/* * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries * Copyright (c) 2019 Ha Thach (tinyusb.org) * Copyright (c) 2020 Jan Duempelmann * Copyright (c) 2020 Reinhard Panhuber * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" // Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval) // We disable SOF for now until needed later on #define USE_SOF 0 #if defined (STM32F105x8) || defined (STM32F105xB) || defined (STM32F105xC) || \ defined (STM32F107xB) || defined (STM32F107xC) #define STM32F1_SYNOPSYS #endif #if defined (STM32L475xx) || defined (STM32L476xx) || \ defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || \ defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || \ defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx) #define STM32L4_SYNOPSYS #endif #if TUSB_OPT_DEVICE_ENABLED && \ ( (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_SYNOPSYS)) || \ CFG_TUSB_MCU == OPT_MCU_STM32F2 || \ CFG_TUSB_MCU == OPT_MCU_STM32F4 || \ CFG_TUSB_MCU == OPT_MCU_STM32F7 || \ CFG_TUSB_MCU == OPT_MCU_STM32H7 || \ (CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \ ) // EP_MAX : Max number of bi-directional endpoints including EP0 // EP_FIFO_SIZE : Size of dedicated USB SRAM #if CFG_TUSB_MCU == OPT_MCU_STM32F1 #include "stm32f1xx.h" #define EP_MAX_FS 4 #define EP_FIFO_SIZE_FS 1280 #elif CFG_TUSB_MCU == OPT_MCU_STM32F2 #include "stm32f2xx.h" #define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS #define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE #elif CFG_TUSB_MCU == OPT_MCU_STM32F4 #include "stm32f4xx.h" #define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS #define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE #define EP_MAX_HS USB_OTG_HS_MAX_IN_ENDPOINTS #define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE #elif CFG_TUSB_MCU == OPT_MCU_STM32H7 #include "stm32h7xx.h" #define EP_MAX_FS 9 #define EP_FIFO_SIZE_FS 4096 #define EP_MAX_HS 9 #define EP_FIFO_SIZE_HS 4096 #elif CFG_TUSB_MCU == OPT_MCU_STM32F7 #include "stm32f7xx.h" #define EP_MAX_FS 6 #define EP_FIFO_SIZE_FS 1280 #define EP_MAX_HS 9 #define EP_FIFO_SIZE_HS 4096 #elif CFG_TUSB_MCU == OPT_MCU_STM32L4 #include "stm32l4xx.h" #define EP_MAX_FS 6 #define EP_FIFO_SIZE_FS 1280 #else #error "Unsupported MCUs" #endif #include "device/dcd.h" //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM //--------------------------------------------------------------------+ // On STM32 we associate Port0 to OTG_FS, and Port1 to OTG_HS #if TUD_OPT_RHPORT == 0 #define EP_MAX EP_MAX_FS #define EP_FIFO_SIZE EP_FIFO_SIZE_FS #define RHPORT_REGS_BASE USB_OTG_FS_PERIPH_BASE #define RHPORT_IRQn OTG_FS_IRQn #else #define EP_MAX EP_MAX_HS #define EP_FIFO_SIZE EP_FIFO_SIZE_HS #define RHPORT_REGS_BASE USB_OTG_HS_PERIPH_BASE #define RHPORT_IRQn OTG_HS_IRQn #endif #define GLOBAL_BASE(_port) ((USB_OTG_GlobalTypeDef*) RHPORT_REGS_BASE) #define DEVICE_BASE(_port) (USB_OTG_DeviceTypeDef *) (RHPORT_REGS_BASE + USB_OTG_DEVICE_BASE) #define OUT_EP_BASE(_port) (USB_OTG_OUTEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_OUT_ENDPOINT_BASE) #define IN_EP_BASE(_port) (USB_OTG_INEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_IN_ENDPOINT_BASE) #define FIFO_BASE(_port, _x) ((volatile uint32_t *) (RHPORT_REGS_BASE + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE)) enum { DCD_HIGH_SPEED = 0, // Highspeed mode DCD_FULL_SPEED_USE_HS = 1, // Full speed in Highspeed port (probably with internal PHY) DCD_FULL_SPEED = 3, // Full speed with internal PHY }; static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2]; typedef struct { uint8_t * buffer; uint16_t total_len; uint16_t max_size; uint8_t interval; } xfer_ctl_t; // EP size and transfer type report typedef struct TU_ATTR_PACKED { // The following format may look complicated but it is the most elegant way of addressing the required fields: EP number, EP direction, and EP transfer type. // The codes assigned to those fields, according to the USB specification, can be neatly used as indices. uint16_t ep_size[EP_MAX][2]; ///< dim 1: EP number, dim 2: EP direction denoted by TUSB_DIR_OUT (= 0) and TUSB_DIR_IN (= 1) bool ep_transfer_type[EP_MAX][2][4]; ///< dim 1: EP number, dim 2: EP direction, dim 3: transfer type, where 0 = Control, 1 = Isochronous, 2 = Bulk, and 3 = Interrupt ///< I know very well that EP0 can only be used as control EP and we waste space here but for the sake of simplicity we accept that. It is used in a non-persistent way anyway! } ep_sz_tt_report_t; typedef volatile uint32_t * usb_fifo_t; xfer_ctl_t xfer_status[EP_MAX][2]; #define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir] // EP0 transfers are limited to 1 packet - larger sizes has to be split static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type // FIFO RAM allocation so far in words static uint16_t _allocated_fifo_words; // Setup the control endpoint 0. static void bus_reset(uint8_t rhport) { (void) rhport; USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); // USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); tu_memclr(xfer_status, sizeof(xfer_status)); for(uint8_t