/* * The MIT License (MIT) * * Copyright (c) 2019 William D. Jones * Copyright (c) 2019 Ha Thach (tinyusb.org) * Copyright (c) 2020 Jan Duempelmann * Copyright (c) 2020 Reinhard Panhuber * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #include "device/dcd_attr.h" #if TUSB_OPT_DEVICE_ENABLED && \ ( defined(DCD_ATTR_DWC2_STM32) || \ TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3, OPT_MCU_GD32VF103) || \ TU_CHECK_MCU(OPT_MCU_EFM32GG, OPT_MCU_BCM2711) ) #include "device/dcd.h" #include "dwc2_type.h" #if defined(DCD_ATTR_DWC2_STM32) #include "dwc2_stm32.h" #elif TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3) #include "dwc2_esp32.h" #elif TU_CHECK_MCU(OPT_MCU_GD32VF103) #include "dwc2_gd32.h" #elif TU_CHECK_MCU(OPT_MCU_BCM2711) #include "dwc2_bcm.h" #elif TU_CHECK_MCU(OPT_MCU_EFM32GG) #include "dwc2_efm32.h" #else #error "Unsupported MCUs" #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM //--------------------------------------------------------------------+ #define DWC2_REG(_port) ((dwc2_regs_t*) DWC2_REG_BASE) // Debug level for DWC2 #define DWC2_DEBUG 1 static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2]; typedef struct { uint8_t * buffer; tu_fifo_t * ff; uint16_t total_len; uint16_t max_size; uint8_t interval; } xfer_ctl_t; xfer_ctl_t xfer_status[DWC2_EP_MAX][2]; #define XFER_CTL_BASE(_ep, _dir) (&xfer_status[_ep][_dir]) // EP0 transfers are limited to 1 packet - larger sizes has to be split static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type // TX FIFO RAM allocation so far in words - RX FIFO size is readily available from dwc2->grxfsiz static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs) static bool _out_ep_closed; // Flag to check if RX FIFO size needs an update (reduce its size) // Calculate the RX FIFO size according to recommendations from reference manual static inline uint16_t calc_rx_ff_size(uint16_t ep_size) { return 15 + 2*(ep_size/4) + 2*DWC2_EP_MAX; } static void update_grxfsiz(uint8_t rhport) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); // Determine largest EP size for RX FIFO uint16_t max_epsize = 0; for (uint8_t epnum = 0; epnum < DWC2_EP_MAX; epnum++) { max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size); } // Update size of RX FIFO dwc2->grxfsiz = calc_rx_ff_size(max_epsize); } // Setup the control endpoint 0. static void bus_reset(uint8_t rhport) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); tu_memclr(xfer_status, sizeof(xfer_status)); _out_ep_closed = false; // clear device address dwc2->dcfg &= ~DCFG_DAD_Msk; // 1. NAK for all OUT endpoints for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ ) { dwc2->epout[n].doepctl |= DOEPCTL_SNAK; } // 2. Set up interrupt mask dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos); dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM; dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM; // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start. // We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located // between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard // configuration done below. // // Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed. // All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a // configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually // opened when the host sends an additional command: setInterface. At this point in time // the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size // an additional memory // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO 0 | // --------------- (320 or 1024) - 16 // | IN FIFO 1 | // --------------- (320 or 1024) - 16 - x // | . . . . | // --------------- (320 or 1024) - 16 - x - y - ... - z // | IN FIFO MAX | // --------------- // | FREE | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits): // - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN // // - All EP OUT shared a unique OUT FIFO which uses // - 13 for setup packets + control words (up to 3 setup packets). // - 1 for global NAK (not required/used here). // - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1" // - 2 for each used OUT endpoint // // Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum // - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x DWC2_EP_MAX = 47 + 2 x DWC2_EP_MAX // - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x DWC2_EP_MAX = 271 + 2 x DWC2_EP_MAX // // NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge // of the overall picture yet. We will use the worst scenario: largest possible + DWC2_EP_MAX // // For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO // are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to // overwrite this. dwc2->grxfsiz = calc_rx_ff_size(TUD_OPT_HIGH_SPEED ? 