/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "common/tusb_common.h" #if TUSB_OPT_HOST_ENABLED #ifndef CFG_TUH_TASK_QUEUE_SZ #define CFG_TUH_TASK_QUEUE_SZ 16 #endif //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "tusb.h" #include "hub.h" #include "usbh_hcd.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ #if CFG_TUSB_DEBUG >= 2 #define DRIVER_NAME(_name) .name = _name, #else #define DRIVER_NAME(_name) #endif static usbh_class_driver_t const usbh_class_drivers[] = { #if CFG_TUH_CDC { DRIVER_NAME("CDC") .class_code = TUSB_CLASS_CDC, .init = cdch_init, .open = cdch_open, .xfer_cb = cdch_xfer_cb, .close = cdch_close }, #endif #if CFG_TUH_MSC { DRIVER_NAME("MSC") .class_code = TUSB_CLASS_MSC, .init = msch_init, .open = msch_open, .set_config = msch_set_config, .xfer_cb = msch_xfer_cb, .close = msch_close }, #endif #if HOST_CLASS_HID { DRIVER_NAME("HID") .class_code = TUSB_CLASS_HID, .init = hidh_init, .open = hidh_open_subtask, .set_config = hidh_set_config, .xfer_cb = hidh_xfer_cb, .close = hidh_close }, #endif #if CFG_TUH_HUB { DRIVER_NAME("HUB") .class_code = TUSB_CLASS_HUB, .init = hub_init, .open = hub_open, .xfer_cb = hub_xfer_cb, .close = hub_close }, #endif #if CFG_TUH_VENDOR { DRIVER_NAME("VENDOR") .class_code = TUSB_CLASS_VENDOR_SPECIFIC, .init = cush_init, .open = cush_open_subtask, .xfer_cb = cush_isr, .close = cush_close } #endif }; enum { USBH_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) }; enum { RESET_DELAY = 500 }; // 200 USB specs say only 50ms but many devices require much longer enum { CONFIG_NUM = 1 }; // default to use configuration 1 //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ // including zero-address CFG_TUSB_MEM_SECTION usbh_device_t _usbh_devices[CFG_TUSB_HOST_DEVICE_MAX+1]; // Event queue // role device/host is used by OS NONE for mutex (disable usb isr) OSAL_QUEUE_DEF(OPT_MODE_HOST, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t); static osal_queue_t _usbh_q; CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(4) static uint8_t _usbh_ctrl_buf[CFG_TUSB_HOST_ENUM_BUFFER_SIZE]; //------------- Helper Function Prototypes -------------// static bool enum_new_device(hcd_event_t* event); // from usbh_control.c extern bool usbh_control_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes); //--------------------------------------------------------------------+ // PUBLIC API (Parameter Verification is required) //--------------------------------------------------------------------+ tusb_device_state_t tuh_device_get_state (uint8_t const dev_addr) { TU_ASSERT( dev_addr <= CFG_TUSB_HOST_DEVICE_MAX, TUSB_DEVICE_STATE_UNPLUG); return (tusb_device_state_t) _usbh_devices[dev_addr].state; } void osal_task_delay(uint32_t msec) { (void) msec; const uint32_t start = hcd_frame_number(TUH_OPT_RHPORT); while ( ( hcd_frame_number(TUH_OPT_RHPORT) - start ) < msec ) {} } //--------------------------------------------------------------------+ // CLASS-USBD API (don't require to verify parameters) //--------------------------------------------------------------------+ bool tuh_init(void) { tu_memclr(_usbh_devices, sizeof(usbh_device_t)*(CFG_TUSB_HOST_DEVICE_MAX+1)); //------------- Enumeration & Reporter Task init -------------// _usbh_q = osal_queue_create( &_usbh_qdef ); TU_ASSERT(_usbh_q != NULL); //------------- Semaphore, Mutex for Control Pipe -------------// for(uint8_t i=0; icontrol.sem_hdl = osal_semaphore_create(&dev->control.sem_def); TU_ASSERT(dev->control.sem_hdl != NULL); #if CFG_TUSB_OS != OPT_OS_NONE dev->mutex = osal_mutex_create(&dev->mutexdef); TU_ASSERT(dev->mutex); #endif memset(dev->itf2drv, 0xff, sizeof(dev->itf2drv)); // invalid mapping memset(dev->ep2drv , 0xff, sizeof(dev->ep2drv )); // invalid mapping } // Class drivers init for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { TU_LOG2("%s init\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].init(); } TU_ASSERT(hcd_init()); hcd_int_enable(TUH_OPT_RHPORT); return true; } //------------- USBH control transfer -------------// // TODO remove bool usbh_control_xfer (uint8_t dev_addr, tusb_control_request_t* request, uint8_t* data) { usbh_device_t* dev = &_usbh_devices[dev_addr]; const uint8_t rhport = dev->rhport; dev->control.request = *request; dev->control.pipe_status = 0; // Setup Stage hcd_setup_send(rhport, dev_addr, (uint8_t*) &dev->control.request); TU_VERIFY(osal_semaphore_wait(dev->control.sem_hdl, OSAL_TIMEOUT_NORMAL)); // Data stage : first data toggle is always 1 if ( request->wLength ) { hcd_edpt_xfer(rhport, dev_addr, tu_edpt_addr(0, request->bmRequestType_bit.direction), data, request->wLength); TU_VERIFY(osal_semaphore_wait(dev->control.sem_hdl, OSAL_TIMEOUT_NORMAL)); } // Status : data toggle is always 1 hcd_edpt_xfer(rhport, dev_addr, tu_edpt_addr(0, 1-request->bmRequestType_bit.direction), NULL, 0); TU_VERIFY(osal_semaphore_wait(dev->control.sem_hdl, OSAL_TIMEOUT_NORMAL)); if ( XFER_RESULT_STALLED == dev->control.pipe_status ) return false; if ( XFER_RESULT_FAILED == dev->control.pipe_status ) return false; return true; } bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = &_usbh_devices[dev_addr]; #if CFG_TUSB_OS != OPT_OS_NONE // pre-check to help reducing mutex lock TU_VERIFY((dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 0)); osal_mutex_lock(dev->mutex, OSAL_TIMEOUT_WAIT_FOREVER); #endif // can only claim the endpoint if it is not busy and not claimed yet. bool const ret = (dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 0); if (ret) { dev->ep_status[epnum][dir].claimed = 1; } #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_unlock(dev->mutex); #endif return ret; } bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = &_usbh_devices[dev_addr]; #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_lock(dev->mutex, OSAL_TIMEOUT_WAIT_FOREVER); #endif // can only release the endpoint if it is claimed and not busy bool const ret = (dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 1); if (ret) { dev->ep_status[epnum][dir].claimed = 0; } #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_unlock(dev->mutex); #endif return ret; } bool usbh_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { usbh_device_t* dev = &_usbh_devices[dev_addr]; return hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes); } bool usbh_pipe_control_open(uint8_t dev_addr, uint8_t max_packet_size) { osal_semaphore_reset( _usbh_devices[dev_addr].control.sem_hdl ); //osal_mutex_reset( usbh_devices[dev_addr].control.mutex_hdl ); tusb_desc_endpoint_t ep0_desc = { .bLength = sizeof(tusb_desc_endpoint_t), .bDescriptorType = TUSB_DESC_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = { .xfer = TUSB_XFER_CONTROL }, .wMaxPacketSize = { .size = max_packet_size }, .bInterval = 0 }; return hcd_edpt_open(_usbh_devices[dev_addr].rhport, dev_addr, &ep0_desc); } bool usbh_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc) { bool ret = hcd_edpt_open(rhport, dev_addr, ep_desc); if (ret) { usbh_device_t* dev = &_usbh_devices[dev_addr]; // new endpoints belongs to latest interface (last valid value) // TODO FIXME not true with ISO uint8_t drvid = 0xff; for(uint8_t i=0; i < sizeof(dev->itf2drv); i++) { if ( dev->itf2drv[i] == 0xff ) break; drvid = dev->itf2drv[i]; } TU_ASSERT(drvid < USBH_CLASS_DRIVER_COUNT); uint8_t const ep_addr = ep_desc->bEndpointAddress; dev->ep2drv[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)] = drvid; } return