n = 0; n < EP_MAX; n++) { out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK; } dev->DAINTMSK |= (1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos); dev->DOEPMSK |= USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM; dev->DIEPMSK |= USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM; // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO MAX | // --------------- // | ... | // --------------- y + x + 16 + GRXFSIZ // | IN FIFO 2 | // --------------- x + 16 + GRXFSIZ // | IN FIFO 1 | // --------------- 16 + GRXFSIZ // | IN FIFO 0 | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits): // - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN // // - All EP OUT shared a unique OUT FIFO which uses // - 13 for setup packets + control words (up to 3 setup packets). // - 1 for global NAK (not required/used here). // - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1" // - 2 for each used OUT endpoint // // Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum // - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x EP_MAX = 47 + 2 x EP_MAX // - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x EP_MAX = 271 + 2 x EP_MAX // // NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge // of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX // // FIXME: for Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO // are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to // overwrite this. // We rework this here and initialize the FIFOs here only for the USB reset case. The rest is done once a // configuration was set from the host. For this initialization phase we use 64 bytes as FIFO size. // Found by trial: 10 + 2 + CFG_TUD_ENDPOINT0_SIZE/4 + 1 + 6 - not quite sure where 1 + 6 comes from but this works for 8/16/32/64 EP0 size _allocated_fifo_words = 10 + 2 + CFG_TUD_ENDPOINT0_SIZE/4 + 1 + 6; // 64 bytes max packet size + 2 words (for the status of the control OUT data packet) + 10 words (for setup packets) // _allocated_fifo_words = 47 + 2*EP_MAX; // 64 bytes max packet size + 2 words (for the status of the control OUT data packet) + 10 words (for setup packets) usb_otg->GRXFSIZ = _allocated_fifo_words; // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word ) usb_otg->DIEPTXF0_HNPTXFSIZ = (CFG_TUD_ENDPOINT0_SIZE/4 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words; _allocated_fifo_words += CFG_TUD_ENDPOINT0_SIZE/4; // Set SETUP packet count to 3 out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos); usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT; //#if TUD_OPT_HIGH_SPEED // _allocated_fifo_words = 271 + 2*EP_MAX; //#else // _allocated_fifo_words = 47 + 2*EP_MAX; //#endif // // usb_otg->GRXFSIZ = _allocated_fifo_words; // // // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word ) // usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words; // // _allocated_fifo_words += 16; // // // TU_LOG2_INT(_allocated_fifo_words); // // // Fixed control EP0 size to 64 bytes // in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); // xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64; // // // Set SETUP packet count to 3 // out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos); // // usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT; } // Required after new configuration received in case EP0 max packet size has changed static void set_EP0_max_pkt_size(void) { USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); uint32_t enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos; // Maximum packet size for EP 0 is set for both directions by writing DIEPCTL. switch (enum_spd) { case 0x00: // High speed - always 64 byte in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64; break; case 0x03: // Full speed #if CFG_TUD_ENDPOINT0_SIZE == 64 in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64; #elif CFG_TUD_ENDPOINT0_SIZE == 32 in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); in_ep[0].DIEPCTL |= (0x01 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 32; #elif CFG_TUD_ENDPOINT0_SIZE == 16 in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); in_ep[0].DIEPCTL |= (0x02 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 16; #elif CFG_TUD_ENDPOINT0_SIZE == 8 in_ep[0].DIEPCTL |= (0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 8; #else # error CFG_TUD_ENDPOINT0_SIZE MUST be 8, 16, 32, or 64! #endif break; default: // Low speed - always 8 bytes in_ep[0].DIEPCTL |= (0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = 8; xfer_status[0][TUSB_DIR_IN].max_size = 8; } } // Set turn-around timeout according to link speed extern uint32_t SystemCoreClock; static void set_turnaround(USB_OTG_GlobalTypeDef * usb_otg, tusb_speed_t speed) { usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT; if ( speed == TUSB_SPEED_HIGH ) { // Use fixed 0x09 for Highspeed usb_otg->GUSBCFG |= (0x09 << USB_OTG_GUSBCFG_TRDT_Pos); } else { // Turnaround timeout depends on the MCU clock uint32_t turnaround; if ( SystemCoreClock >= 32000000U ) turnaround = 0x6U; else if ( SystemCoreClock >= 27500000U ) turnaround = 0x7U; else if ( SystemCoreClock >= 24000000U ) turnaround = 0x8U; else if ( SystemCoreClock >= 21800000U ) turnaround = 0x9U; else if ( SystemCoreClock >= 20000000U ) turnaround = 0xAU; else if ( SystemCoreClock >= 18500000U ) turnaround = 0xBU; else if ( SystemCoreClock >= 17200000U ) turnaround = 0xCU; else if ( SystemCoreClock >= 16000000U ) turnaround = 0xDU; else if ( SystemCoreClock >= 15000000U ) turnaround = 0xEU; else turnaround = 0xFU; // Fullspeed depends on MCU clocks, but we will use 0x06 for 32+ Mhz usb_otg->GUSBCFG |= (turnaround << USB_OTG_GUSBCFG_TRDT_Pos); } } static tusb_speed_t get_speed(uint8_t rhport) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); uint32_t const enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos; return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL; } static void set_speed(uint8_t rhport, tusb_speed_t speed) { uint32_t bitvalue; if ( rhport == 1 ) { bitvalue = ((TUSB_SPEED_HIGH == speed) ? DCD_HIGH_SPEED : DCD_FULL_SPEED_USE_HS); } else { bitvalue = DCD_FULL_SPEED; } USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); // Clear and set speed bits dev->DCFG &= ~(3 << USB_OTG_DCFG_DSPD_Pos); dev->DCFG |= (bitvalue << USB_OTG_DCFG_DSPD_Pos); } #if defined(USB_HS_PHYC) static bool USB_HS_PHYCInit(void) { USB_HS_PHYC_GlobalTypeDef *usb_hs_phyc = (USB_HS_PHYC_GlobalTypeDef*) USB_HS_PHYC_CONTROLLER_BASE; // Enable LDO usb_hs_phyc->USB_HS_PHYC_LDO |= USB_HS_PHYC_LDO_ENABLE; // Wait until LDO ready while ( 0 == (usb_hs_phyc->USB_HS_PHYC_LDO & USB_HS_PHYC_LDO_STATUS) ) {} uint32_t phyc_pll = 0; // TODO Try to get HSE_VALUE from registers instead of depending CFLAGS switch ( HSE_VALUE ) { case 12000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12MHZ ; break; case 12500000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12_5MHZ ; break; case 16000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_16MHZ ; break; case 24000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_24MHZ ; break; case 25000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_25MHZ ; break; case 32000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_Msk ; break; // Value not defined in header default: TU_ASSERT(0); } usb_hs_phyc->USB_HS_PHYC_PLL = phyc_pll; // Control the tuning interface of the High Speed PHY // Use magic value (USB_HS_PHYC_TUNE_VALUE) from ST driver usb_hs_phyc->USB_HS_PHYC_TUNE |= 0x00000F13U; // Enable PLL internal PHY usb_hs_phyc->USB_HS_PHYC_PLL |= USB_HS_PHYC_PLL_PLLEN; // Original ST code has 2 ms delay for PLL stabilization. // Primitive test shows that more than 10 USB un/replug cycle showed no error with enumeration return true; } #endif static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); // EP0 is limited to one packet each xfer // We use multiple transaction of xfer->max_size length to get a whole transfer done if(epnum == 0) { xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir); total_bytes = tu_min16(ep0_pending[dir], xfer->max_size); ep0_pending[dir] -= total_bytes; } // IN and OUT endpoint xfers are interrupt-driven, we just schedule them here. if(dir == TUSB_DIR_IN) { // A full IN transfer (multiple packets, possibly) triggers XFRC. in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) | ((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk); in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK; // For ISO endpoint set correct odd/even bit for next frame. if ((in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP) == USB_OTG_DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) { // Take odd/even bit from frame counter. uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos)); in_ep[epnum].DIEPCTL |= (odd_frame_now ? USB_OTG_DIEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DIEPCTL_SODDFRM_Msk); } // Enable fifo empty interrupt only if there are something to put in the fifo. if(total_bytes != 0) { dev->DIEPEMPMSK |= (1 << epnum); } } else { // A full OUT transfer (multiple packets, possibly) triggers XFRC. out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ); out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) | ((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk); out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK; if ((out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP) == USB_OTG_DOEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) { // Take odd/even bit from frame counter. uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos)); out_ep[epnum].DOEPCTL |= (odd_frame_now ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DOEPCTL_SODDFRM_Msk); } } } /*------------------------------------------------------------------*/ /* Controller API *------------------------------------------------------------------*/ void dcd_init (uint8_t rhport) { // Programming model begins in the last section of the chapter on the USB // peripheral in each Reference Manual. USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); // No HNP/SRP (no OTG support), program timeout later. if ( rhport == 1 ) { // On selected MCUs HS port1 can be used with external PHY via ULPI interface // deactivate internal PHY usb_otg->GCCFG &= ~USB_OTG_GCCFG_PWRDWN; // Init The UTMI Interface usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL); // Select default internal VBUS Indicator and Drive for ULPI usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI); #if defined(USB_HS_PHYC) // Highspeed with embedded UTMI PHYC // Select UTMI Interface usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_ULPI_UTMI_SEL; usb_otg->GCCFG |= USB_OTG_GCCFG_PHYHSEN; // Enables control of a High Speed USB PHY USB_HS_PHYCInit(); #endif } else { // Enable internal PHY usb_otg->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL; } // Reset core after selecting PHY // Wait AHB IDLE, reset then wait until it is cleared while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U) {} usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_CSRST; while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST) {} // Restart PHY clock *((volatile uint32_t *)(RHPORT_REGS_BASE + USB_OTG_PCGCCTL_BASE)) = 0; // Clear all interrupts usb_otg->GINTSTS |= usb_otg->GINTSTS; // Required as part of core initialization. // TODO: How should mode mismatch be handled? It will cause // the core to stop working/require reset. usb_otg->GINTMSK |= USB_OTG_GINTMSK_OTGINT | USB_OTG_GINTMSK_MMISM; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); // If USB host misbehaves during status portion of control xfer // (non zero-length packet), send STALL back and discard. dev->DCFG |= USB_OTG_DCFG_NZLSOHSK; set_speed(rhport, TUD_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL); // Enable internal USB transceiver. if ( rhport == 0 ) usb_otg->GCCFG |= USB_OTG_GCCFG_PWRDWN; usb_otg->GINTMSK |= USB_OTG_GINTMSK_USBRST | USB_OTG_GINTMSK_ENUMDNEM | USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM | USB_OTG_GINTMSK_RXFLVLM | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0); // Enable global interrupt usb_otg->GAHBCFG |= USB_OTG_GAHBCFG_GINT; dcd_connect(rhport); } void dcd_int_enable (uint8_t rhport) { (void) rhport; NVIC_EnableIRQ(RHPORT_IRQn); } void dcd_int_disable (uint8_t rhport) { (void) rhport; NVIC_DisableIRQ(RHPORT_IRQn); } void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk; // Response with status after changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } void dcd_connect(uint8_t rhport) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); dev->DCTL &= ~USB_OTG_DCTL_SDIS; } void dcd_disconnect(uint8_t rhport) { (void) rhport; USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); dev->DCTL |= USB_OTG_DCTL_SDIS; } /*------------------------------------------------------------------*/ /* DCD Endpoint port *------------------------------------------------------------------*/ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) { // USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress); uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress); TU_ASSERT(epnum < EP_MAX); if (desc_edpt->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) { TU_ASSERT(desc_edpt->wMaxPacketSize.size <= (get_speed(rhport) == TUSB_SPEED_HIGH ? 1024 : 1023)); } else { TU_ASSERT(desc_edpt->wMaxPacketSize.size <= (get_speed(rhport) == TUSB_SPEED_HIGH ? 512 : 64)); } xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->max_size = desc_edpt->wMaxPacketSize.size; xfer->interval = desc_edpt->bInterval; if(dir == TUSB_DIR_OUT) { out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) | (desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) | (desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos); dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_OEPM_Pos + epnum)); } else { // FIFO allocation done in dcd_alloc_mem_for_conf() // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO MAX | // --------------- // | ... | // --------------- y + x + 16 + GRXFSIZ // | IN FIFO 2 | // --------------- x + 16 + GRXFSIZ // | IN FIFO 1 | // --------------- 16 + GRXFSIZ // | IN FIFO 0 | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // In FIFO is allocated by following rules: // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n". // - Offset: allocated so far // - Size // - Interrupt is EPSize // - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN) // uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words; // uint16_t fifo_size = desc_edpt->wMaxPacketSize.size / 4; // // if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT ) // { // uint8_t opened = 0; // for(uint8_t i = 0; i < EP_MAX; i++) // { // if ( (i != epnum) && (xfer_status[i][TUSB_DIR_IN].max_size > 0) ) opened++; // } // // // EP Size or equally divided of remaining whichever is larger // fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened)); // } // // // FIFO overflows, we probably need a better allocating scheme // TU_ASSERT(fifo_size <= fifo_remaining); // // // DIEPTXF starts at FIFO #1. // // Both TXFD and TXSA are in unit of 32-bit words. // usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words; // // _allocated_fifo_words += fifo_size; in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) | (epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) | (desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos) | (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) | (desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos); dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum)); } return true; } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->buffer = buffer; xfer->total_len = total_bytes; // EP0 can only handle one packet if(epnum == 0) { ep0_pending[dir] = total_bytes; // Schedule the first transaction for EP0 transfer edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]); return true; } uint16_t num_packets = (total_bytes / xfer->max_size); uint8_t const short_packet_size = total_bytes % xfer->max_size; // Zero-size packet is special case. if(short_packet_size > 0 || (total_bytes == 0)) { num_packets++; } // Schedule packets to be sent within interrupt edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes); return true; } static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall) { (void) rhport; USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); if(dir == TUSB_DIR_IN) { // Only disable currently enabled non-control endpoint if ( (epnum == 0) || !(in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPENA) ){ in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK | (stall ? USB_OTG_DIEPCTL_STALL : 0); } else { // Stop transmitting packets and NAK IN xfers. in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK; while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_INEPNE) == 0); // Disable the endpoint. in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPDIS | (stall ? USB_OTG_DIEPCTL_STALL : 0); while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_EPDISD_Msk) == 0); in_ep[epnum].DIEPINT = USB_OTG_DIEPINT_EPDISD; } // Flush the FIFO, and wait until we have confirmed it cleared. usb_otg->GRSTCTL |= (epnum << USB_OTG_GRSTCTL_TXFNUM_Pos); usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH; while((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0); } else { // Only disable currently enabled non-control endpoint if ( (epnum == 0) || !(out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPENA) ){ out_ep[epnum].DOEPCTL |= stall ? USB_OTG_DOEPCTL_STALL : 0; } else { // Asserting GONAK is required to STALL an OUT endpoint. // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt // anyway, and it can't be cleared by user code. If this while loop never // finishes, we have bigger problems than just the stack. dev->DCTL |= USB_OTG_DCTL_SGONAK; while((usb_otg->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0); // Ditto here- disable the endpoint. out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPDIS | (stall ? USB_OTG_DOEPCTL_STALL : 0); while((out_ep[epnum].DOEPINT & USB_OTG_DOEPINT_EPDISD_Msk) == 0); out_ep[epnum].DOEPINT = USB_OTG_DOEPINT_EPDISD; // Allow other OUT endpoints to keep receiving. dev->DCTL |= USB_OTG_DCTL_CGONAK; } } } /** * Close an endpoint. */ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr) { dcd_edpt_disable(rhport, ep_addr, false); } void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { dcd_edpt_disable(rhport, ep_addr, true); } void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); if(dir == TUSB_DIR_IN) { in_ep[epnum].DIEPCTL &= ~USB_OTG_DIEPCTL_STALL; uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> USB_OTG_DIEPCTL_EPTYP_Pos; // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints. if(eptype == 2 || eptype == 3) { in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; } } else { out_ep[epnum].DOEPCTL &= ~USB_OTG_DOEPCTL_STALL; uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> USB_OTG_DOEPCTL_EPTYP_Pos; // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints. if(eptype == 2 || eptype == 3) { out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; } } } /*------------------------------------------------------------------*/ // Read a single data packet from receive FIFO static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len) { (void) rhport; usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0); // Reading full available 32 bit words from fifo uint16_t full_words = len >> 2; for(uint16_t i = 0; i < full_words; i++) { uint32_t tmp = *rx_fifo; dst[0] = tmp & 0x000000FF; dst[1] = (tmp & 0x0000FF00) >> 8; dst[2] = (tmp & 0x00FF0000) >> 16; dst[3] = (tmp & 0xFF000000) >> 24; dst += 4; } // Read the remaining 1-3 bytes from fifo uint8_t bytes_rem = len & 0x03; if(bytes_rem != 0) { uint32_t tmp = *rx_fifo; dst[0] = tmp & 0x000000FF; if(bytes_rem > 1) { dst[1] = (tmp & 0x0000FF00) >> 8; } if(bytes_rem > 2) { dst[2] = (tmp & 0x00FF0000) >> 16; } } } // Write a single data packet to EPIN FIFO static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t * src, uint16_t len) { (void) rhport; usb_fifo_t tx_fifo = FIFO_BASE(rhport, fifo_num); // Pushing full