/* * The MIT License (MIT) * * Copyright (c) 2018, hathach (tinyusb.org) * Copyright (c) 2020, Koji Kitayama * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "bsp/board.h" #include "board.h" #include "fsl_smc.h" #include "fsl_gpio.h" #include "fsl_port.h" #include "fsl_clock.h" #include "fsl_lpuart.h" /******************************************************************************* * Definitions ******************************************************************************/ #define SIM_OSC32KSEL_LPO_CLK 3U /*!< OSC32KSEL select: LPO clock */ #define SOPT5_LPUART1RXSRC_LPUART_RX 0x00u /*!<@brief LPUART1 Receive Data Source Select: LPUART_RX pin */ #define SOPT5_LPUART1TXSRC_LPUART_TX 0x00u /*!<@brief LPUART1 Transmit Data Source Select: LPUART_TX pin */ #define BOARD_BOOTCLOCKRUN_CORE_CLOCK 48000000U /*!< Core clock frequency: 48000000Hz */ /******************************************************************************* * Variables ******************************************************************************/ /* System clock frequency. */ // extern uint32_t SystemCoreClock; /******************************************************************************* * Variables for BOARD_BootClockRUN configuration ******************************************************************************/ const mcglite_config_t mcgliteConfig_BOARD_BootClockRUN = { .outSrc = kMCGLITE_ClkSrcHirc, /* MCGOUTCLK source is HIRC */ .irclkEnableMode = kMCGLITE_IrclkEnable, /* MCGIRCLK enabled, MCGIRCLK disabled in STOP mode */ .ircs = kMCGLITE_Lirc8M, /* Slow internal reference (LIRC) 8 MHz clock selected */ .fcrdiv = kMCGLITE_LircDivBy1, /* Low-frequency Internal Reference Clock Divider: divided by 1 */ .lircDiv2 = kMCGLITE_LircDivBy1, /* Second Low-frequency Internal Reference Clock Divider: divided by 1 */ .hircEnableInNotHircMode = true, /* HIRC source is enabled */ }; const sim_clock_config_t simConfig_BOARD_BootClockRUN = { .er32kSrc = SIM_OSC32KSEL_LPO_CLK, /* OSC32KSEL select: LPO clock */ .clkdiv1 = 0x10000U, /* SIM_CLKDIV1 - OUTDIV1: /1, OUTDIV4: /2 */ }; /******************************************************************************* * Code for BOARD_BootClockRUN configuration ******************************************************************************/ void BOARD_BootClockRUN(void) { /* Set the system clock dividers in SIM to safe value. */ CLOCK_SetSimSafeDivs(); /* Set MCG to HIRC mode. */ CLOCK_SetMcgliteConfig(&mcgliteConfig_BOARD_BootClockRUN); /* Set the clock configuration in SIM module. */ CLOCK_SetSimConfig(&simConfig_BOARD_BootClockRUN); /* Set SystemCoreClock variable. */ SystemCoreClock = BOARD_BOOTCLOCKRUN_CORE_CLOCK; } //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB0_IRQHandler(void) { tud_int_handler(0); } void board_init(void) { /* Enable port clocks for GPIO pins */ CLOCK_EnableClock(kCLOCK_PortA); CLOCK_EnableClock(kCLOCK_PortB); CLOCK_EnableClock(kCLOCK_PortC); CLOCK_EnableClock(kCLOCK_PortD); CLOCK_EnableClock(kCLOCK_PortE); gpio_pin_config_t led_config = { kGPIO_DigitalOutput, 1 }; GPIO_PinInit(GPIOA, 1U, &led_config); PORT_SetPinMux(PORTA, 1U, kPORT_MuxAsGpio); led_config.outputLogic = 0; GPIO_PinInit(GPIOA, 2U, &led_config); PORT_SetPinMux(PORTA, 2U, kPORT_MuxAsGpio); #ifdef BUTTON_PIN gpio_pin_config_t button_config = { kGPIO_DigitalInput, 0 }; GPIO_PinInit(BUTTON_GPIO, BUTTON_PIN, &button_config); const port_pin_config_t BUTTON_CFG = { kPORT_PullUp, kPORT_FastSlewRate, kPORT_PassiveFilterDisable, kPORT_LowDriveStrength, kPORT_MuxAsGpio }; PORT_SetPinConfig(BUTTON_PORT, BUTTON_PIN, &BUTTON_CFG); #endif /* PORTC3 is configured as LPUART0_RX */ PORT_SetPinMux(PORTC, 3U, kPORT_MuxAlt3); /* PORTA2 (pin 24) is configured as LPUART0_TX */ PORT_SetPinMux(PORTE, 0U, kPORT_MuxAlt3); SIM->SOPT5 = ((SIM->SOPT5 & /* Mask bits to zero which are setting */ (~(SIM_SOPT5_LPUART1TXSRC_MASK | SIM_SOPT5_LPUART1RXSRC_MASK))) /* LPUART0 Transmit Data Source Select: LPUART0_TX pin. */ | SIM_SOPT5_LPUART1TXSRC(SOPT5_LPUART1TXSRC_LPUART_TX) /* LPUART0 Receive Data Source Select: LPUART_RX pin. */ | SIM_SOPT5_LPUART1RXSRC(SOPT5_LPUART1RXSRC_LPUART_RX)); BOARD_BootClockRUN(); SystemCoreClockUpdate(); CLOCK_SetLpuart1Clock(1); #if CFG_TUSB_OS == OPT_OS_NONE // 1ms tick timer SysTick_Config(SystemCoreClock / 1000); #elif CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY ); #endif lpuart_config_t uart_config; LPUART_GetDefaultConfig(&uart_config); uart_config.baudRate_Bps = CFG_BOARD_UART_BAUDRATE; uart_config.enableTx = true; uart_config.enableRx = true; LPUART_Init(UART_PORT, &uart_config, CLOCK_GetFreq(kCLOCK_McgIrc48MClk)); // USB CLOCK_EnableUsbfs0Clock(kCLOCK_UsbSrcIrc48M, 48000000U); } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { if (state) { LED_GPIO->PDDR |= GPIO_FIT_REG((1UL << LED_PIN)); } else { LED_GPIO->PDDR &= GPIO_FIT_REG(~(1UL << LED_PIN)); } // GPIO_PinWrite(GPIOA, 1, state ? LED_STATE_ON : (1-LED_STATE_ON) ); // GPIO_PinWrite(GPIOA, 2, state ? (1-LED_STATE_ON) : LED_STATE_ON ); } uint32_t board_button_read(void) { #ifdef BUTTON_PIN return BUTTON_STATE_ACTIVE == GPIO_PinRead(BUTTON_GPIO, BUTTON_PIN); #else return 0; #endif } int board_uart_read(uint8_t* buf, int len) { LPUART_ReadBlocking(UART_PORT, buf, len); return len; } int board_uart_write(void const * buf, int len) { LPUART_WriteBlocking(UART_PORT, (uint8_t const*) buf, len); return len; } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif