/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" // #if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_FOMU_EPTRI) #if 1 #include "device/dcd.h" #include "dcd_fomu.h" #include "csr.h" #include "irq.h" void fomu_error(uint32_t line); void mputs(const char *str); void mputln(const char *str); //--------------------------------------------------------------------+ // SIE Command //--------------------------------------------------------------------+ static uint8_t volatile out_buffer_length[16]; static uint8_t volatile * out_buffer[16]; static uint8_t volatile out_buffer_max[16]; static volatile bool tx_in_progress; static volatile uint8_t tx_ep; static volatile uint16_t tx_len; //--------------------------------------------------------------------+ // PIPE HELPER //--------------------------------------------------------------------+ static void finish_tx(void) { // // Don't allow requeueing -- only queue more data if the system is idle. // if (!(usb_in_status_read() & 2)) { // return; // } // Don't send empty data if (!tx_in_progress) { return; } tx_in_progress = 0; dcd_event_xfer_complete(0, tx_ep, tx_len, XFER_RESULT_SUCCESS, true); return; } static void process_rx(bool in_isr) { // If there isn't any data in the FIFO, don't do anything. if (!(usb_out_status_read() & 1)) return; uint8_t out_ep = (usb_out_status_read() >> 2) & 0xf; uint32_t total_read = 0; uint32_t current_offset = out_buffer_length[out_ep]; while (usb_out_status_read() & 1) { uint8_t c = usb_out_data_read(); total_read++; if (out_buffer_length[out_ep] < out_buffer_max[out_ep]) out_buffer[out_ep][current_offset++] = c; } // Strip off the CRC16 total_read -= 2; out_buffer_length[out_ep] += total_read; if (out_buffer_length[out_ep] > out_buffer_max[out_ep]) out_buffer_length[out_ep] = out_buffer_max[out_ep]; if (out_buffer_max[out_ep] == out_buffer_length[out_ep]) { out_buffer[out_ep] = NULL; dcd_event_xfer_complete(0, tu_edpt_addr(out_ep, TUSB_DIR_OUT), out_buffer_length[out_ep], XFER_RESULT_SUCCESS, in_isr); } // Acknowledge having received the data usb_out_ctrl_write(2); } //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ // Initializes the USB peripheral for device mode and enables it. void dcd_init(uint8_t rhport) { (void) rhport; usb_pullup_out_write(0); usb_address_write(0); usb_out_ctrl_write(0); usb_setup_ev_enable_write(0); usb_in_ev_enable_write(0); usb_out_ev_enable_write(0); // Reset the IN handler usb_in_ctrl_write(0x20); // Reset the SETUP handler usb_setup_ctrl_write(0x04); // Reset the OUT handler usb_out_ctrl_write(0x04); // Enable all event handlers and clear their contents usb_setup_ev_pending_write(usb_setup_ev_pending_read()); usb_in_ev_pending_write(usb_in_ev_pending_read()); usb_out_ev_pending_write(usb_out_ev_pending_read()); usb_setup_ev_enable_write(3); usb_in_ev_enable_write(1); usb_out_ev_enable_write(1); // Accept incoming data by default. usb_out_ctrl_write(2); // Turn on the external pullup usb_pullup_out_write(1); dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, false); } // Enables or disables the USB device interrupt(s). May be used to // prevent concurrency issues when mutating data structures shared // between main code and the interrupt handler. void dcd_int_enable(uint8_t rhport) { (void) rhport; irq_setmask(irq_getmask() | (1 << USB_INTERRUPT)); } void dcd_int_disable(uint8_t rhport) { (void) rhport; irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT)); } // Called when the device is given a new bus address. void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { (void)rhport; // Set address and then acknowledge the SETUP packet usb_address_write(dev_addr); // ACK the transfer (sets the address) usb_setup_ctrl_write(2); } // Called when the device received SET_CONFIG request, you can leave this // empty if your peripheral does not require any specific action. void dcd_set_config(uint8_t rhport, uint8_t config_num) { (void) rhport; (void) config_num; } // Called to remote wake up host when suspended (e.g hid keyboard) void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { (void) rhport; if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) return false; // Not supported return true; } void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) usb_out_stall_write((1 << CSR_USB_OUT_STALL_STALL_OFFSET) | tu_edpt_number(ep_addr)); else { usb_in_ctrl_write((1 << CSR_USB_IN_CTRL_STALL_OFFSET) | tu_edpt_number(ep_addr)); } } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) usb_out_stall_write((0 << CSR_USB_OUT_STALL_STALL_OFFSET) | tu_edpt_number(ep_addr)); // IN endpoints will get unstalled when more data is written. } __attribute__((used)) uint8_t *last_tx_buffer; __attribute__((used)) uint16_t last_tx_bytes; bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { (void)rhport; if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) { // These sorts of transfers are handled in hardware if ((tu_edpt_number(ep_addr) == 0) && (total_bytes == 0) && (buffer == 0)) { dcd_event_xfer_complete(0, ep_addr, total_bytes, XFER_RESULT_SUCCESS, false); return true; } uint32_t offset; // Wait for the tx pipe to free up while (tx_in_progress) ; tx_in_progress = 1; tx_ep = ep_addr; tx_len = total_bytes; for (offset = 0; offset < total_bytes; offset++) { usb_in_data_write(buffer[offset]); } // Updating the epno queues the data usb_in_ctrl_write(tu_edpt_number(ep_addr) & 0xf); last_tx_buffer = buffer; last_tx_bytes = total_bytes; } else if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) { // Wait for the rx pipe to free up while (out_buffer[tu_edpt_number(ep_addr)]) ; out_buffer_max[tu_edpt_number(ep_addr)] = total_bytes; out_buffer[tu_edpt_number(ep_addr)] = buffer; out_buffer_length[tu_edpt_number(ep_addr)] = 0; process_rx(false); } return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void hal_dcd_isr(uint8_t rhport) { uint8_t setup_pending = usb_setup_ev_pending_read(); uint8_t in_pending = usb_in_ev_pending_read(); uint8_t out_pending = usb_out_ev_pending_read(); usb_setup_ev_pending_write(setup_pending); usb_in_ev_pending_write(in_pending); usb_out_ev_pending_write(out_pending); // This event means a bus reset occurred. Reset everything, and // abandon any further processing. if (setup_pending & 2) { usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_RESET_OFFSET); usb_in_ctrl_write(1 << CSR_USB_IN_CTRL_RESET_OFFSET); usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_RESET_OFFSET); dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true); return; } // An "IN" transaction just completed. // Note that due to the way tinyusb's callback system is implemented, // we must handle IN and OUT packets before we handle SETUP packets. // This ensures that any responses to SETUP packets aren't overwritten. // For example, oftentimes a host will request part of a descriptor // to begin with, then make a subsequent request. If we don't handle // the IN packets first, then the second request will be truncated. if (in_pending) { finish_tx(); } // An "OUT" transaction just completed so we have new data. // (But only if we can accept the data) if (out_pending) { process_rx(true); } // We got a SETUP packet. Copy it to the setup buffer and clear // the "pending" bit. if (setup_pending & 1) { // Setup packets are always 8 bytes, plus two bytes // of crc16 uint8_t setup_packet[10]; uint32_t setup_length = 0; if (!(usb_setup_status_read() & 1)) fomu_error(__LINE__); while (usb_setup_status_read() & 1) { uint8_t c = usb_setup_data_read(); if (setup_length < sizeof(setup_packet)) setup_packet[setup_length] = c; setup_length++; } // If we have 10 bytes, that's a full SETUP packet plus CRC16. // Otherwise, it was an RX error. if (setup_length == 10) { dcd_event_setup_received(rhport, setup_packet, true); // Acknowledge the packet, so long as it isn't a SET_ADDRESS // packet. If it is, leave it unacknowledged and we'll do this // in the `dcd_set_address` function instead. if (!((setup_packet[0] == 0x00) && (setup_packet[1] == 0x05))) usb_setup_ctrl_write(2); } else { fomu_error(__LINE__); } } } #endif