512 : 64); _allocated_fifo_words_tx = 16; // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word ) dwc2->dieptxf0 = (16 << DIEPTXF0_TX0FD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx); // Fixed control EP0 size to 64 bytes dwc2->epin[0].diepctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos); xfer_status[0][TUSB_DIR_OUT].max_size = 64; xfer_status[0][TUSB_DIR_IN ].max_size = 64; dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos); dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT; } static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); // EP0 is limited to one packet each xfer // We use multiple transaction of xfer->max_size length to get a whole transfer done if ( epnum == 0 ) { xfer_ctl_t *const xfer = XFER_CTL_BASE(epnum, dir); total_bytes = tu_min16(ep0_pending[dir], xfer->max_size); ep0_pending[dir] -= total_bytes; } // IN and OUT endpoint xfers are interrupt-driven, we just schedule them here. if ( dir == TUSB_DIR_IN ) { dwc2_epin_t* epin = dwc2->epin; // A full IN transfer (multiple packets, possibly) triggers XFRC. epin[epnum].dieptsiz = (num_packets << DIEPTSIZ_PKTCNT_Pos) | ((total_bytes << DIEPTSIZ_XFRSIZ_Pos) & DIEPTSIZ_XFRSIZ_Msk); epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK; // For ISO endpoint set correct odd/even bit for next frame. if ( (epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1 ) { // Take odd/even bit from frame counter. uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos)); epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk); } // Enable fifo empty interrupt only if there are something to put in the fifo. if ( total_bytes != 0 ) { dwc2->diepempmsk |= (1 << epnum); } } else { dwc2_epout_t* epout = dwc2->epout; // A full OUT transfer (multiple packets, possibly) triggers XFRC. epout[epnum].doeptsiz &= ~(DOEPTSIZ_PKTCNT_Msk | DOEPTSIZ_XFRSIZ); epout[epnum].doeptsiz |= (num_packets << DOEPTSIZ_PKTCNT_Pos) | ((total_bytes << DOEPTSIZ_XFRSIZ_Pos) & DOEPTSIZ_XFRSIZ_Msk); epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK; if ( (epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 && XFER_CTL_BASE(epnum, dir)->interval == 1 ) { // Take odd/even bit from frame counter. uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos)); epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk); } } } /*------------------------------------------------------------------*/ /* Controller API *------------------------------------------------------------------*/ #if CFG_TUSB_DEBUG >= DWC2_DEBUG void print_dwc2_info(dwc2_regs_t * dwc2) { dwc2_ghwcfg2_t const * hw_cfg2 = &dwc2->ghwcfg2_bm; dwc2_ghwcfg3_t const * hw_cfg3 = &dwc2->ghwcfg3_bm; dwc2_ghwcfg4_t const * hw_cfg4 = &dwc2->ghwcfg4_bm; // TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl); // TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg); // TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg); TU_LOG_HEX(DWC2_DEBUG, dwc2->guid); TU_LOG_HEX(DWC2_DEBUG, dwc2->gsnpsid); TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg1); // HW configure 2 TU_LOG(DWC2_DEBUG, "\r\n"); TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg2); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->op_mode ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->arch ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->point2point ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->hs_phy_type ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->fs_phy_type ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_dev_ep ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_host_ch ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->period_channel_support ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->enable_dynamic_fifo ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->mul_cpu_int ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->nperiod_tx_q_depth ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->host_period_tx_q_depth ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->dev_token_q_depth ); TU_LOG_INT(DWC2_DEBUG, hw_cfg2->otg_enable_ic_usb ); // HW configure 3 TU_LOG(DWC2_DEBUG, "\r\n"); TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg3); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->xfer_size_width ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->packet_size_width ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->i2c_enable ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->vendor_ctrl_itf ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->optional_feature_removed ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->synch_reset ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_adp_support ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable_hsic ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->battery_charger_support ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->lpm_mode ); TU_LOG_INT(DWC2_DEBUG, hw_cfg3->total_fifo_size ); // HW configure 4 TU_LOG(DWC2_DEBUG, "\r\n"); TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg4); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_period_in_ep ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->power_optimized ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ahb_freq_min ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->hibernation ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->service_interval_mode ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ipg_isoc_en ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->acg_enable ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->utmi_phy_data_width ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dev_ctrl_ep_num ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->iddg_filter_enabled ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->vbus_valid_filter_enabled ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->a_valid_filter_enabled ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->b_valid_filter_enabled ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dedicated_fifos ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_in_eps ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_desc_enable ); TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_dynamic ); } #endif static void reset_core(dwc2_regs_t * dwc2) { // reset core dwc2->grstctl |= GRSTCTL_CSRST; // wait for reset bit is cleared // TODO version 4.20a should wait for RESET DONE mask while (dwc2->grstctl & GRSTCTL_CSRST) { } // wait for AHB master IDLE while ( !(dwc2->grstctl & GRSTCTL_AHBIDL) ) { } // wait for device mode ? } static bool phy_hs_supported(dwc2_regs_t * dwc2) { // note: esp32 incorrect report its hs_phy_type as utmi return TUD_OPT_HIGH_SPEED && dwc2->ghwcfg2_bm.hs_phy_type != HS_PHY_TYPE_NONE; } static void phy_fs_init(dwc2_regs_t * dwc2) { TU_LOG(DWC2_DEBUG, "Fullspeed PHY init\r\n"); // Select FS PHY dwc2->gusbcfg |= GUSBCFG_PHYSEL; // MCU specific PHY init before reset dwc2_phy_init(dwc2, HS_PHY_TYPE_NONE); // Reset core after selecting PHY reset_core(dwc2); // USB turnaround time is critical for certification where long cables and 5-Hubs are used. // So if you need the AHB to run at less than 30 MHz, and if USB turnaround time is not critical, // these bits can be programmed to a larger value. Default is 5 dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_TRDT_Msk) | (5u << GUSBCFG_TRDT_Pos); // MCU specific PHY update post reset dwc2_phy_update(dwc2, HS_PHY_TYPE_NONE); // set max speed dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_FS << DCFG_DSPD_Pos); } static void phy_hs_init(dwc2_regs_t * dwc2) { uint32_t gusbcfg = dwc2->gusbcfg; // De-select FS PHY gusbcfg &= ~GUSBCFG_PHYSEL; if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI) { TU_LOG(DWC2_DEBUG, "Highspeed ULPI PHY init\r\n"); // Select ULPI gusbcfg |= GUSBCFG_ULPI_UTMI_SEL; // ULPI 8-bit interface, single data rate gusbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL); // default internal VBUS Indicator and Drive gusbcfg &= ~(GUSBCFG_ULPIEVBUSD | GUSBCFG_ULPIEVBUSI); // Disable FS/LS ULPI gusbcfg &= ~(GUSBCFG_ULPIFSLS | GUSBCFG_ULPICSM); }else { TU_LOG(DWC2_DEBUG, "Highspeed UTMI+ PHY init\r\n"); // Select UTMI+ with 8-bit interface gusbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16); // Set 16-bit interface if supported if (dwc2->ghwcfg4_bm.utmi_phy_data_width) gusbcfg |= GUSBCFG_PHYIF16; } // Apply config dwc2->gusbcfg = gusbcfg; // mcu specific phy init dwc2_phy_init(dwc2, dwc2->ghwcfg2_bm.hs_phy_type); // Reset core after selecting PHY reset_core(dwc2); // Set turn-around, must after core reset otherwise it will be clear // - 9 if using 8-bit PHY interface // - 5 if using 16-bit PHY interface gusbcfg &= ~GUSBCFG_TRDT_Msk; gusbcfg |= (dwc2->ghwcfg4_bm.utmi_phy_data_width ? 