = 0; _ctrl_xfer.request = (*xfer->setup); _ctrl_xfer.buffer = xfer->buffer; _ctrl_xfer.complete_cb = xfer->complete_cb; _ctrl_xfer.user_data = xfer->user_data; } usbh_unlock(); TU_VERIFY(is_idle); const uint8_t rhport = usbh_get_rhport(daddr); TU_LOG2("[%u:%u] %s: ", rhport, daddr, xfer->setup->bRequest <= TUSB_REQ_SYNCH_FRAME ? tu_str_std_request[xfer->setup->bRequest] : "Unknown Request"); TU_LOG2_VAR(&xfer->setup); TU_LOG2("\r\n"); if (xfer->complete_cb) { TU_ASSERT( hcd_setup_send(rhport, daddr, (uint8_t*) &_ctrl_xfer.request) ); }else { // blocking if complete callback is not provided // change callback to internal blocking, and result as user argument volatile xfer_result_t result = XFER_RESULT_INVALID; // use user_data to point to xfer_result_t _ctrl_xfer.user_data = (uintptr_t) &result; _ctrl_xfer.complete_cb = _control_blocking_complete_cb; TU_ASSERT( hcd_setup_send(rhport, daddr, (uint8_t*) &_ctrl_xfer.request) ); while (result == XFER_RESULT_INVALID) { // only need to call task if not preempted RTOS #if CFG_TUSB_OS == OPT_OS_NONE || CFG_TUSB_OS == OPT_OS_PICO tuh_task(); #endif // TODO probably some timeout to prevent hanged } // update transfer result xfer->result = result; xfer->actual_len = _ctrl_xfer.actual_len; } return true; } TU_ATTR_ALWAYS_INLINE static inline void _set_control_xfer_stage(uint8_t stage) { usbh_lock(); _ctrl_xfer.stage = stage; usbh_unlock(); } static void _xfer_complete(uint8_t daddr, xfer_result_t result) { TU_LOG2("\r\n"); // duplicate xfer since user can execute control transfer within callback tusb_control_request_t const request = _ctrl_xfer.request; tuh_xfer_t xfer_temp = { .daddr = daddr, .ep_addr = 0, .result = result, .setup = &request, .actual_len = (uint32_t) _ctrl_xfer.actual_len, .buffer = _ctrl_xfer.buffer, .complete_cb = _ctrl_xfer.complete_cb, .user_data = _ctrl_xfer.user_data }; usbh_lock(); _ctrl_xfer.stage = CONTROL_STAGE_IDLE; usbh_unlock(); if (xfer_temp.complete_cb) { xfer_temp.complete_cb(&xfer_temp); } } static bool usbh_control_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { (void) ep_addr; const uint8_t rhport = usbh_get_rhport(dev_addr); tusb_control_request_t const * request = &_ctrl_xfer.request; if (XFER_RESULT_SUCCESS != result) { TU_LOG2("[%u:%u] Control %s\r\n", rhport, dev_addr, result == XFER_RESULT_STALLED ? "STALLED" : "FAILED"); // terminate transfer if any stage failed _xfer_complete(dev_addr, result); }else { switch(_ctrl_xfer.stage) { case CONTROL_STAGE_SETUP: if (request->wLength) { // DATA stage: initial data toggle is always 1 _set_control_xfer_stage(CONTROL_STAGE_DATA); return hcd_edpt_xfer(rhport, dev_addr, tu_edpt_addr(0, request->bmRequestType_bit.direction), _ctrl_xfer.buffer, request->wLength); } __attribute__((fallthrough)); case CONTROL_STAGE_DATA: if (xferred_bytes) { TU_LOG2("[%u:%u] Control data:\r\n", rhport, dev_addr); TU_LOG2_MEM(_ctrl_xfer.buffer, xferred_bytes, 2); } _ctrl_xfer.actual_len = xferred_bytes; // ACK stage: toggle is always 1 _set_control_xfer_stage(CONTROL_STAGE_ACK); hcd_edpt_xfer(rhport, dev_addr, tu_edpt_addr(0, 1-request->bmRequestType_bit.direction), NULL, 0); break; case CONTROL_STAGE_ACK: _xfer_complete(dev_addr, result); break; default: return false; } } return true; } //--------------------------------------------------------------------+ // //--------------------------------------------------------------------+ bool tuh_edpt_xfer(tuh_xfer_t* xfer) { TU_VERIFY(xfer->daddr && xfer->ep_addr); return true; } //--------------------------------------------------------------------+ // USBH API For Class Driver //--------------------------------------------------------------------+ uint8_t usbh_get_rhport(uint8_t dev_addr) { usbh_device_t* dev = get_device(dev_addr); return dev ? dev->rhport : _dev0.rhport; } uint8_t* usbh_get_enum_buf(void) { return _usbh_ctrl_buf; } void usbh_int_set(bool enabled) { // TODO all host controller if (enabled) { hcd_int_enable(TUH_OPT_RHPORT); }else { hcd_int_disable(TUH_OPT_RHPORT); } } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // TODO has some duplication code with device, refactor later bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr) { usbh_device_t* dev = get_device(dev_addr); // addr0 only use tuh_control_xfer TU_ASSERT(dev); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); tu_edpt_state_t* ep_state = &dev->ep_status[epnum][dir]; #if TUSB_OPT_MUTEX return tu_edpt_claim(ep_state, _usbh_mutex); #else return tu_edpt_claim(ep_state, NULL); #endif } // TODO has some duplication code with device, refactor later bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) { // addr0 is always available if (dev_addr == 0) return true; usbh_device_t* dev = get_device(dev_addr); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); tu_edpt_state_t* ep_state = &dev->ep_status[epnum][dir]; #if TUSB_OPT_MUTEX return tu_edpt_release(ep_state, _usbh_mutex); #else return tu_edpt_release(ep_state, NULL); #endif } // TODO has some duplication code with device, refactor later bool usbh_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { usbh_device_t* dev = get_device(dev_addr); TU_VERIFY(dev); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); TU_LOG2(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes); // Attempt to transfer on a busy endpoint, sound like an race condition ! TU_ASSERT(dev->ep_status[epnum][dir].busy == 0); // Set busy first since the actual transfer can be complete before hcd_edpt_xfer() // could return and USBH task can preempt and clear the busy dev->ep_status[epnum][dir].busy = true; if ( hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes) ) { TU_LOG2("OK\r\n"); return true; }else { // HCD error, mark endpoint as ready to allow next transfer dev->ep_status[epnum][dir].busy = false; dev->ep_status[epnum][dir].claimed = 0; TU_LOG1("failed\r\n"); TU_BREAKPOINT(); return false; } } static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size) { TU_LOG2("Open EP0 with Size = %u (addr = %u)\r\n", max_packet_size, dev_addr); tusb_desc_endpoint_t ep0_desc = { .bLength = sizeof(tusb_desc_endpoint_t), .bDescriptorType = TUSB_DESC_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = { .xfer = TUSB_XFER_CONTROL }, .wMaxPacketSize = max_packet_size, .bInterval = 0 }; return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc); } bool usbh_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * desc_ep) { TU_ASSERT( tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr)) ); return hcd_edpt_open(rhport, dev_addr, desc_ep); } bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = get_device(dev_addr); TU_VERIFY(dev); return dev->ep_status[epnum][dir].busy; } //--------------------------------------------------------------------+ // HCD Event Handler //--------------------------------------------------------------------+ void hcd_devtree_get_info(uint8_t dev_addr, hcd_devtree_info_t* devtree_info) { usbh_device_t const* dev = get_device(dev_addr); if (dev) { devtree_info->rhport = dev->rhport; devtree_info->hub_addr = dev->hub_addr; devtree_info->hub_port = dev->hub_port; devtree_info->speed = dev->speed; }else { devtree_info->rhport = _dev0.rhport; devtree_info->hub_addr = _dev0.hub_addr; devtree_info->hub_port = _dev0.hub_port; devtree_info->speed = _dev0.speed; } } void hcd_event_handler(hcd_event_t const* event, bool in_isr) { switch (event->event_id) { default: osal_queue_send(_usbh_q, event, in_isr); break; } } void hcd_event_xfer_complete(uint8_t dev_addr, uint8_t ep_addr, uint32_t xferred_bytes, xfer_result_t result, bool in_isr) { hcd_event_t event = { .rhport = 0, // TODO correct rhport .event_id = HCD_EVENT_XFER_COMPLETE, .dev_addr = dev_addr, .xfer_complete = { .ep_addr = ep_addr, .result = result, .len = xferred_bytes } }; hcd_event_handler(&event, in_isr); } void hcd_event_device_attach(uint8_t rhport, bool in_isr) { hcd_event_t event = { .rhport = rhport, .event_id = HCD_EVENT_DEVICE_ATTACH }; event.connection.hub_addr = 0; event.connection.hub_port = 0; hcd_event_handler(&event, in_isr); } void hcd_event_device_remove(uint8_t hostid, bool in_isr) { hcd_event_t event = { .rhport = hostid, .event_id = HCD_EVENT_DEVICE_REMOVE }; event.connection.hub_addr = 0; event.connection.hub_port = 0; hcd_event_handler(&event, in_isr); } //--------------------------------------------------------------------+ // Descriptors Async //--------------------------------------------------------------------+ // generic helper to get a descriptor // if blocking, user_data could be pointed to xfer_result static bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = tu_htole16( TU_U16(type, index) ), .wIndex = tu_htole16(language_id), .wLength = tu_htole16(len) }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = buffer, .complete_cb = complete_cb, .user_data = user_data }; bool const ret = tuh_control_xfer(&xfer); // if blocking, user_data could be pointed to xfer_result if ( !complete_cb && user_data ) { *((xfer_result_t*) user_data) = xfer.result; } return ret; } bool tuh_descriptor_get(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { return _get_descriptor(daddr, type, index, 0x0000, buffer, len, complete_cb, user_data); } bool tuh_descriptor_get_device(uint8_t daddr, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { len = tu_min16(len, sizeof(tusb_desc_device_t)); return tuh_descriptor_get(daddr, TUSB_DESC_DEVICE, 0, buffer, len, complete_cb, user_data); } bool tuh_descriptor_get_configuration(uint8_t daddr, uint8_t index, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { return tuh_descriptor_get(daddr, TUSB_DESC_CONFIGURATION, index, buffer, len, complete_cb, user_data); } //------------- String Descriptor -------------// bool tuh_descriptor_get_string(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { return _get_descriptor(daddr, TUSB_DESC_STRING, index, language_id, buffer, len, complete_cb, user_data); } // Get manufacturer string descriptor bool tuh_descriptor_get_manufacturer_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { usbh_device_t const* dev = get_device(daddr); TU_VERIFY(dev && dev->i_manufacturer); return tuh_descriptor_get_string(daddr, dev->i_manufacturer, language_id, buffer, len, complete_cb, user_data); } // Get product string descriptor bool tuh_descriptor_get_product_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { usbh_device_t const* dev = get_device(daddr); TU_VERIFY(dev && dev->i_product); return tuh_descriptor_get_string(daddr, dev->i_product, language_id, buffer, len, complete_cb, user_data); } // Get serial string descriptor bool tuh_descriptor_get_serial_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { usbh_device_t const* dev = get_device(daddr); TU_VERIFY(dev && dev->i_serial); return tuh_descriptor_get_string(daddr, dev->i_serial, language_id, buffer, len, complete_cb, user_data); } // Get HID report descriptor // if blocking, user_data could be pointed to xfer_result bool tuh_descriptor_get_hid_report(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { TU_LOG2("HID Get Report Descriptor\r\n"); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_INTERFACE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = tu_htole16(TU_U16(desc_type, index)), .wIndex = tu_htole16((uint16_t) itf_num), .wLength = len }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = buffer, .complete_cb = complete_cb, .user_data = user_data }; bool const ret = tuh_control_xfer(&xfer); // if blocking, user_data could be pointed to xfer_result if ( !complete_cb && user_data ) { *((xfer_result_t*) user_data) = xfer.result; } return ret; } bool tuh_configuration_set(uint8_t daddr, uint8_t config_num, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { TU_LOG2("Set Configuration = %d\r\n", config_num); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_CONFIGURATION, .wValue = tu_htole16(config_num), .wIndex = 0, .wLength = 0 }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = NULL, .complete_cb = complete_cb, .user_data = user_data }; return tuh_control_xfer(&xfer); } //--------------------------------------------------------------------+ // Descriptor Sync //--------------------------------------------------------------------+ #define _CONTROL_SYNC_API(_async_func, ...) \ xfer_result_t result = XFER_RESULT_INVALID;\ TU_VERIFY(_async_func(__VA_ARGS__, NULL, (uintptr_t) &result), XFER_RESULT_TIMEOUT); \ return (uint8_t) result uint8_t tuh_descriptor_get_sync(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get, daddr, type, index, buffer, len); } uint8_t tuh_descriptor_get_device_sync(uint8_t daddr, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_device, daddr, buffer, len); } uint8_t tuh_descriptor_get_configuration_sync(uint8_t daddr, uint8_t index, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_configuration, daddr, index, buffer, len); } uint8_t tuh_descriptor_get_hid_report_sync(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_hid_report, daddr, itf_num, desc_type, index, buffer, len); } uint8_t tuh_descriptor_get_string_sync(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_string, daddr, index, language_id, buffer, len); } uint8_t tuh_descriptor_get_manufacturer_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_manufacturer_string, daddr, language_id, buffer, len); } uint8_t tuh_descriptor_get_product_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_product_string, daddr, language_id, buffer, len); } uint8_t tuh_descriptor_get_serial_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len) { _CONTROL_SYNC_API(tuh_descriptor_get_serial_string, daddr, language_id, buffer, len); } //--------------------------------------------------------------------+ // //--------------------------------------------------------------------+ // a device unplugged from rhport:hub_addr:hub_port static void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port) { //------------- find the all devices (star-network) under port that is unplugged -------------// // TODO mark as disconnected in ISR, also handle dev0 for ( uint8_t dev_id = 0; dev_id < TU_ARRAY_SIZE(_usbh_devices); dev_id++ ) { usbh_device_t* dev = &_usbh_devices[dev_id]; uint8_t const dev_addr = dev_id+1; // TODO Hub multiple level if (dev->rhport == rhport && (hub_addr == 0 || dev->hub_addr == hub_addr) && // hub_addr == 0 & hub_port == 0 means roothub (hub_port == 0 || dev->hub_port == hub_port) && dev->connected) { TU_LOG2(" Address = %u\r\n", dev_addr); // Invoke callback before close driver if (tuh_umount_cb) tuh_umount_cb(dev_addr); // Close class driver for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { TU_LOG2("%s close\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].close(dev_addr); } hcd_device_close(rhport, dev_addr); clear_device(dev); // abort on-going control xfer if any if (_ctrl_xfer.daddr == dev_addr) _set_control_xfer_stage(CONTROL_STAGE_IDLE); } } } //--------------------------------------------------------------------+ // Enumeration Process // is a lengthy process with a series of control transfer to configure // newly attached device. // NOTE: due to the shared _usbh_ctrl_buf, we must complete enumerating // one device before enumerating another one. //--------------------------------------------------------------------+ enum { ENUM_IDLE, ENUM_RESET_1, // 1st reset when attached //ENUM_HUB_GET_STATUS_1, ENUM_HUB_CLEAR_RESET_1, ENUM_ADDR0_DEVICE_DESC, ENUM_RESET_2, // 2nd reset before set address ENUM_HUB_GET_STATUS_2, ENUM_HUB_CLEAR_RESET_2, ENUM_SET_ADDR, ENUM_GET_DEVICE_DESC, ENUM_GET_9BYTE_CONFIG_DESC, ENUM_GET_FULL_CONFIG_DESC, ENUM_SET_CONFIG, ENUM_CONFIG_DRIVER }; static bool enum_request_set_addr(void); static bool parse_configuration_descriptor (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg); static void enum_full_complete(void); // process device enumeration static void process_enumeration(tuh_xfer_t* xfer) { if (XFER_RESULT_SUCCESS != xfer->result) { // stop enumeration, maybe we could retry this enum_full_complete(); return; } uint8_t const daddr = xfer->daddr; uintptr_t const state = xfer->user_data; switch(state) { #if CFG_TUH_HUB //case ENUM_HUB_GET_STATUS_1: break; case ENUM_HUB_CLEAR_RESET_1: { hub_port_status_response_t port_status; memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t)); if ( !port_status.status.connection ) { // device unplugged while delaying, nothing else to do enum_full_complete(); return; } _dev0.speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH : (port_status.status.low_speed ) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL; // Acknowledge Port Reset Change if (port_status.change.reset) { hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_ADDR0_DEVICE_DESC); } } break; case ENUM_HUB_GET_STATUS_2: osal_task_delay(RESET_DELAY); TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, process_enumeration, ENUM_HUB_CLEAR_RESET_2), ); break; case ENUM_HUB_CLEAR_RESET_2: { hub_port_status_response_t port_status; memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t)); // Acknowledge Port Reset Change if Reset Successful if (port_status.change.reset) { TU_ASSERT( hub_port_clear_reset_change(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_SET_ADDR), ); } } break; #endif case ENUM_ADDR0_DEVICE_DESC: { // TODO probably doesn't need to open/close each enumeration uint8_t const addr0 = 0; TU_ASSERT( usbh_edpt_control_open(addr0, 8), ); // Get first 8 bytes of device descriptor for Control Endpoint size TU_LOG2("Get 8 byte of Device Descriptor\r\n"); TU_ASSERT(tuh_descriptor_get_device(addr0, _usbh_ctrl_buf, 8, process_enumeration, ENUM_SET_ADDR), ); } break; case ENUM_RESET_2: // Reset device again before Set Address TU_LOG2("Port reset \r\n"); if (_dev0.hub_addr == 0) { // connected directly to roothub hcd_port_reset( _dev0.rhport ); osal_task_delay(RESET_DELAY); // TODO: fall through to SET ADDRESS, refactor later } #if CFG_TUH_HUB else { // after RESET_DELAY the hub_port_reset() already complete TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port, process_enumeration, ENUM_HUB_GET_STATUS_2), ); break; } #endif __attribute__((fallthrough)); case ENUM_SET_ADDR: enum_request_set_addr(); break; case ENUM_GET_DEVICE_DESC: { uint8_t const new_addr = (uint8_t) tu_le16toh(xfer->setup->wValue); usbh_device_t* new_dev = get_device(new_addr); TU_ASSERT(new_dev, ); new_dev->addressed = 1; // TODO close device 0, may not be needed hcd_device_close(_dev0.rhport, 0); // open control pipe for new address TU_ASSERT( usbh_edpt_control_open(new_addr, new_dev->ep0_size), ); // Get full device descriptor TU_LOG2("Get Device Descriptor\r\n"); TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_ctrl_buf, sizeof(tusb_desc_device_t), process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC), ); } break; case ENUM_GET_9BYTE_CONFIG_DESC: { tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf; usbh_device_t* dev = get_device(daddr); TU_ASSERT(dev, ); dev->vid = desc_device->idVendor; dev->pid = desc_device->idProduct; dev->i_manufacturer = desc_device->iManufacturer; dev->i_product = desc_device->iProduct; dev->i_serial = desc_device->iSerialNumber; // if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf); // Get 