tinyusb/src/portable/nxp/khci/dcd_khci.c
hathach 71e77e47fa
add dcd_edpt_close_all() for clear existing configured state
correctly responded to TD 9.13 Set Configuration Test
2021-08-26 17:07:03 +07:00

486 lines
14 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && ( \
( CFG_TUSB_MCU == OPT_MCU_MKL25ZXX ) || ( CFG_TUSB_MCU == OPT_MCU_K32L2BXX ) \
)
#include "fsl_device_registers.h"
#define KHCI USB0
#include "device/dcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
enum {
TOK_PID_OUT = 0x1u,
TOK_PID_IN = 0x9u,
TOK_PID_SETUP = 0xDu,
};
typedef struct TU_ATTR_PACKED
{
union {
uint32_t head;
struct {
union {
struct {
uint16_t : 2;
uint16_t tok_pid : 4;
uint16_t data : 1;
uint16_t own : 1;
uint16_t : 8;
};
struct {
uint16_t : 2;
uint16_t bdt_stall: 1;
uint16_t dts : 1;
uint16_t ninc : 1;
uint16_t keep : 1;
uint16_t : 10;
};
};
uint16_t bc : 10;
uint16_t : 6;
};
};
uint8_t *addr;
}buffer_descriptor_t;
TU_VERIFY_STATIC( sizeof(buffer_descriptor_t) == 8, "size is not correct" );
typedef struct TU_ATTR_PACKED
{
union {
uint32_t state;
struct {
uint32_t max_packet_size :11;
uint32_t : 5;
uint32_t odd : 1;
uint32_t :15;
};
};
uint16_t length;
uint16_t remaining;
}endpoint_state_t;
TU_VERIFY_STATIC( sizeof(endpoint_state_t) == 8, "size is not correct" );
typedef struct
{
union {
/* [#EP][OUT,IN][EVEN,ODD] */
buffer_descriptor_t bdt[16][2][2];
uint16_t bda[512];
};
TU_ATTR_ALIGNED(4) union {
endpoint_state_t endpoint[16][2];
endpoint_state_t endpoint_unified[16 * 2];
};
uint8_t setup_packet[8];
uint8_t addr;
}dcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
TU_VERIFY_STATIC( sizeof(_dcd.bdt) == 512, "size is not correct" );
static void prepare_next_setup_packet(uint8_t rhport)
{
const unsigned out_odd = _dcd.endpoint[0][0].odd;
const unsigned in_odd = _dcd.endpoint[0][1].odd;
if (_dcd.bdt[0][0][out_odd].own) {
TU_LOG1("DCD fail to prepare the next SETUP %d %d\r\n", out_odd, in_odd);
return;
}
_dcd.bdt[0][0][out_odd].data = 0;
_dcd.bdt[0][0][out_odd ^ 1].data = 1;
_dcd.bdt[0][1][in_odd].data = 1;
_dcd.bdt[0][1][in_odd ^ 1].data = 0;
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.setup_packet, sizeof(_dcd.setup_packet));
}
static void process_stall(uint8_t rhport)
{
if (KHCI->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK) {
/* clear stall condition of the control pipe */
prepare_next_setup_packet(rhport);
KHCI->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
}
}
static void process_tokdne(uint8_t rhport)
{
const unsigned s = KHCI->STAT;
KHCI->ISTAT = USB_ISTAT_TOKDNE_MASK; /* fetch the next token if received */
buffer_descriptor_t *bd = (buffer_descriptor_t *)&_dcd.bda[s];
endpoint_state_t *ep = &_dcd.endpoint_unified[s >> 3];
unsigned odd = (s & USB_STAT_ODD_MASK) ? 1 : 0;
/* fetch pid before discarded by the next steps */
const unsigned pid = bd->tok_pid;
/* reset values for a next transfer */
bd->bdt_stall = 0;
bd->dts = 1;
bd->ninc = 0;
bd->keep = 0;
/* update the odd variable to prepare for the next transfer */
ep->odd = odd ^ 1;
if (pid == TOK_PID_SETUP) {
dcd_event_setup_received(rhport, bd->addr, true);
KHCI->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
return;
}
if (s >> 4) {
TU_LOG1("TKDNE %x\r\n", s);
}
const unsigned bc = bd->bc;
const unsigned remaining = ep->remaining - bc;
if (remaining && bc == ep->max_packet_size) {
/* continue the transferring consecutive data */
ep->remaining = remaining;
const int next_remaining = remaining - ep->max_packet_size;
if (next_remaining > 0) {
/* prepare to the after next transfer */
bd->addr += ep->max_packet_size * 2;