5u : 9u) << GUSBCFG_TRDT_Pos; dwc2->gusbcfg = gusbcfg; // MCU specific PHY update post reset dwc2_phy_update(dwc2, dwc2->ghwcfg2_bm.hs_phy_type); // Set max speed dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_HS << DCFG_DSPD_Pos); } static bool check_dwc2(dwc2_regs_t * dwc2) { #if CFG_TUSB_DEBUG >= DWC2_DEBUG print_dwc2_info(dwc2); #endif // For some reasons: GD32VF103 snpsid and all hwcfg register are always zero (skip it) #if !TU_CHECK_MCU(OPT_MCU_GD32VF103) uint32_t const gsnpsid = dwc2->gsnpsid & GSNPSID_ID_MASK; TU_ASSERT(gsnpsid == DWC2_OTG_ID || gsnpsid == DWC2_FS_IOT_ID || gsnpsid == DWC2_HS_IOT_ID); #endif return true; } void dcd_init (uint8_t rhport) { // Programming model begins in the last section of the chapter on the USB // peripheral in each Reference Manual. dwc2_regs_t * dwc2 = DWC2_REG(rhport); // Check Synopsys ID register, failed if controller clock/power is not enabled TU_VERIFY(check_dwc2(dwc2), ); dcd_disconnect(rhport); // max number of endpoints & total_fifo_size are: // hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size if( phy_hs_supported(dwc2) ) { // Highspeed phy_hs_init(dwc2); }else { // core does not support highspeed or hs-phy is not present phy_fs_init(dwc2); } // Restart PHY clock dwc2->pcgctl &= ~(PCGCTL_STOPPCLK | PCGCTL_GATEHCLK | PCGCTL_PWRCLMP | PCGCTL_RSTPDWNMODULE); /* Set HS/FS Timeout Calibration to 7 (max available value). * The number of PHY clocks that the application programs in * this field is added to the high/full speed interpacket timeout * duration in the core to account for any additional delays * introduced by the PHY. This can be required, because the delay * introduced by the PHY in generating the linestate condition * can vary from one PHY to another. */ dwc2->gusbcfg |= (7ul << GUSBCFG_TOCAL_Pos); // Force device mode dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_FHMOD) | GUSBCFG_FDMOD; // Clear A override, force B Valid dwc2->gotgctl = (dwc2->gotgctl & ~GOTGCTL_AVALOEN) | GOTGCTL_BVALOEN | GOTGCTL_BVALOVAL; // If USB host misbehaves during status portion of control xfer // (non zero-length packet), send STALL back and discard. dwc2->dcfg |= DCFG_NZLSOHSK; // Clear all interrupts dwc2->gintsts |= dwc2->gintsts; dwc2->gotgint |= dwc2->gotgint; // Required as part of core initialization. // TODO: How should mode mismatch be handled? It will cause // the core to stop working/require reset. dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_MMISM | GINTMSK_RXFLVLM | GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM; // Enable global interrupt dwc2->gahbcfg |= GAHBCFG_GINT; // make sure we are in device mode // TU_ASSERT(!(dwc2->gintsts & GINTSTS_CMOD), ); // TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl); // TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg); // TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg); // TU_LOG_HEX(DWC2_DEBUG, dwc2->gahbcfg); dcd_connect(rhport); } void dcd_int_enable (uint8_t rhport) { dwc2_dcd_int_enable(rhport); } void dcd_int_disable (uint8_t rhport) { dwc2_dcd_int_disable(rhport); } void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { dwc2_regs_t * dwc2 = DWC2_REG(rhport); dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos); // Response with status after changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); // set remote wakeup dwc2->dctl |= DCTL_RWUSIG; // enable SOF to detect bus resume dwc2->gintsts = GINTSTS_SOF; dwc2->gintmsk |= GINTMSK_SOFM; // Per specs: remote wakeup signal bit must be clear within 1-15ms dwc2_remote_wakeup_delay(); dwc2->dctl &= ~DCTL_RWUSIG; } void dcd_connect(uint8_t rhport) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); dwc2->dctl &= ~DCTL_SDIS; } void dcd_disconnect(uint8_t rhport) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); dwc2->dctl |= DCTL_SDIS; } /*------------------------------------------------------------------*/ /* DCD