ret; } //--------------------------------------------------------------------+ // HCD Event Handler //--------------------------------------------------------------------+ void hcd_event_handler(hcd_event_t const* event, bool in_isr) { switch (event->event_id) { default: osal_queue_send(_usbh_q, event, in_isr); break; } } // interrupt caused by a TD (with IOC=1) in pipe of class class_code void hcd_event_xfer_complete(uint8_t dev_addr, uint8_t ep_addr, uint32_t xferred_bytes, xfer_result_t result, bool in_isr) { usbh_device_t* dev = &_usbh_devices[ dev_addr ]; if (0 == tu_edpt_number(ep_addr)) { dev->control.pipe_status = result; // usbh_devices[ pipe_hdl.dev_addr ].control.xferred_bytes = xferred_bytes; not yet neccessary osal_semaphore_post( dev->control.sem_hdl, true ); // FIXME post within ISR } hcd_event_t event = { .rhport = 0, // TODO correct rhport .event_id = HCD_EVENT_XFER_COMPLETE, .dev_addr = dev_addr, .xfer_complete = { .ep_addr = ep_addr, .result = result, .len = xferred_bytes } }; hcd_event_handler(&event, in_isr); } void hcd_event_device_attach(uint8_t rhport, bool in_isr) { hcd_event_t event = { .rhport = rhport, .event_id = HCD_EVENT_DEVICE_ATTACH }; event.connection.hub_addr = 0; event.connection.hub_port = 0; hcd_event_handler(&event, in_isr); } void hcd_event_device_remove(uint8_t hostid, bool in_isr) { hcd_event_t event = { .rhport = hostid, .event_id = HCD_EVENT_DEVICE_REMOVE }; event.connection.hub_addr = 0; event.connection.hub_port = 0; hcd_event_handler(&event, in_isr); } // a device unplugged on hostid, hub_addr, hub_port // return true if found and unmounted device, false if cannot find static void usbh_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port) { //------------- find the all devices (star-network) under port that is unplugged -------------// for (uint8_t dev_addr = 0; dev_addr <= CFG_TUSB_HOST_DEVICE_MAX; dev_addr ++) { usbh_device_t* dev = &_usbh_devices[dev_addr]; // TODO Hub multiple level if (dev->rhport == rhport && (hub_addr == 0 || dev->hub_addr == hub_addr) && // hub_addr == 0 & hub_port == 0 means roothub (hub_port == 0 || dev->hub_port == hub_port) && dev->state != TUSB_DEVICE_STATE_UNPLUG) { // Invoke callback before close driver if (tuh_umount_cb) tuh_umount_cb(dev_addr); // Close class driver for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { TU_LOG2("%s close\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].close(dev_addr); } memset(dev->itf2drv, 0xff, sizeof(dev->itf2drv)); // invalid mapping memset(dev->ep2drv , 0xff, sizeof(dev->ep2drv )); // invalid mapping hcd_device_close(rhport, dev_addr); dev->state = TUSB_DEVICE_STATE_UNPLUG; } } } /* USB Host Driver task * This top level thread manages all host controller event and delegates events to class-specific drivers. * This should be called periodically within the mainloop or rtos thread. * @code int main(void) { application_init(); tusb_init(); while(1) // the mainloop { application_code(); tuh_task(); // tinyusb host task } } @endcode */ void tuh_task(void) { // Skip if stack is not initialized if ( !tusb_inited() ) return; // Loop until there is no more events in the queue while (1) { hcd_event_t event; if ( !osal_queue_receive(_usbh_q, &event) ) return; switch (event.event_id) { case HCD_EVENT_DEVICE_ATTACH: // TODO due to the shared _usbh_ctrl_buf, we must complete enumerating // one device before enumerating another one. TU_LOG2("USBH DEVICE ATTACH\r\n"); enum_new_device(&event); break; case HCD_EVENT_DEVICE_REMOVE: TU_LOG2("USBH DEVICE REMOVED\r\n"); usbh_device_unplugged(event.rhport, event.connection.hub_addr, event.connection.hub_port); #if CFG_TUH_HUB // TODO remove if ( event.connection.hub_addr != 0) { // done with hub, waiting