available 32 bit words to fifo uint16_t full_words = len >> 2; for(uint16_t i = 0; i < full_words; i++){ *tx_fifo = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0]; src += 4; } // Write the remaining 1-3 bytes into fifo uint8_t bytes_rem = len & 0x03; if(bytes_rem){ uint32_t tmp_word = 0; tmp_word |= src[0]; if(bytes_rem > 1){ tmp_word |= src[1] << 8; } if(bytes_rem > 2){ tmp_word |= src[2] << 16; } *tx_fifo = tmp_word; } } static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_ep) { USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0); // Pop control word off FIFO uint32_t ctl_word = usb_otg->GRXSTSP; uint8_t pktsts = (ctl_word & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos; uint8_t epnum = (ctl_word & USB_OTG_GRXSTSP_EPNUM_Msk) >> USB_OTG_GRXSTSP_EPNUM_Pos; uint16_t bcnt = (ctl_word & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos; switch(pktsts) { case 0x01: // Global OUT NAK (Interrupt) break; case 0x02: // Out packet recvd { xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT); // Read packet off RxFIFO read_fifo_packet(rhport, xfer->buffer, bcnt); // Increment pointer to xfer data xfer->buffer += bcnt; // Truncate transfer length in case of short packet if(bcnt < xfer->max_size) { xfer->total_len -= (out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos; if(epnum == 0) { xfer->total_len -= ep0_pending[TUSB_DIR_OUT]; ep0_pending[TUSB_DIR_OUT] = 0; } } } break; case 0x03: // Out packet done (Interrupt) break; case 0x04: // Setup packet done (Interrupt) out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos); break; case 0x06: // Setup packet recvd // We can receive up to three setup packets in succession, but // only the last one is valid. _setup_packet[0] = (* rx_fifo); _setup_packet[1] = (* rx_fifo); break; default: // Invalid TU_BREAKPOINT(); break; } } static void handle_epout_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) { // DAINT for a given EP clears when DOEPINTx is cleared. // OEPINT will be cleared when DAINT's out bits are cleared. for(uint8_t n = 0; n < EP_MAX; n++) { xfer_ctl_t * xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT); if(dev->DAINT & (1 << (USB_OTG_DAINT_OEPINT_Pos + n))) { // SETUP packet Setup Phase done. if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_STUP) { out_ep[n].DOEPINT = USB_OTG_DOEPINT_STUP; dcd_event_setup_received(rhport, (uint8_t*) &_setup_packet[0], true); } // OUT XFER complete if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_XFRC) { out_ep[n].DOEPINT = USB_OTG_DOEPINT_XFRC; // EP0 can only handle one packet if((n == 0) && ep0_pending[TUSB_DIR_OUT]) { // Schedule another packet to be received. edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]); } else { dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true); } } } } } static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) { // DAINT for a given EP clears when DIEPINTx is cleared. // IEPINT will be cleared when DAINT's out bits are cleared. for ( uint8_t n = 0; n < EP_MAX; n++ ) { xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN); if ( dev->DAINT & (1 << (USB_OTG_DAINT_IEPINT_Pos + n)) ) { // IN XFER complete (entire xfer). if ( in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC ) { in_ep[n].DIEPINT = USB_OTG_DIEPINT_XFRC; // EP0 can only handle one packet if((n == 0) && ep0_pending[TUSB_DIR_IN]) { // Schedule another packet to be transmitted. edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]); } else { dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true); } } // XFER FIFO empty if ( (in_ep[n].DIEPINT & USB_OTG_DIEPINT_TXFE) && (dev->DIEPEMPMSK & (1 << n)) ) { // DIEPINT's TXFE bit is read-only, software cannot clear it. // It will only be cleared by hardware when written bytes is more than // - 64 bytes or // - Half of TX FIFO size (configured by DIEPTXF) uint16_t remaining_packets = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_PKTCNT_Msk) >> USB_OTG_DIEPTSIZ_PKTCNT_Pos; // Process every single packet (only whole packets can be written to fifo) for(uint16_t i = 0; i < remaining_packets; i++){ uint16_t remaining_bytes = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos; // Packet can not be larger than ep max size uint16_t packet_size = tu_min16(remaining_bytes, xfer->max_size); // It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current // EP has to be checked if the buffer can take another WHOLE packet if(packet_size > ((in_ep[n].DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV_Msk) << 2)){ break; } // Push packet to Tx-FIFO write_fifo_packet(rhport, n, xfer->buffer, packet_size); // Increment pointer to xfer data xfer->buffer += packet_size; } // Turn off TXFE if all bytes are written. if (((in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos) == 0) { dev->DIEPEMPMSK &= ~(1 << n); } } } } } void dcd_int_handler(uint8_t rhport) { USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport); uint32_t int_status = usb_otg->GINTSTS; if(int_status & USB_OTG_GINTSTS_USBRST) { // USBRST is start of reset. usb_otg->GINTSTS = USB_OTG_GINTSTS_USBRST; bus_reset(rhport); } if(int_status & USB_OTG_GINTSTS_ENUMDNE) { // ENUMDNE is the end of reset where speed of the link is detected usb_otg->GINTSTS = USB_OTG_GINTSTS_ENUMDNE; tusb_speed_t const speed = get_speed(rhport); set_turnaround(usb_otg, speed); set_EP0_max_pkt_size(); dcd_event_bus_reset(rhport, speed, true); } if(int_status & USB_OTG_GINTSTS_USBSUSP) { usb_otg->GINTSTS = USB_OTG_GINTSTS_USBSUSP; dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } if(int_status & USB_OTG_GINTSTS_WKUINT) { usb_otg->GINTSTS = USB_OTG_GINTSTS_WKUINT; dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); } if(int_status & USB_OTG_GINTSTS_OTGINT) { // OTG INT bit is read-only uint32_t const otg_int = usb_otg->GOTGINT; if (otg_int & USB_OTG_GOTGINT_SEDET) { dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true); } usb_otg->GOTGINT = otg_int; } #if USE_SOF if(int_status & USB_OTG_GINTSTS_SOF) { usb_otg->GINTSTS = USB_OTG_GINTSTS_SOF; dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); } #endif // RxFIFO non-empty interrupt handling. if(int_status & USB_OTG_GINTSTS_RXFLVL) { // RXFLVL bit is read-only // Mask out RXFLVL while reading data from FIFO usb_otg->GINTMSK &= ~USB_OTG_GINTMSK_RXFLVLM; // Loop until all available packets were handled do { handle_rxflvl_ints(rhport, out_ep); int_status = usb_otg->GINTSTS; } while(int_status & USB_OTG_GINTSTS_RXFLVL); usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; } // OUT endpoint interrupt handling. if(int_status & USB_OTG_GINTSTS_OEPINT) { // OEPINT is read-only handle_epout_ints(rhport, dev, out_ep); } // IN endpoint interrupt handling. if(int_status & USB_OTG_GINTSTS_IEPINT) { // IEPINT bit read-only handle_epin_ints(rhport, dev, in_ep); } // Check for Incomplete isochronous IN transfer if(int_status & USB_OTG_GINTSTS_IISOIXFR) { TU_LOG2(" IISOIXFR!\r\n"); } } // Helper function which parses through the current configuration descriptors to find the biggest EPs in size. static bool get_ep_size_report(uint8_t rhport, tusb_desc_configuration_t const * desc_cfg, ep_sz_tt_report_t * p_report) { (void) rhport; // tu_memclr(p_report, sizeof(ep_sz_tt_report_t)); // This does not initialize the first two entries ... i do not know why! // EP0 sizes and usages are fixed p_report->ep_size[0][TUSB_DIR_OUT] = p_report->ep_size[0][TUSB_DIR_IN] = CFG_TUD_ENDPOINT0_SIZE; p_report->ep_transfer_type[0][TUSB_DIR_OUT][TUSB_XFER_CONTROL] = p_report->ep_transfer_type[0][TUSB_DIR_IN][TUSB_XFER_CONTROL] = true; // Parse interface descriptor uint8_t const * p_desc = ((uint8_t const*) desc_cfg) + sizeof(tusb_desc_configuration_t); uint8_t const * desc_end = ((uint8_t const*) desc_cfg) + desc_cfg->wTotalLength; uint8_t addr; while( p_desc < desc_end ) { if (TUSB_DESC_ENDPOINT == tu_desc_type(p_desc)) { addr = ((tusb_desc_endpoint_t const*) p_desc)->bEndpointAddress; // Verify values - this checks may be omitted in case we trust the descriptors to be okay TU_VERIFY(tu_edpt_number(addr) < EP_MAX); TU_VERIFY(tu_edpt_dir(addr) <= TUSB_DIR_IN); TU_VERIFY(((tusb_desc_endpoint_t const*) p_desc)->bmAttributes.xfer <= TUSB_XFER_INTERRUPT); p_report->ep_size[tu_edpt_number(addr)][tu_edpt_dir(addr)] = tu_max16(p_report->ep_size[tu_edpt_number(addr)][tu_edpt_dir(addr)], ((tusb_desc_endpoint_t const*) p_desc)->wMaxPacketSize.size); p_report->ep_transfer_type[tu_edpt_number(addr)][tu_edpt_dir(addr)][((tusb_desc_endpoint_t const*) p_desc)->bmAttributes.xfer] = true; } p_desc = tu_desc_next(p_desc); // Proceed } return true; } // Setup FIFO buffers at configuration time. // The idea is to use this information such that the FIFOs need to be configured only once // at configuration time and no more later. This makes it easy in case you want to close and open EPs for different // purposes at any time (without taking care of other active EPs). You also avoid the nasty need of defragmenting // the TX buffers, which is likely to happen. // Certainly, this function does not allow for the highest possible flexibility as it only works in the worst case // (all biggest EPs can be active at the same time). However, this should not be a problem for almost all applications. // Spare space is assigned equally divided to bulk and interrupt EPs. // Pure isochronous EPs do not get any spare space as it does not make any sense. TU_ATTR_WEAK bool dcd_alloc_mem_for_conf(uint8_t rhport, tusb_desc_configuration_t const * desc_cfg) { (void) rhport; USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport); USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport); USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport); // for(uint8_t n = 0; n < EP_MAX; n++) { // out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK; // } out_ep[0].DOEPCTL |= USB_OTG_DOEPCTL_SNAK; // Deactivate Interrupts? dev->DAINTMSK &= ~((1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos)); dev->DOEPMSK &= ~(USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM); dev->DIEPMSK &= ~(USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM); // usb_otg->GINTMSK &= ~(USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT); // Determine maximum required spaces for individual EPs and what kind of usage (control, bulk, etc.) they are used for ep_sz_tt_report_t report = {0}; // dim 1: EP number, dim 2: EP direction, dim 3: transfer type TU_VERIFY(get_ep_size_report(rhport, desc_cfg, &report)); // With that information, set the following up: // The RX buffer size (as it is a shared buffer here) is set to the sum of the two biggest out EPs plus all the required extra words used for setup packets etc. // This should work well for all kinds of applications // Determine number of used out EPs of current configuration and size of two biggest out EPs uint8_t nUsedOutEPs = 0, cnt_ep, cnt_tt; uint16_t sz[2] = {0, 0}; uint16_t fifo_depth; for (cnt_ep = 0; cnt_ep < EP_MAX; cnt_ep++) { for (cnt_tt = 0; cnt_tt <= TUSB_XFER_INTERRUPT; cnt_tt++) { if (report.ep_transfer_type[cnt_ep][TUSB_DIR_OUT][cnt_tt]) { nUsedOutEPs++; break; } } fifo_depth = report.ep_size[cnt_ep][TUSB_DIR_OUT] / 4 + 1; if (sz[0] < fifo_depth) { sz[1] = sz[0]; sz[0] = fifo_depth; } else if (sz[1] < report.ep_size[cnt_ep][TUSB_DIR_OUT]) { sz[1] = fifo_depth; } } // For configuration use the approach as explained in bus_reset() _allocated_fifo_words = 13 + 1 + 1 + 2 * nUsedOutEPs + sz[0] + sz[1] + 2; // again, i do not really know why we need + 2 but otherwise it does not work usb_otg->GRXFSIZ = _allocated_fifo_words; // Control IN uses FIFO 0 with report.ep_size[0][TUSB_DIR_IN] bytes ( report.ep_size[0][TUSB_DIR_IN]/4 32-bit word ) fifo_depth = report.ep_size[0][TUSB_DIR_IN] / 4; fifo_depth = tu_max16(16, fifo_depth); usb_otg->DIEPTXF0_HNPTXFSIZ = (fifo_depth << USB_OTG_TX0FD_Pos) | _allocated_fifo_words; _allocated_fifo_words += fifo_depth; // For configuration of remaining in EPs use the approach as explained in dcd_edpt_open() except that: // - ISO EPs only get EP size as FIFO size. More makes no sense since within one frame precisely EP size bytes are transfered and not more. // Furthermore, double buffering is not possible (for this silicon) since once FIFO was written to and transmit bit was set you are // not allowed to write to the FIFO any more until transmit was done. So you can not send something and buffer the next frame in the // meantime into the buffer. TODO: check for high speed and uC types which can do this! // - Interrupt EPs only get EP size as FIFO size // - Bulk and control (other than EP0 - this is possible) get spare space equally divided - those profit the most from extra space // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO MAX | // --------------- // | ... | // --------------- y + x + w + GRXFSIZ // | IN FIFO 2 | // --------------- x + w + GRXFSIZ // | IN FIFO 1 | // --------------- w + GRXFSIZ // | IN FIFO 0 | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // In FIFO is allocated by following rules: // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n". // - Offset: allocated so far // - Size - as described above // Determine required numbers // Remaining space available in bytes uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words; // Required space by EPs in words, number of bulk and control EPs uint16_t ep_sz_total = 0; // Number of bulk and control EPs uint8_t nbc = 0; // EP0 is already taken care of so exclude that here for (cnt_ep = 1; cnt_ep < EP_MAX; cnt_ep++) { fifo_depth = (report.ep_size[cnt_ep][TUSB_DIR_IN] + 3) / 4; // Since we need full words take care of remainders! if (fifo_depth > 0 && fifo_depth < 16) fifo_depth = 16; // Minimum FIFO depth is 16 ep_sz_total += fifo_depth; nbc += (report.ep_transfer_type[cnt_ep][TUSB_DIR_IN][TUSB_XFER_BULK] | report.ep_transfer_type[cnt_ep][TUSB_DIR_IN][TUSB_XFER_CONTROL]); } if (ep_sz_total > fifo_remaining) { // Too less space available to apply this allocation scheme - return false and set a flag such that a different approach may be used TODO: introduce flag return false; } uint16_t extra_space = nbc > 0 ? (fifo_remaining - ep_sz_total) / nbc : 0; // If no bulk or control EPs are used we just leave the rest of the memory unused // Setup FIFOs for (cnt_ep = 1; cnt_ep < EP_MAX; cnt_ep++) { // If EP is used if (report.ep_size[cnt_ep][TUSB_DIR_IN] > 0) { fifo_depth = (report.ep_size[cnt_ep][TUSB_DIR_IN] + 3) / 4 + ((report.ep_transfer_type[cnt_ep][TUSB_DIR_IN][TUSB_XFER_BULK] || report.ep_transfer_type[cnt_ep][TUSB_DIR_IN][TUSB_XFER_CONTROL]) ? extra_space : 0); fifo_depth = tu_max16(16, fifo_depth); usb_otg->DIEPTXF[cnt_ep - 1] = (fifo_depth << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words; _allocated_fifo_words += fifo_depth; } } // usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT; // Enable interrupts dev->DAINTMSK |= (1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos); dev->DOEPMSK |= USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM; dev->DIEPMSK |= USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM; // USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT; out_ep[0].DOEPCTL |= USB_OTG_DOEPCTL_CNAK; return true; } #endif