Endpoint port *------------------------------------------------------------------*/ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress); uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress); TU_ASSERT(epnum < DWC2_EP_MAX); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->max_size = tu_edpt_packet_size(desc_edpt); xfer->interval = desc_edpt->bInterval; uint16_t const fifo_size = tu_div_ceil(xfer->max_size, 4); if(dir == TUSB_DIR_OUT) { // Calculate required size of RX FIFO uint16_t const sz = calc_rx_ff_size(4*fifo_size); // If size_rx needs to be extended check if possible and if so enlarge it if (dwc2->grxfsiz < sz) { TU_ASSERT(sz + _allocated_fifo_words_tx <= DWC2_EP_FIFO_SIZE/4); // Enlarge RX FIFO dwc2->grxfsiz = sz; } dwc2->epout[epnum].doepctl |= (1 << DOEPCTL_USBAEP_Pos) | (desc_edpt->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) | (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) | (xfer->max_size << DOEPCTL_MPSIZ_Pos); dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum); } else { // "USB Data FIFOs" section in reference manual // Peripheral FIFO architecture // // --------------- 320 or 1024 ( 1280 or 4096 bytes ) // | IN FIFO 0 | // --------------- (320 or 1024) - 16 // | IN FIFO 1 | // --------------- (320 or 1024) - 16 - x // | . . . . | // --------------- (320 or 1024) - 16 - x - y - ... - z // | IN FIFO MAX | // --------------- // | FREE | // --------------- GRXFSIZ // | OUT FIFO | // | ( Shared ) | // --------------- 0 // // In FIFO is allocated by following rules: // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n". // Check if free space is available TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= DWC2_EP_FIFO_SIZE/4); _allocated_fifo_words_tx += fifo_size; TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %u", fifo_size*4, DWC2_EP_FIFO_SIZE-_allocated_fifo_words_tx*4); // DIEPTXF starts at FIFO #1. // Both TXFD and TXSA are in unit of 32-bit words. dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx); dwc2->epin[epnum].diepctl |= (1 << DIEPCTL_USBAEP_Pos) | (epnum << DIEPCTL_TXFNUM_Pos) | (desc_edpt->bmAttributes.xfer << DIEPCTL_EPTYP_Pos) | (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DIEPCTL_SD0PID_SEVNFRM : 0) | (xfer->max_size << DIEPCTL_MPSIZ_Pos); dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum)); } return true; } // Close all non-control endpoints, cancel all pending transfers if any. void dcd_edpt_close_all (uint8_t rhport) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); // Disable non-control interrupt dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos); for(uint8_t n = 1; n < DWC2_EP_MAX; n++) { // disable OUT endpoint dwc2->epout[n].doepctl = 0; xfer_status[n][TUSB_DIR_OUT].max_size = 0; // disable IN endpoint dwc2->epin[n].diepctl = 0; xfer_status[n][TUSB_DIR_IN].max_size = 0; } // reset allocated fifo IN _allocated_fifo_words_tx = 16; } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->buffer = buffer; xfer->ff = NULL; xfer->total_len = total_bytes; // EP0 can only handle one packet if(epnum == 0) { ep0_pending[dir] = total_bytes; // Schedule the first transaction for EP0 transfer edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]); } else { uint16_t num_packets = (total_bytes / xfer->max_size); uint16_t const short_packet_size = total_bytes % xfer->max_size; // Zero-size packet is special case. if ( (short_packet_size > 0) || (total_bytes == 0) ) num_packets++; // Schedule packets to be sent within interrupt edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes); } return true; } // The number of bytes has to be given explicitly to allow more flexible control of how many // bytes should be written and second to keep the return value free to give back a boolean // success message. If total_bytes is too big, the FIFO will copy only what is available // into the USB buffer! bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) { // USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1 TU_ASSERT(ff->item_size == 1); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir); xfer->buffer = NULL; xfer->ff = ff; xfer->total_len = total_bytes; uint16_t num_packets = (total_bytes / xfer->max_size); uint16_t const short_packet_size = total_bytes % xfer->max_size; // Zero-size packet is special case. if ( short_packet_size > 0 || (total_bytes == 