9-byte for total length uint8_t const config_idx = CONFIG_NUM - 1; TU_LOG2("Get Configuration[0] Descriptor (9 bytes)\r\n"); TU_ASSERT( tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, 9, process_enumeration, ENUM_GET_FULL_CONFIG_DESC), ); } break; case ENUM_GET_FULL_CONFIG_DESC: { uint8_t const * desc_config = _usbh_ctrl_buf; // Use offsetof to avoid pointer to the odd/misaligned address uint16_t const total_len = tu_le16toh( tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)) ); // TODO not enough buffer to hold configuration descriptor TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE, ); // Get full configuration descriptor uint8_t const config_idx = CONFIG_NUM - 1; TU_LOG2("Get Configuration[0] Descriptor\r\n"); TU_ASSERT( tuh_descriptor_get_configuration(daddr, config_idx, _usbh_ctrl_buf, total_len, process_enumeration, ENUM_SET_CONFIG), ); } break; case ENUM_SET_CONFIG: // Parse configuration & set up drivers // Driver open aren't allowed to make any usb transfer yet TU_ASSERT( parse_configuration_descriptor(daddr, (tusb_desc_configuration_t*) _usbh_ctrl_buf), ); TU_ASSERT( tuh_configuration_set(daddr, CONFIG_NUM, process_enumeration, ENUM_CONFIG_DRIVER), ); break; case ENUM_CONFIG_DRIVER: { TU_LOG2("Device configured\r\n"); usbh_device_t* dev = get_device(daddr); TU_ASSERT(dev, ); dev->configured = 1; // Start the Set Configuration process for interfaces (itf = DRVID_INVALID) // Since driver can perform control transfer within its set_config, this is done asynchronously. // The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete() // TODO use separated API instead of using DRVID_INVALID usbh_driver_set_config_complete(daddr, DRVID_INVALID); } break; default: // stop enumeration if unknown state enum_full_complete(); break; } } static bool enum_new_device(hcd_event_t* event) { _dev0.rhport = event->rhport; _dev0.hub_addr = event->connection.hub_addr; _dev0.hub_port = event->connection.hub_port; if (_dev0.hub_addr == 0) { // connected/disconnected directly with roothub // wait until device is stable TODO non blocking osal_task_delay(RESET_DELAY); // device unplugged while delaying if ( !hcd_port_connect_status(_dev0.rhport) ) return true; _dev0.speed = hcd_port_speed_get(_dev0.rhport ); TU_LOG2("%s Speed\r\n", tu_str_speed[_dev0.speed]); // fake transfer to kick-off the enumeration process tuh_xfer_t xfer; xfer.daddr = 0; xfer.result = XFER_RESULT_SUCCESS; xfer.user_data = ENUM_ADDR0_DEVICE_DESC; process_enumeration(&xfer); } #if CFG_TUH_HUB else { // connected/disconnected via external hub // wait until device is stable osal_task_delay(RESET_DELAY); // ENUM_HUB_GET_STATUS //TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status0_complete, 0) ); TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, process_enumeration, ENUM_HUB_CLEAR_RESET_1) ); } #endif // hub return true; } TU_ATTR_ALWAYS_INLINE static inline bool is_hub_addr(uint8_t daddr) { return daddr > CFG_TUH_DEVICE_MAX; } static uint8_t get_new_address(bool is_hub) { uint8_t start; uint8_t end; if ( is_hub ) { start = CFG_TUH_DEVICE_MAX; end = start + CFG_TUH_HUB; }else { start = 0; end = start + CFG_TUH_DEVICE_MAX; } for ( uint8_t idx = start; idx < end; idx++) { if (!_usbh_devices[idx].connected) return (idx+1); } return ADDR_INVALID; } static bool enum_request_set_addr(void) { tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf; // Get new address uint8_t const new_addr = get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB); TU_ASSERT(new_addr != ADDR_INVALID); TU_LOG2("Set Address = %d\r\n", new_addr); usbh_device_t* new_dev = get_device(new_addr); new_dev->rhport = _dev0.rhport; new_dev->hub_addr = _dev0.hub_addr; new_dev->hub_port = _dev0.hub_port; new_dev->speed = _dev0.speed; new_dev->connected = 1; new_dev->ep0_size = desc_device->bMaxPacketSize0; tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_ADDRESS, .wValue = tu_htole16(new_addr), .wIndex = 0, .wLength = 0 }; tuh_xfer_t xfer = { .daddr = 0, // dev0 .ep_addr = 0, .setup = &request, .buffer = NULL, .complete_cb = process_enumeration, .user_data = ENUM_GET_DEVICE_DESC }; TU_ASSERT( tuh_control_xfer(&xfer) ); return true; } static bool parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) { usbh_device_t* dev = get_device(dev_addr); uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + tu_le16toh(desc_cfg->wTotalLength); uint8_t const* p_desc = tu_desc_next(desc_cfg); // parse each interfaces while( p_desc < desc_end ) { uint8_t assoc_itf_count = 1; // Class will always starts with Interface Association (if any) and then Interface descriptor if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) { tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc; assoc_itf_count = desc_iad->bInterfaceCount; p_desc = tu_desc_next(p_desc); // next to Interface // IAD's first interface number and class should match with opened interface //TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber && // desc_iad->bFunctionClass == desc_itf->bInterfaceClass); } TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) ); tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc; #if CFG_TUH_MIDI // MIDI has 2 interfaces (Audio Control v1 + MIDIStreaming) but does not have IAD // manually increase the associated count if (1 == assoc_itf_count && TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass && AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass && AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol) { assoc_itf_count = 2; } #endif uint16_t const drv_len = tu_desc_get_interface_total_len(desc_itf, assoc_itf_count, desc_end-p_desc); TU_ASSERT(drv_len >= sizeof(tusb_desc_interface_t)); if (desc_itf->bInterfaceClass == TUSB_CLASS_HUB && dev->hub_addr != 0) { // TODO Attach hub to Hub is not currently supported // skip this interface TU_LOG(USBH_DBG_LVL, "Only 1 level of HUB is supported\r\n"); } else { // Find driver for this interface uint8_t drv_id; for (drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id]; if ( driver->open(dev->rhport, dev_addr, desc_itf, drv_len) ) { // open successfully TU_LOG2(" %s opened\r\n", driver->name); // bind (associated) interfaces to found driver for(uint8_t i=0; ibInterfaceNumber+i; // Interface number must not be used already TU_ASSERT( DRVID_INVALID == dev->itf2drv[itf_num] ); dev->itf2drv[itf_num] = drv_id; } // bind all endpoints to found driver tu_edpt_bind_driver(dev->ep2drv, desc_itf, drv_len, drv_id); break; // exit driver find loop } } if( drv_id >= USBH_CLASS_DRIVER_COUNT ) { TU_LOG(USBH_DBG_LVL, "Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n", desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol); } } // next Interface or IAD descriptor p_desc += drv_len; } return true; } void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num) { usbh_device_t* dev = get_device(dev_addr); for(itf_num++; itf_num < CFG_TUH_INTERFACE_MAX; itf_num++) { // continue with next valid interface // TODO skip IAD binding interface such as CDCs uint8_t const drv_id = dev->itf2drv[itf_num]; if (drv_id != DRVID_INVALID) { usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id]; TU_LOG2("%s set config: itf = %u\r\n", driver->name, itf_num); driver->set_config(dev_addr, itf_num); break; } } // all interface are configured if (itf_num == CFG_TUH_INTERFACE_MAX) { enum_full_complete(); #if CFG_TUH_HUB // skip device mount callback for hub if ( !is_hub_addr(dev_addr) ) #endif { // Invoke callback if available if (tuh_mount_cb) tuh_mount_cb(dev_addr); } } } static void enum_full_complete(void) { #if CFG_TUH_HUB // get next hub status if (_dev0.hub_addr) hub_edpt_status_xfer(_dev0.hub_addr); #endif } #endif