/* * @brief LPC13xx SSP Registers and control functions * * @note * Copyright(C) NXP Semiconductors, 2012 * All rights reserved. * * @par * Software that is described herein is for illustrative purposes only * which provides customers with programming information regarding the * LPC products. This software is supplied "AS IS" without any warranties of * any kind, and NXP Semiconductors and its licensor disclaim any and * all warranties, express or implied, including all implied warranties of * merchantability, fitness for a particular purpose and non-infringement of * intellectual property rights. NXP Semiconductors assumes no responsibility * or liability for the use of the software, conveys no license or rights under any * patent, copyright, mask work right, or any other intellectual property rights in * or to any products. NXP Semiconductors reserves the right to make changes * in the software without notification. NXP Semiconductors also makes no * representation or warranty that such application will be suitable for the * specified use without further testing or modification. * * @par * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, under NXP Semiconductors' and its * licensor's relevant copyrights in the software, without fee, provided that it * is used in conjunction with NXP Semiconductors microcontrollers. This * copyright, permission, and disclaimer notice must appear in all copies of * this code. */ #ifndef __SSP_13XX_H_ #define __SSP_13XX_H_ #ifdef __cplusplus extern "C" { #endif /** @defgroup SSP_13XX CHIP: LPC13xx SSP register block and driver * @ingroup CHIP_13XX_Drivers * @{ */ /** * @brief SSP register block structure */ typedef struct { /*!< SSPn Structure */ __IO uint32_t CR0; /*!< Control Register 0. Selects the serial clock rate, bus type, and data size. */ __IO uint32_t CR1; /*!< Control Register 1. Selects master/slave and other modes. */ __IO uint32_t DR; /*!< Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO. */ __I uint32_t SR; /*!< Status Register */ __IO uint32_t CPSR; /*!< Clock Prescale Register */ __IO uint32_t IMSC; /*!< Interrupt Mask Set and Clear Register */ __I uint32_t RIS; /*!< Raw Interrupt Status Register */ __I uint32_t MIS; /*!< Masked Interrupt Status Register */ __O uint32_t ICR; /*!< SSPICR Interrupt Clear Register */ #if !defined(CHIP_LPC110X) && !defined(CHIP_LPC11XXLV) && !defined(CHIP_LPC11AXX) && \ !defined(CHIP_LPC11CXX) && !defined(CHIP_LPC11EXX) && !defined(CHIP_LPC11UXX) __IO uint32_t DMACR; /*!< SSPn DMA control register */ #endif } LPC_SSP_T; /** * Macro defines for CR0 register */ /** SSP data size select, must be 4 bits to 16 bits */ #define SSP_CR0_DSS(n) ((uint32_t) ((n) & 0xF)) /** SSP control 0 Motorola SPI mode */ #define SSP_CR0_FRF_SPI ((uint32_t) (0 << 4)) /** SSP control 0 TI synchronous serial mode */ #define SSP_CR0_FRF_TI ((uint32_t) (1 << 4)) /** SSP control 0 National Micro-wire mode */ #define SSP_CR0_FRF_MICROWIRE ((uint32_t) (2 << 4)) /** SPI clock polarity bit (used in SPI mode only), (1) = maintains the bus clock high between frames, (0) = low */ #define SSP_CR0_CPOL_LO ((uint32_t) (0)) #define SSP_CR0_CPOL_HI ((uint32_t) (1 << 6)) /** SPI