0) ) num_packets++; // Schedule packets to be sent within interrupt edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes); return true; } static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall) { (void) rhport; dwc2_regs_t *dwc2 = DWC2_REG(rhport); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); if ( dir == TUSB_DIR_IN ) { dwc2_epin_t* epin = dwc2->epin; // Only disable currently enabled non-control endpoint if ( (epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA) ) { epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0); } else { // Stop transmitting packets and NAK IN xfers. epin[epnum].diepctl |= DIEPCTL_SNAK; while ( (epin[epnum].diepint & DIEPINT_INEPNE) == 0 ) {} // Disable the endpoint. epin[epnum].diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0); while ( (epin[epnum].diepint & DIEPINT_EPDISD_Msk) == 0 ) {} epin[epnum].diepint = DIEPINT_EPDISD; } // Flush the FIFO, and wait until we have confirmed it cleared. dwc2->grstctl |= (epnum << GRSTCTL_TXFNUM_Pos); dwc2->grstctl |= GRSTCTL_TXFFLSH; while ( (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0 ) {} } else { dwc2_epout_t* epout = dwc2->epout; // Only disable currently enabled non-control endpoint if ( (epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA) ) { epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0; } else { // Asserting GONAK is required to STALL an OUT endpoint. // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt // anyway, and it can't be cleared by user code. If this while loop never // finishes, we have bigger problems than just the stack. dwc2->dctl |= DCTL_SGONAK; while ( (dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0 ) {} // Ditto here- disable the endpoint. epout[epnum].doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0); while ( (epout[epnum].doepint & DOEPINT_EPDISD_Msk) == 0 ) {} epout[epnum].doepint = DOEPINT_EPDISD; // Allow other OUT endpoints to keep receiving. dwc2->dctl |= DCTL_CGONAK; } } } /** * Close an endpoint. */ void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr) { dwc2_regs_t * dwc2 = DWC2_REG(rhport); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); dcd_edpt_disable(rhport, ep_addr, false); // Update max_size xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation if (dir == TUSB_DIR_IN) { uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos; uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos; // For now only the last opened endpoint can be closed without fuss. TU_ASSERT(fifo_start == DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,); _allocated_fifo_words_tx -= fifo_size; } else { _out_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty } } void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { dcd_edpt_disable(rhport, ep_addr, true); } void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); // Clear stall and reset data toggle if ( dir == TUSB_DIR_IN ) { dwc2->epin[epnum].diepctl &= ~DIEPCTL_STALL; dwc2->epin[epnum].diepctl |= DIEPCTL_SD0PID_SEVNFRM; } else { dwc2->epout[epnum].doepctl &= ~DOEPCTL_STALL; dwc2->epout[epnum].doepctl |= DOEPCTL_SD0PID_SEVNFRM; } } /*------------------------------------------------------------------*/ // Read a single data packet from receive FIFO static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); volatile const uint32_t * rx_fifo = dwc2->fifo[0]; // Reading full available 32 bit words from fifo uint16_t full_words = len >> 2; while(full_words--) { tu_unaligned_write32(dst, *rx_fifo); dst += 4; } // Read the remaining 1-3 bytes from fifo uint8_t const bytes_rem = len & 0x03; if ( bytes_rem != 0 ) { uint32_t const tmp = *rx_fifo; dst[0] = tu_u32_byte0(tmp); if ( bytes_rem > 1 ) dst[1] = tu_u32_byte1(tmp); if ( bytes_rem > 2 ) dst[2] = tu_u32_byte2(tmp); } } // Write a single data packet to EPIN FIFO static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const * src, uint16_t len) { (void) rhport; dwc2_regs_t * dwc2 = DWC2_REG(rhport); volatile uint32_t * tx_fifo = dwc2->fifo[fifo_num]; // Pushing full available 32 bit words to fifo uint16_t full_words = len >> 2; while(full_words--) { *tx_fifo = tu_unaligned_read32(src); src += 4; } // Write the remaining 1-3 bytes into fifo uint8_t const bytes_rem = len & 0x03; if ( bytes_rem ) { uint32_t tmp_word = src[0]; if ( bytes_rem > 1 ) tmp_word |= (src[1] << 8); if ( bytes_rem > 2 ) tmp_word |= (src[2] << 16); *tx_fifo = tmp_word; } } static void handle_rxflvl_irq(uint8_t rhport) { dwc2_regs_t * dwc2 = DWC2_REG(rhport); volatile uint32_t const * rx_fifo = dwc2->fifo[0]; // Pop control word off FIFO uint32_t const ctl_word = dwc2->grxstsp; uint8_t const pktsts = (ctl_word & GRXSTSP_PKTSTS_Msk ) >> GRXSTSP_PKTSTS_Pos; uint8_t const epnum = (ctl_word & GRXSTSP_EPNUM_Msk ) >> GRXSTSP_EPNUM_Pos; uint16_t const bcnt = (ctl_word & GRXSTSP_BCNT_Msk ) >> GRXSTSP_BCNT_Pos; dwc2_epout_t* epout = &dwc2->epout[epnum]; //#if CFG_TUSB_DEBUG >= DWC2_DEBUG // const char * pktsts_str[] = // { // "ASSERT", "Global NAK (ISR)", "Out Data Received", "Out Transfer Complete (ISR)", // "Setup Complete (ISR)", "ASSERT", "Setup Data Received" // }; // TU_LOG_LOCATION(); // TU_LOG(DWC2_DEBUG, " EP %02X, Byte Count %u, %s\r\n", epnum, bcnt, pktsts_str[pktsts]); // TU_LOG(DWC2_DEBUG, " daint = %08lX, doepint = %04X\r\n", (unsigned long) dwc2->daint, (unsigned int) epout->doepint); //#endif switch ( pktsts ) { // Global OUT NAK: do nothign case GRXSTS_PKTSTS_GLOBALOUTNAK: break; case GRXSTS_PKTSTS_SETUPRX: // Setup packet received // We can receive up to three setup packets in succession, but // only the last one is valid. _setup_packet[0] = (*rx_fifo); _setup_packet[1] = (*rx_fifo); break; case GRXSTS_PKTSTS_SETUPDONE: // Setup packet done (Interrupt) epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos); break; case GRXSTS_PKTSTS_OUTRX: { // Out packet received xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT); // Read packet off RxFIFO if ( xfer->ff ) { // Ring buffer tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt); } else { // Linear buffer read_fifo_packet(rhport, xfer->buffer, bcnt); // Increment pointer to xfer data xfer->buffer += bcnt; } // Truncate transfer length in case of short packet if ( bcnt < xfer->max_size ) { xfer->total_len -= (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos; if ( epnum == 0 ) { xfer->total_len -= ep0_pending[TUSB_DIR_OUT]; ep0_pending[TUSB_DIR_OUT] = 0; } } } break; // Out packet done (Interrupt) case GRXSTS_PKTSTS_OUTDONE: // Occurred on STM32L47 with dwc2 version 3.10a but not found on other version like 2.80a or 3.30a // May (or not) be 3.10a specific feature/bug or depending on MCU configuration // XFRC complete is additionally generated when // - setup packet is received // - complete the data stage of control write is complete if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) { uint32_t doepint = epout->doepint; if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR)) { // skip this "no-data" transfer complete event // Note: STPKTRX will be clear later by setup received handler uint32_t clear_flags = DOEPINT_XFRC; if (doepint & DOEPINT_OTEPSPR) clear_flags |= DOEPINT_OTEPSPR; epout->doepint = clear_flags; // TU_LOG(DWC2_DEBUG, " FIX extra transfer complete on setup/data compete\r\n"); } } break; default: // Invalid TU_BREAKPOINT(); break; } } static void handle_epout_irq (uint8_t rhport) { dwc2_regs_t *dwc2 = DWC2_REG(rhport); // DAINT for a given EP clears when DOEPINTx is cleared. // OEPINT will be cleared when DAINT's out bits are cleared. for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ ) { if ( dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + n) ) { dwc2_epout_t* epout = &dwc2->epout[n]; uint32_t const doepint = epout->doepint; // SETUP packet Setup Phase done. if ( doepint & DOEPINT_STUP ) { uint32_t clear_flag = DOEPINT_STUP; // STPKTRX is only available for version from 3_00a if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a)) { clear_flag |= DOEPINT_STPKTRX; } epout->doepint = clear_flag; dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true); } // OUT XFER complete if ( epout->doepint & DOEPINT_XFRC ) { epout->doepint = DOEPINT_XFRC; xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT); // EP0 can only handle one packet if ( (n == 0) && ep0_pending[TUSB_DIR_OUT] ) { // Schedule another packet to be received. edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]); } else { dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true); } } } } } static void handle_epin_irq (uint8_t rhport) { dwc2_regs_t *dwc2 = DWC2_REG(rhport); dwc2_epin_t* epin = dwc2->epin; // DAINT for a given EP clears when DIEPINTx is cleared. // IEPINT will be cleared when DAINT's out bits are