bd->bc = next_remaining > ep->max_packet_size ? ep->max_packet_size: next_remaining;
__DSB();
bd->own = 1; /* the own bit must set after addr */
}
return;
}
const unsigned length = ep->length;
dcd_event_xfer_complete(rhport,
((s & USB_STAT_TX_MASK) << 4) | (s >> USB_STAT_ENDP_SHIFT),
length - remaining, XFER_RESULT_SUCCESS, true);
if (0 == (s & USB_STAT_ENDP_MASK) && 0 == length) {
/* After completion a ZLP of control transfer,
* it prepares for the next steup transfer. */
if (_dcd.addr) {
/* When the transfer was the SetAddress,
* the device address should be updated here. */
KHCI->ADDR = _dcd.addr;
_dcd.addr = 0;
}
prepare_next_setup_packet(rhport);
}
}
static void process_bus_reset(uint8_t rhport)
{
KHCI->USBCTRL &= ~USB_USBCTRL_SUSP_MASK;
KHCI->CTL |= USB_CTL_ODDRST_MASK;
KHCI->ADDR = 0;
KHCI->INTEN = (KHCI->INTEN & ~USB_INTEN_RESUMEEN_MASK) | USB_INTEN_SLEEPEN_MASK;
KHCI->ENDPOINT[0].ENDPT = USB_ENDPT_EPHSHK_MASK | USB_ENDPT_EPRXEN_MASK | USB_ENDPT_EPTXEN_MASK;
for (unsigned i = 1; i < 16; ++i) {
KHCI->ENDPOINT[i].ENDPT = 0;
}
buffer_descriptor_t *bd = _dcd.bdt[0][0];
for (unsigned i = 0; i < sizeof(_dcd.bdt)/sizeof(*bd); ++i, ++bd) {
bd->head = 0;
}
const endpoint_state_t ep0 = {
.max_packet_size = CFG_TUD_ENDPOINT0_SIZE,
.odd = 0,
.length = 0,
.remaining = 0,
};
_dcd.endpoint[0][0] = ep0;
_dcd.endpoint[0][1] = ep0;
tu_memclr(_dcd.endpoint[1], sizeof(_dcd.endpoint) - sizeof(_dcd.endpoint[0]));
_dcd.addr = 0;
prepare_next_setup_packet(rhport);
KHCI->CTL &= ~USB_CTL_ODDRST_MASK;
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
}
static void process_bus_inactive(uint8_t rhport)
{
(void) rhport;
const unsigned inten = KHCI->INTEN;
KHCI->INTEN = (inten & ~USB_INTEN_SLEEPEN_MASK) | USB_INTEN_RESUMEEN_MASK;
KHCI->USBCTRL |= USB_USBCTRL_SUSP_MASK;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
static void process_bus_active(uint8_t rhport)
{
(void) rhport;
KHCI->USBCTRL &= ~USB_USBCTRL_SUSP_MASK;
const unsigned inten = KHCI->INTEN;
KHCI->INTEN = (inten & ~USB_INTEN_RESUMEEN_MASK) | USB_INTEN_SLEEPEN_MASK;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void) rhport;
KHCI->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
while (KHCI->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
tu_memclr(&_dcd, sizeof(_dcd));
KHCI->USBTRC0 |= TU_BIT(6); /* software must set this bit to 1 */
KHCI->BDTPAGE1 = (uint8_t)((uintptr_t)_dcd.bdt >> 8);
KHCI->BDTPAGE2 = (uint8_t)((uintptr_t)_dcd.bdt >> 16);
KHCI->BDTPAGE3 = (uint8_t)((uintptr_t)_dcd.bdt >> 24);
dcd_connect(rhport);
NVIC_ClearPendingIRQ(USB0_IRQn);
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
KHCI->INTEN = USB_INTEN_USBRSTEN_MASK | USB_INTEN_TOKDNEEN_MASK |
USB_INTEN_SLEEPEN_MASK | USB_INTEN_ERROREN_MASK | USB_INTEN_STALLEN_MASK;
NVIC_EnableIRQ(USB0_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB0_IRQn);
KHCI->INTEN = 0;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
_dcd.addr = dev_addr & 0x7F;
/* Response with status first before changing device address */
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
unsigned cnt = SystemCoreClock / 100;
KHCI->CTL |= USB_CTL_RESUME_MASK;
while (cnt--) __NOP();
KHCI->CTL &= ~USB_CTL_RESUME_MASK;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
KHCI->USBCTRL = 0;
KHCI->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
KHCI->CTL |= USB_CTL_USBENSOFEN_MASK;
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
KHCI->CTL = 0;
KHCI->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
const unsigned xfer = ep_desc->bmAttributes.xfer;
endpoint_state_t *ep = &_dcd.endpoint[epn][dir];
const unsigned odd = ep->odd;