clock out phase bit (used in SPI mode only), (1) = captures data on the second clock transition of the frame, (0) = first */ #define SSP_CR0_CPHA_FIRST ((uint32_t) (0)) #define SSP_CR0_CPHA_SECOND ((uint32_t) (1 << 7)) /** SSP serial clock rate value load macro, divider rate is PERIPH_CLK / (cpsr * (SCR + 1)) */ #define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8)) /** SSP CR0 bit mask */ #define SSP_CR0_BITMASK ((uint32_t) (0xFFFF)) /** SSP CR0 bit mask */ #define SSP_CR0_BITMASK ((uint32_t) (0xFFFF)) /** SSP serial clock rate value load macro, divider rate is PERIPH_CLK / (cpsr * (SCR + 1)) */ #define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8)) /** * Macro defines for CR1 register */ /** SSP control 1 loopback mode enable bit */ #define SSP_CR1_LBM_EN ((uint32_t) (1 << 0)) /** SSP control 1 enable bit */ #define SSP_CR1_SSP_EN ((uint32_t) (1 << 1)) /** SSP control 1 slave enable */ #define SSP_CR1_SLAVE_EN ((uint32_t) (1 << 2)) #define SSP_CR1_MASTER_EN ((uint32_t) (0)) /** SSP control 1 slave out disable bit, disables transmit line in slave mode */ #define SSP_CR1_SO_DISABLE ((uint32_t) (1 << 3)) /** SSP CR1 bit mask */ #define SSP_CR1_BITMASK ((uint32_t) (0x0F)) /** SSP CPSR bit mask */ #define SSP_CPSR_BITMASK ((uint32_t) (0xFF)) /** * Macro defines for DR register */ /** SSP data bit mask */ #define SSP_DR_BITMASK(n) ((n) & 0xFFFF) /** * Macro defines for SR register */ /** SSP SR bit mask */ #define SSP_SR_BITMASK ((uint32_t) (0x1F)) /** ICR bit mask */ #define SSP_ICR_BITMASK ((uint32_t) (0x03)) /** * @brief SSP Type of Status */ typedef enum _SSP_STATUS { SSP_STAT_TFE = ((uint32_t)(1 << 0)),/**< TX FIFO Empty */ SSP_STAT_TNF = ((uint32_t)(1 << 1)),/**< TX FIFO not full */ SSP_STAT_RNE = ((uint32_t)(1 << 2)),/**< RX FIFO not empty */ SSP_STAT_RFF = ((uint32_t)(1 << 3)),/**< RX FIFO full */ SSP_STAT_BSY = ((uint32_t)(1 << 4)),/**< SSP Busy */ } SSP_STATUS_T; /** * @brief SSP Type of Interrupt Mask */ typedef enum _SSP_INTMASK { SSP_RORIM = ((uint32_t)(1 << 0)), /**< Overun */ SSP_RTIM = ((uint32_t)(1 << 1)),/**< TimeOut */ SSP_RXIM = ((uint32_t)(1 << 2)),/**< Rx FIFO is at least half full */ SSP_TXIM = ((uint32_t)(1 << 3)),/**< Tx FIFO is at least half empty */ SSP_INT_MASK_BITMASK = ((uint32_t)(0xF)), } SSP_INTMASK_T; /** * @brief SSP Type of Mask Interrupt Status */ typedef enum _SSP_MASKINTSTATUS { SSP_RORMIS = ((uint32_t)(1 << 0)), /**< Overun */ SSP_RTMIS = ((uint32_t)(1 << 1)), /**< TimeOut */ SSP_RXMIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */ SSP_TXMIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */ SSP_MASK_INT_STAT_BITMASK = ((uint32_t)(0xF)), } SSP_MASKINTSTATUS_T; /** * @brief SSP Type of Raw Interrupt Status */ typedef enum _SSP_RAWINTSTATUS { SSP_RORRIS = ((uint32_t)(1 << 0)), /**< Overun */ SSP_RTRIS = ((uint32_t)(1 << 1)), /**< TimeOut */ SSP_RXRIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */ SSP_TXRIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */ SSP_RAW_INT_STAT_BITMASK = ((uint32_t)(0xF)), } SSP_RAWINTSTATUS_T; typedef enum _SSP_INTCLEAR { SSP_RORIC = 0x0, SSP_RTIC = 0x1, SSP_INT_CLEAR_BITMASK = 0x3, } SSP_INTCLEAR_T; typedef enum _SSP_DMA { SSP_DMA_RX = (1u), /**< DMA RX Enable */ SSP_DMA_TX = (1u << 1), /**< DMA TX Enable */ SSP_DMA_BITMASK = ((uint32_t)(0x3)), } SSP_DMA_T; /* * @brief SSP clock format */ typedef enum CHIP_SSP_CLOCK_FORMAT { SSP_CLOCK_CPHA0_CPOL0 = (0 << 6), /**< CPHA = 0, CPOL = 0 */ SSP_CLOCK_CPHA0_CPOL1 = (1u << 6), /**< CPHA = 0, CPOL = 1 */ SSP_CLOCK_CPHA1_CPOL0 = (2u << 6), /**< CPHA = 1, CPOL = 0 */ SSP_CLOCK_CPHA1_CPOL1 = (3u << 6), /**< CPHA = 1, CPOL = 1 */ SSP_CLOCK_MODE0 = SSP_CLOCK_CPHA0_CPOL0,/**< alias */ SSP_CLOCK_MODE1 = SSP_CLOCK_CPHA1_CPOL0,/**< alias */ SSP_CLOCK_MODE2 = SSP_CLOCK_CPHA0_CPOL1,/**< alias */ SSP_CLOCK_MODE3 = SSP_CLOCK_CPHA1_CPOL1,/**< alias */ } CHIP_SSP_CLOCK_MODE_T; /* * @brief SSP frame format */ typedef enum CHIP_SSP_FRAME_FORMAT { SSP_FRAMEFORMAT_SPI = (0 << 4), /**< Frame format: SPI */ CHIP_SSP_FRAME_FORMAT_TI = (1u << 4), /**< Frame format: TI SSI */ SSP_FRAMEFORMAT_MICROWIRE = (2u << 4), /**< Frame format: Microwire */ } CHIP_SSP_FRAME_FORMAT_T; /* * @brief Number of bits per frame */ typedef enum CHIP_SSP_BITS { SSP_BITS_4 = (3u << 0), /*!< 4 bits/frame */ SSP_BITS_5 = (4u << 0), /*!< 5 bits/frame */ SSP_BITS_6 = (5u << 0), /*!< 6 bits/frame */ SSP_BITS_7 = (6u << 0), /*!< 7 bits/frame */ SSP_BITS_8 = (7u << 0), /*!< 8 bits/frame */ SSP_BITS_9 = (8u << 0), /*!< 9 bits/frame */ SSP_BITS_10 = (9u << 0), /*!< 10 bits/frame */ SSP_BITS_11 = (10u << 0), /*!< 11 bits/frame */ SSP_BITS_12 = (11u << 0), /*!< 12 bits/frame */ SSP_BITS_13 = (12u << 0), /*!< 13 bits/frame */ SSP_BITS_14 = (13u << 0), /*!< 14 bits/frame */ SSP_BITS_15 = (14u << 0), /*!< 15 bits/frame */ SSP_BITS_16 = (15u << 0), /*!< 16 bits/frame */ } CHIP_SSP_BITS_T; /* * @brief SSP config format */ typedef struct SSP_ConfigFormat { CHIP_SSP_BITS_T bits; /*!< Format config: bits/frame */ CHIP_SSP_CLOCK_MODE_T clockMode; /*!< Format config: clock phase/polarity */ CHIP_SSP_FRAME_FORMAT_T frameFormat; /*!< Format config: SPI/TI/Microwire */ } SSP_ConfigFormat; /** * @brief Enable SSP operation * @param pSSP : The base of SSP peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SSP_Enable(LPC_SSP_T *pSSP) { pSSP->CR1 |= SSP_CR1_SSP_EN; } /** * @brief Disable SSP operation * @param pSSP : The base of SSP peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SSP_Disable(LPC_SSP_T *pSSP) { pSSP->CR1 &= (~SSP_CR1_SSP_EN) & SSP_CR1_BITMASK; } /** * @brief Enable loopback mode * @param pSSP : The base of SSP peripheral on the chip * @return Nothing * @note Serial input is taken from the serial output (MOSI or MISO) rather * than the serial input pin */ STATIC INLINE void Chip_SSP_EnableLoopBack(LPC_SSP_T *pSSP) { pSSP->CR1 |= SSP_CR1_LBM_EN; } /** * @brief Disable loopback mode * @param pSSP : The base of SSP peripheral on the chip * @return Nothing * @note Serial input is taken from the serial output (MOSI or MISO) rather * than the serial input pin */ STATIC INLINE void Chip_SSP_DisableLoopBack(LPC_SSP_T *pSSP) { pSSP->CR1 &= (~SSP_CR1_LBM_EN) & SSP_CR1_BITMASK; } /** * @brief Get the current status of SSP controller * @param pSSP : The base of SSP peripheral on the chip * @param Stat : Type of status, should be : * - SSP_STAT_TFE * - SSP_STAT_TNF * - SSP_STAT_RNE * - SSP_STAT_RFF * - SSP_STAT_BSY * @return SSP controller status, SET or RESET */ STATIC INLINE FlagStatus Chip_SSP_GetStatus(LPC_SSP_T *pSSP, SSP_STATUS_T Stat) { return (pSSP->SR & Stat) ? SET : RESET; } /** * @brief Get the masked interrupt status * @param pSSP : The base of SSP peripheral on the chip * @return SSP Masked Interrupt Status Register value * @note The return value contains a 1 for each interrupt condition that is asserted and enabled (masked) */ STATIC INLINE uint32_t Chip_SSP_GetIntStatus(LPC_SSP_T *pSSP) { return pSSP->MIS; } /** * @brief Get the raw interrupt status * @param pSSP : The base of SSP peripheral on the chip * @param RawInt : Interrupt condition to be get status, shoud be : * - SSP_RORRIS * - SSP_RTRIS * - SSP_RXRIS * - SSP_TXRIS * @return Raw interrupt status corresponding to interrupt condition , SET or RESET * @note Get the status of each interrupt condition ,regardless of whether or not the interrupt is enabled */ STATIC INLINE IntStatus Chip_SSP_GetRawIntStatus(LPC_SSP_T *pSSP, SSP_RAWINTSTATUS_T RawInt) { return (pSSP->RIS & RawInt) ? SET : RESET; } /** * @brief Get the number of bits transferred in each frame * @param pSSP : The base of SSP peripheral on the chip * @return the number of bits transferred in each frame minus one * @note The return value is 0x03 -> 0xF corresponding to 4bit -> 16bit transfer */ STATIC INLINE uint8_t Chip_SSP_GetDataSize(LPC_SSP_T *pSSP) { return SSP_CR0_DSS(pSSP->CR0); } /** * @brief Clear the corresponding interrupt condition(s) in the SSP controller * @param pSSP : The base of SSP peripheral on the chip * @param IntClear: Type of cleared interrupt, should be : * - SSP_RORIC * - SSP_RTIC * @return Nothing * @note Software can clear one or more interrupt condition(s) in the SSP controller */ STATIC INLINE void Chip_SSP_ClearIntPending(LPC_SSP_T *pSSP, SSP_INTCLEAR_T IntClear) { pSSP->ICR = IntClear; } /** * @brief Enable interrupt for the SSP * @param pSSP : The base of SSP peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SSP_Int_Enable(LPC_SSP_T *pSSP) { pSSP->IMSC |= SSP_TXIM; } /** * @brief Disable interrupt for the SSP * @param pSSP : The base of SSP peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SSP_Int_Disable(LPC_SSP_T *pSSP) { pSSP->IMSC &= (~SSP_TXIM); } /** * @brief Get received SSP data * @param pSSP : The base of SSP peripheral on the chip * @return SSP 16-bit data received */ STATIC INLINE uint16_t Chip_SSP_ReceiveFrame(LPC_SSP_T *pSSP) { return (uint16_t) (SSP_DR_BITMASK(pSSP->DR)); } /** * @brief Send SSP 16-bit data * @param pSSP : The base of SSP peripheral on the chip * @param tx_data : SSP 16-bit data to be transmited * @return Nothing */ STATIC INLINE void Chip_SSP_SendFrame(LPC_SSP_T *pSSP, uint16_t tx_data) { pSSP->DR = SSP_DR_BITMASK(tx_data); } /** * @brief Set up output clocks per bit for SSP bus * @param pSSP : The base of SSP peripheral on the chip * @param clk_rate fs: The number of prescaler-output clocks per bit on the bus, minus one * @param prescale : The factor by which the Prescaler divides the SSP peripheral clock PCLK * @return Nothing * @note The bit frequency is PCLK / (prescale