for next data on status pipe (void) hub_status_pipe_queue( event.connection.hub_addr ); } #endif break; case HCD_EVENT_XFER_COMPLETE: { usbh_device_t* dev = &_usbh_devices[event.dev_addr]; uint8_t const ep_addr = event.xfer_complete.ep_addr; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const ep_dir = tu_edpt_dir(ep_addr); TU_LOG2("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len); if ( 0 == epnum ) { usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); }else { uint8_t drv_id = dev->ep2drv[epnum][ep_dir]; TU_ASSERT(drv_id < USBH_CLASS_DRIVER_COUNT, ); TU_LOG2("%s xfer callback\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); } } break; case USBH_EVENT_FUNC_CALL: if ( event.func_call.func ) event.func_call.func(event.func_call.param); break; default: break; } } } //--------------------------------------------------------------------+ // INTERNAL HELPER //--------------------------------------------------------------------+ static uint8_t get_new_address(void) { for (uint8_t addr=1; addr <= CFG_TUSB_HOST_DEVICE_MAX; addr++) { if (_usbh_devices[addr].state == TUSB_DEVICE_STATE_UNPLUG) return addr; } return CFG_TUSB_HOST_DEVICE_MAX+1; } void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num) { usbh_device_t* dev = &_usbh_devices[dev_addr]; for(itf_num++; itf_num < sizeof(dev->itf2drv); itf_num++) { // continue with next valid interface uint8_t const drv_id = dev->itf2drv[itf_num]; if (drv_id != 0xff) { usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id]; TU_LOG2("%s set config itf = %u\r\n", driver->name, itf_num); driver->set_config(dev_addr, itf_num); break; } } // all interface are configured if (itf_num == sizeof(dev->itf2drv)) { // Invoke callback if available if (tuh_mount_cb) tuh_mount_cb(dev_addr); } } //--------------------------------------------------------------------+ // Enumeration Process // is a lengthy process with a seires of control transfer to configure // newly attached device. Each step is handled by a function in this // section // TODO due to the shared _usbh_ctrl_buf, we must complete enumerating // one device before enumerating another one. //--------------------------------------------------------------------+ static bool enum_get_addr0_device_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_set_address_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_get_device_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_get_9byte_config_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_get_config_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_set_config_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool parse_configuration_descriptor (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg); static bool enum_new_device(hcd_event_t* event) { usbh_device_t* dev0 = &_usbh_devices[0]; dev0->rhport = event->rhport; // TODO refractor integrate to device_pool dev0->hub_addr = event->connection.hub_addr; dev0->hub_port = event->connection.hub_port; dev0->state = TUSB_DEVICE_STATE_UNPLUG; //------------- connected/disconnected directly with roothub -------------// if (dev0->hub_addr == 0) { // wait until device is stable. Increase this if the first 8 bytes is failed to get osal_task_delay(RESET_DELAY); // device unplugged while delaying if ( !hcd_port_connect_status(dev0->rhport) ) return true; dev0->speed = hcd_port_speed_get( dev0->rhport ); } #if CFG_TUH_HUB //------------- connected/disconnected via hub -------------// else { // TODO wait for PORT reset change instead osal_task_delay(RESET_DELAY); // FIXME hub API use usbh_control_xfer hub_port_status_response_t port_status; TU_VERIFY_HDLR( hub_port_get_status(dev0->hub_addr, dev0->hub_port, &port_status), hub_status_pipe_queue( dev0->hub_addr) ); // device