buffer_descriptor_t *bd = &_dcd.bdt[epn][dir][0];
/* No support for control transfer */
TU_ASSERT(epn && (xfer != TUSB_XFER_CONTROL));
ep->max_packet_size = ep_desc->wMaxPacketSize.size;
unsigned val = USB_ENDPT_EPCTLDIS_MASK;
val |= (xfer != TUSB_XFER_ISOCHRONOUS) ? USB_ENDPT_EPHSHK_MASK: 0;
val |= dir ? USB_ENDPT_EPTXEN_MASK : USB_ENDPT_EPRXEN_MASK;
KHCI->ENDPOINT[epn].ENDPT |= val;
if (xfer != TUSB_XFER_ISOCHRONOUS) {
bd[odd].dts = 1;
bd[odd].data = 0;
bd[odd ^ 1].dts = 1;
bd[odd ^ 1].data = 1;
}
return true;
}
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
// TODO implement dcd_edpt_close_all()
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
endpoint_state_t *ep = &_dcd.endpoint[epn][dir];
buffer_descriptor_t *bd = &_dcd.bdt[epn][dir][0];
const unsigned msk = dir ? USB_ENDPT_EPTXEN_MASK : USB_ENDPT_EPRXEN_MASK;
KHCI->ENDPOINT[epn].ENDPT &= ~msk;
ep->max_packet_size = 0;
ep->length = 0;
ep->remaining = 0;
bd->head = 0;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void) rhport;
NVIC_DisableIRQ(USB0_IRQn);
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
endpoint_state_t *ep = &_dcd.endpoint[epn][dir];
buffer_descriptor_t *bd = &_dcd.bdt[epn][dir][ep->odd];
if (bd->own) {
TU_LOG1("DCD XFER fail %x %d %lx %lx\r\n", ep_addr, total_bytes, ep->state, bd->head);
return false; /* The last transfer has not completed */
}
ep->length = total_bytes;
ep->remaining = total_bytes;
const unsigned mps = ep->max_packet_size;
if (total_bytes > mps) {
buffer_descriptor_t *next = ep->odd ? bd - 1: bd + 1;
/* When total_bytes is greater than the max packet size,
* it prepares to the next transfer to avoid NAK in advance. */
next->bc = total_bytes >= 2 * mps ? mps: total_bytes - mps;
next->addr = buffer + mps;
next->own = 1;
}
bd->bc = total_bytes >= mps ? mps: total_bytes;
bd->addr = buffer;
__DSB();
bd->own = 1; /* the own bit must set after addr */
NVIC_EnableIRQ(USB0_IRQn);
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
const unsigned epn = ep_addr & 0xFu;
if (0 == epn) {
KHCI->ENDPOINT[epn].ENDPT |= USB_ENDPT_EPSTALL_MASK;
} else {
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
buffer_descriptor_t *bd = _dcd.bdt[epn][dir];
bd[0].bdt_stall = 1;
bd[1].bdt_stall = 1;
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
const unsigned epn = ep_addr & 0xFu;
const unsigned dir = (ep_addr & TUSB_DIR_IN_MASK) ? TUSB_DIR_IN : TUSB_DIR_OUT;
const unsigned odd = _dcd.endpoint[epn][dir].odd;
buffer_descriptor_t *bd = _dcd.bdt[epn][dir];
bd[odd ^ 1].own = 0;
bd[odd ^ 1].data = 1;
bd[odd ^ 1].bdt_stall = 0;
bd[odd].own = 0;
bd[odd].data = 0;
bd[odd].bdt_stall = 0;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_int_handler(uint8_t rhport)
{
(void) rhport;
uint32_t is = KHCI->ISTAT;
uint32_t msk = KHCI->INTEN;
KHCI->ISTAT = is & ~msk;
is &= msk;
if (is & USB_ISTAT_ERROR_MASK) {
/* TODO: */
uint32_t es = KHCI->ERRSTAT;
KHCI->ERRSTAT = es;
KHCI->ISTAT = is; /* discard any pending events */
return;
}
if (is & USB_ISTAT_USBRST_MASK) {
KHCI->ISTAT = is; /* discard any pending events */
process_bus_reset(rhport);
return;
}
if (is & USB_ISTAT_SLEEP_MASK) {
KHCI->ISTAT = USB_ISTAT_SLEEP_MASK;
process_bus_inactive(rhport);
return;
}
if (is & USB_ISTAT_RESUME_MASK) {
KHCI->ISTAT = USB_ISTAT_RESUME_MASK;
process_bus_active(rhport);
return;
}
if (is & USB_ISTAT_SOFTOK_MASK) {
KHCI->ISTAT = USB_ISTAT_SOFTOK_MASK;
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
return;
}
if (is & USB_ISTAT_STALL_MASK) {
KHCI->ISTAT = USB_ISTAT_STALL_MASK;
process_stall(rhport);
return;
}
if (is & USB_ISTAT_TOKDNE_MASK) {
process_tokdne(rhport);
return;
}
}
#endif