x[clk_rate+1]) */ void Chip_SSP_SetClockRate(LPC_SSP_T *pSSP, uint32_t clk_rate, uint32_t prescale); /** * @brief Set up the SSP frame format * @param pSSP : The base of SSP peripheral on the chip * @param bits : The number of bits transferred in each frame, should be SSP_BITS_4 to SSP_BITS_16 * @param frameFormat : Frame format, should be : * - SSP_FRAMEFORMAT_SPI * - SSP_FRAME_FORMAT_TI * - SSP_FRAMEFORMAT_MICROWIRE * @param clockMode : Select Clock polarity and Clock phase, should be : * - SSP_CLOCK_CPHA0_CPOL0 * - SSP_CLOCK_CPHA0_CPOL1 * - SSP_CLOCK_CPHA1_CPOL0 * - SSP_CLOCK_CPHA1_CPOL1 * @return Nothing * @note Note: The clockFormat is only used in SPI mode */ STATIC INLINE void Chip_SSP_SetFormat(LPC_SSP_T *pSSP, uint32_t bits, uint32_t frameFormat, uint32_t clockMode) { pSSP->CR0 = (pSSP->CR0 & ~0xFF) | bits | frameFormat | clockMode; } /** * @brief Set the SSP working as master or slave mode * @param pSSP : The base of SSP peripheral on the chip * @param mode : Operating mode, should be * - SSP_MODE_MASTER * - SSP_MODE_SLAVE * @return Nothing */ STATIC INLINE void Chip_SSP_Set_Mode(LPC_SSP_T *pSSP, uint32_t mode) { pSSP->CR1 = (pSSP->CR1 & ~(1 << 2)) | mode; } #if !defined(CHIP_LPC110X) && !defined(CHIP_LPC11XXLV) && !defined(CHIP_LPC11AXX) && \ !defined(CHIP_LPC11CXX) && !defined(CHIP_LPC11EXX) && !defined(CHIP_LPC11UXX) /** * @brief Enable DMA for SSP * @param pSSP : The base of SSP peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SSP_DMA_Enable(LPC_SSP_T *pSSP) { pSSP->DMACR |= SSP_DMA_BITMASK; } /** * @brief Disable DMA for SSP * @param pSSP : The base of SSP peripheral on the chip * @return Nothing */ STATIC INLINE void Chip_SSP_DMA_Disable(LPC_SSP_T *pSSP) { pSSP->DMACR &= ~SSP_DMA_BITMASK; } #endif /* * @brief SSP mode */ typedef enum CHIP_SSP_MODE { SSP_MODE_MASTER = (0 << 2), /**< Master mode */ SSP_MODE_SLAVE = (1u << 2), /**< Slave mode */ } CHIP_SSP_MODE_T; /* * @brief SPI address */ typedef struct { uint8_t port; /*!< Port Number */ uint8_t pin; /*!< Pin number */ } SPI_Address_t; /* * @brief SSP data setup structure */ typedef struct { void *tx_data; /*!< Pointer to transmit data */ uint32_t tx_cnt; /*!< Transmit counter */ void *rx_data; /*!< Pointer to transmit data */ uint32_t rx_cnt; /*!< Receive counter */ uint32_t length; /*!< Length of transfer data */ } Chip_SSP_DATA_SETUP_T; /** SSP configuration parameter defines */ /** Clock phase control bit */ #define SSP_CPHA_FIRST SSP_CR0_CPHA_FIRST #define SSP_CPHA_SECOND SSP_CR0_CPHA_SECOND /** Clock polarity control bit */ /* There's no bug here!!! * - If bit[6] in SSPnCR0 is 0: SSP controller maintains the bus clock low between frames. * That means the active clock is in HI state. * - If bit[6] in SSPnCR0 is 1 (SSP_CR0_CPOL_HI): SSP controller maintains the bus clock * high between frames. That means the active clock is in LO state. */ #define SSP_CPOL_HI SSP_CR0_CPOL_LO #define SSP_CPOL_LO SSP_CR0_CPOL_HI /** SSP master mode enable */ #define SSP_SLAVE_MODE SSP_CR1_SLAVE_EN #define SSP_MASTER_MODE SSP_CR1_MASTER_EN /** * @brief Clean all data in RX FIFO of SSP * @param pSSP : The base SSP peripheral on the chip * @return Nothing */ void