cleared. for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ ) { if ( dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n) ) { // IN XFER complete (entire xfer). xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN); if ( epin[n].diepint & DIEPINT_XFRC ) { epin[n].diepint = DIEPINT_XFRC; // EP0 can only handle one packet if ( (n == 0) && ep0_pending[TUSB_DIR_IN] ) { // Schedule another packet to be transmitted. edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]); } else { dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true); } } // XFER FIFO empty if ( (epin[n].diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n)) ) { // diepint's TXFE bit is read-only, software cannot clear it. // It will only be cleared by hardware when written bytes is more than // - 64 bytes or // - Half of TX FIFO size (configured by DIEPTXF) uint16_t remaining_packets = (epin[n].dieptsiz & DIEPTSIZ_PKTCNT_Msk) >> DIEPTSIZ_PKTCNT_Pos; // Process every single packet (only whole packets can be written to fifo) for ( uint16_t i = 0; i < remaining_packets; i++ ) { uint16_t const remaining_bytes = (epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos; // Packet can not be larger than ep max size uint16_t const packet_size = tu_min16(remaining_bytes, xfer->max_size); // It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current // EP has to be checked if the buffer can take another WHOLE packet if ( packet_size > ((epin[n].dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2) ) break; // Push packet to Tx-FIFO if ( xfer->ff ) { volatile uint32_t *tx_fifo = dwc2->fifo[n]; tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size); } else { write_fifo_packet(rhport, n, xfer->buffer, packet_size); // Increment pointer to xfer data xfer->buffer += packet_size; } } // Turn off TXFE if all bytes are written. if ( ((epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0 ) { dwc2->diepempmsk &= ~(1 << n); } } } } } void dcd_int_handler(uint8_t rhport) { dwc2_regs_t *dwc2 = DWC2_REG(rhport); uint32_t const int_status = dwc2->gintsts & dwc2->gintmsk; if(int_status & GINTSTS_USBRST) { // USBRST is start of reset. dwc2->gintsts = GINTSTS_USBRST; bus_reset(rhport); } if(int_status & GINTSTS_ENUMDNE) { // ENUMDNE is the end of reset where speed of the link is detected dwc2->gintsts = GINTSTS_ENUMDNE; tusb_speed_t speed; switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos) { case DSTS_ENUMSPD_HS: speed = TUSB_SPEED_HIGH; break; case DSTS_ENUMSPD_LS: speed = TUSB_SPEED_LOW; break; case DSTS_ENUMSPD_FS_HSPHY: case DSTS_ENUMSPD_FS: default: speed = TUSB_SPEED_FULL; break; } dcd_event_bus_reset(rhport, speed, true); } if(int_status & GINTSTS_USBSUSP) { dwc2->gintsts = GINTSTS_USBSUSP; dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } if(int_status & GINTSTS_WKUINT) { dwc2->gintsts = GINTSTS_WKUINT; dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); } // TODO check GINTSTS_DISCINT for disconnect detection // if(int_status & GINTSTS_DISCINT) if(int_status & GINTSTS_OTGINT) { // OTG INT bit is read-only uint32_t const otg_int = dwc2->gotgint; if (otg_int & GOTGINT_SEDET) { dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true); } dwc2->gotgint = otg_int; } if(int_status & GINTSTS_SOF) { dwc2->gotgint = GINTSTS_SOF; // Disable SOF interrupt since currently only used for remote wakeup detection dwc2->gintmsk &= ~GINTMSK_SOFM; dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); } // RxFIFO non-empty interrupt handling. if(int_status & GINTSTS_RXFLVL) { // RXFLVL bit is read-only // Mask out RXFLVL while reading data from FIFO dwc2->gintmsk &= ~GINTMSK_RXFLVLM; // Loop until all available packets were handled do { handle_rxflvl_irq(rhport); } while(dwc2->gotgint & GINTSTS_RXFLVL); // Manage RX FIFO size if (_out_ep_closed) { update_grxfsiz(rhport); // Disable flag _out_ep_closed = false; } dwc2->gintmsk |= GINTMSK_RXFLVLM; } // OUT endpoint interrupt handling. if(int_status & GINTSTS_OEPINT) { // OEPINT is read-only, clear using DOEPINTn handle_epout_irq(rhport); } // IN endpoint interrupt handling. if(int_status & GINTSTS_IEPINT) { // IEPINT bit read-only, clear using DIEPINTn handle_epin_irq(rhport); } // // Check for Incomplete isochronous IN transfer // if(int_status & GINTSTS_IISOIXFR) { // printf(" IISOIXFR!\r\n"); //// TU_LOG(DWC2_DEBUG, " IISOIXFR!\r\n"); // } } #endif