unplugged while delaying if ( !port_status.status.connection ) return true; dev0->speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH : (port_status.status.low_speed ) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL; // Acknowledge Port Reset Change if (port_status.change.reset) { hub_port_clear_feature(dev0->hub_addr, dev0->hub_port, HUB_FEATURE_PORT_RESET_CHANGE); } } #endif // CFG_TUH_HUB // TODO probably doesn't need to open/close each enumeration TU_ASSERT( usbh_pipe_control_open(0, 8) ); //------------- Get first 8 bytes of device descriptor to get Control Endpoint Size -------------// TU_LOG2("Get 8 byte of Device Descriptor\r\n"); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = TUSB_DESC_DEVICE << 8, .wIndex = 0, .wLength = 8 }; TU_ASSERT(tuh_control_xfer(0, &request, _usbh_ctrl_buf, enum_get_addr0_device_desc_complete)); return true; } // After Get Device Descriptor of Address 0 static bool enum_get_addr0_device_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(0 == dev_addr); usbh_device_t* dev0 = &_usbh_devices[0]; if (XFER_RESULT_SUCCESS != result) { #if CFG_TUH_HUB // TODO remove, waiting for next data on status pipe if (dev0->hub_addr != 0) hub_status_pipe_queue( dev0->hub_addr); #endif return false; } // Reset device again before Set Address TU_LOG2("Port reset \r\n"); if (dev0->hub_addr == 0) { // connected directly to roothub hcd_port_reset( dev0->rhport ); // reset port after 8 byte descriptor osal_task_delay(RESET_DELAY); } #if CFG_TUH_HUB else { // FIXME hub_port_reset use usbh_control_xfer if ( hub_port_reset(dev0->hub_addr, dev0->hub_port) ) { osal_task_delay(RESET_DELAY); // Acknowledge Port Reset Change if Reset Successful hub_port_clear_feature(dev0->hub_addr, dev0->hub_port, HUB_FEATURE_PORT_RESET_CHANGE); } (void) hub_status_pipe_queue( dev0->hub_addr ); // done with hub, waiting for next data on status pipe } #endif // CFG_TUH_HUB // Set Address TU_LOG2("Set Address \r\n"); uint8_t const new_addr = get_new_address(); TU_ASSERT(new_addr <= CFG_TUSB_HOST_DEVICE_MAX); // TODO notify application we reach max devices usbh_device_t* new_dev = &_usbh_devices[new_addr]; new_dev->rhport = dev0->rhport; new_dev->hub_addr = dev0->hub_addr; new_dev->hub_port = dev0->hub_port; new_dev->speed = dev0->speed; new_dev->connected = 1; new_dev->ep0_packet_size = ((tusb_desc_device_t*) _usbh_ctrl_buf)->bMaxPacketSize0; tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_ADDRESS, .wValue = new_addr, .wIndex = 0, .wLength = 0 }; TU_ASSERT(tuh_control_xfer(0, &new_request, NULL, enum_set_address_complete)); return true; } // After SET_ADDRESS is complete static bool enum_set_address_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { TU_ASSERT(0 == dev_addr); TU_ASSERT(XFER_RESULT_SUCCESS == result); uint8_t const new_addr = (uint8_t const) request->wValue; usbh_device_t* new_dev = &_usbh_devices[new_addr]; new_dev->addressed = 1; // TODO close device 0, may not be needed usbh_device_t* dev0 = &_usbh_devices[0]; hcd_device_close(dev0->rhport, 0); dev0->state = TUSB_DEVICE_STATE_UNPLUG; // open control pipe for new address TU_ASSERT ( usbh_pipe_control_open(new_addr, new_dev->ep0_packet_size) ); // Get full device descriptor tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = TUSB_DESC_DEVICE << 8, .wIndex = 0, .wLength = sizeof(tusb_desc_device_t) }; TU_ASSERT(tuh_control_xfer(new_addr, &new_request, _usbh_ctrl_buf, enum_get_device_desc_complete)); return true; } static bool enum_get_device_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf; usbh_device_t* dev = &_usbh_devices[dev_addr]; dev->vendor_id = desc_device->idVendor; dev->product_id = desc_device->idProduct; // if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf); TU_LOG2("Get 9 bytes of Configuration Descriptor\r\n"); tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = (TUSB_DESC_CONFIGURATION << 8) | (CONFIG_NUM - 1), .wIndex = 0, .wLength = 9 }; TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, _usbh_ctrl_buf, enum_get_9byte_config_desc_complete) ); return true; } static bool enum_get_9byte_config_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); // TODO not enough buffer to hold configuration descriptor tusb_desc_configuration_t const * desc_config = (tusb_desc_configuration_t const*) _usbh_ctrl_buf; uint16_t total_len; // Use offsetof to avoid pointer to the odd/misaligned address memcpy(&total_len, (uint8_t*) desc_config + offsetof(tusb_desc_configuration_t, wTotalLength), 2); TU_ASSERT(total_len <= CFG_TUSB_HOST_ENUM_BUFFER_SIZE); //Get full configuration descriptor tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = (TUSB_DESC_CONFIGURATION << 8) | (CONFIG_NUM - 1), .wIndex = 0, .wLength = total_len }; TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, _usbh_ctrl_buf, enum_get_config_desc_complete) ); return true; } static bool enum_get_config_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); // Parse configuration & set up drivers // Driver open aren't allowed to make any usb transfer yet parse_configuration_descriptor(dev_addr, (tusb_desc_configuration_t*) _usbh_ctrl_buf); TU_LOG2("Set Configuration Descriptor\r\n"); tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_CONFIGURATION, .wValue = CONFIG_NUM, .wIndex = 0, .wLength = 0 }; TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, NULL, enum_set_config_complete) ); return true; } static bool enum_set_config_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); TU_LOG2("Device configured\r\n"); usbh_device_t* dev = &_usbh_devices[dev_addr]; dev->configured = 1; dev->state = TUSB_DEVICE_STATE_CONFIGURED; // Start the Set Configuration process for interfaces (itf = 0xff) // Since driver can perform control transfer within its set_config, this is done asynchronously. // The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete() usbh_driver_set_config_complete(dev_addr, 0xff); return true; } static bool parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) { usbh_device_t* dev = &_usbh_devices[dev_addr]; uint8_t const* p_desc = (uint8_t const*) desc_cfg; p_desc = tu_desc_next(p_desc); // parse each interfaces while( p_desc < _usbh_ctrl_buf + desc_cfg->wTotalLength ) { // skip until we see interface descriptor if ( TUSB_DESC_INTERFACE != tu_desc_type(p_desc) ) { p_desc = tu_desc_next(p_desc); // skip the descriptor, increase by the descriptor's length }else { tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc; // Check if class is supported uint8_t drv_id; for (drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { if ( usbh_class_drivers[drv_id].class_code == desc_itf->bInterfaceClass ) break; } if( drv_id >= USBH_CLASS_DRIVER_COUNT ) { // skip unsupported class p_desc = tu_desc_next(p_desc); } else { usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id]; // Interface number must not be used already TODO alternate interface TU_ASSERT( dev->itf2drv[desc_itf->bInterfaceNumber] == 0xff ); dev->itf2drv[desc_itf->bInterfaceNumber] = drv_id; if (desc_itf->bInterfaceClass == TUSB_CLASS_HUB && dev->hub_addr != 0) { // TODO Attach hub to Hub is not currently supported // skip this interface p_desc = tu_desc_next(p_desc); } else { TU_LOG2("%s open\r\n", driver->name); uint16_t itf_len = 0; TU_ASSERT( driver->open(dev->rhport, dev_addr, desc_itf, &itf_len) ); TU_ASSERT( itf_len >= sizeof(tusb_desc_interface_t) ); p_desc += itf_len; } } } } return true; } #endif