Chip_SSP_Int_FlushData(LPC_SSP_T *pSSP); /** * @brief SSP Interrupt Read/Write with 8-bit frame width * @param pSSP : The base SSP peripheral on the chip * @param xf_setup : Pointer to a SSP_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return SUCCESS or ERROR */ Status Chip_SSP_Int_RWFrames8Bits(LPC_SSP_T *pSSP, Chip_SSP_DATA_SETUP_T *xf_setup); /** * @brief SSP Interrupt Read/Write with 16-bit frame width * @param pSSP : The base SSP peripheral on the chip * @param xf_setup : Pointer to a SSP_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return SUCCESS or ERROR */ Status Chip_SSP_Int_RWFrames16Bits(LPC_SSP_T *pSSP, Chip_SSP_DATA_SETUP_T *xf_setup); /** * @brief SSP Polling Read/Write in blocking mode * @param pSSP : The base SSP peripheral on the chip * @param xf_setup : Pointer to a SSP_DATA_SETUP_T structure that contains specified * information about transmit/receive data configuration * @return Actual data length has been transferred * @note * This function can be used in both master and slave mode. It starts with writing phase and after that, * a reading phase is generated to read any data available in RX_FIFO. All needed information is prepared * through xf_setup param. */ uint32_t Chip_SSP_RWFrames_Blocking(LPC_SSP_T *pSSP, Chip_SSP_DATA_SETUP_T *xf_setup); /** * @brief SSP Polling Write in blocking mode * @param pSSP : The base SSP peripheral on the chip * @param buffer : Buffer address * @param buffer_len : Buffer length * @return Actual data length has been transferred * @note * This function can be used in both master and slave mode. First, a writing operation will send * the needed data. After that, a dummy reading operation is generated to clear data buffer */ uint32_t Chip_SSP_WriteFrames_Blocking(LPC_SSP_T *pSSP, uint8_t *buffer, uint32_t buffer_len); /** * @brief SSP Polling Read in blocking mode * @param pSSP : The base SSP peripheral on the chip * @param buffer : Buffer address * @param buffer_len : The length of buffer * @return Actual data length has been transferred * @note * This function can be used in both master and slave mode. First, a dummy writing operation is generated * to clear data buffer. After that, a reading operation will receive the needed data */ uint32_t Chip_SSP_ReadFrames_Blocking(LPC_SSP_T *pSSP, uint8_t *buffer, uint32_t buffer_len); /** * @brief Initialize the SSP * @param pSSP : The base SSP peripheral on the chip * @return Nothing */ void Chip_SSP_Init(LPC_SSP_T *pSSP); /** * @brief Deinitialise the SSP * @param pSSP : The base of SSP peripheral on the chip * @return Nothing * @note The SSP controller is disabled */ void Chip_SSP_DeInit(LPC_SSP_T *pSSP); /** * @brief Set the SSP operating modes, master or slave * @param pSSP : The base SSP peripheral on the chip * @param master : 1 to set master, 0 to set slave * @return Nothing */ void Chip_SSP_SetMaster(LPC_SSP_T *pSSP, bool master); /** * @brief Set the clock frequency for SSP interface * @param pSSP : The base SSP peripheral on the chip * @param bitRate : The SSP bit rate * @return Nothing */ void Chip_SSP_SetBitRate(LPC_SSP_T *pSSP, uint32_t bitRate); /** * @} */ #ifdef __cplusplus } #endif #endif /* __SSP_13XX_H_ */