Jerzy Kasenberg a5581b10df audio: Add headset example
This example code creates USB Audio 2.0 headset device.
Device has two audio interfaces first stereo speaker
with 48kHz stereo stream.
Second interface for microphone with 48kHz mono stream.

This example can be used to start working on audio device.
It can be also used to verify ISO endpoints for boards.

Speaker adaptive clock (bound to SOF).
Microphone for now has asynchronous clock.

Volume and mute control while present are not used for data stream
modification.
2020-10-16 08:52:26 +02:00

392 lines
12 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jerzy Kasenberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include <stdio.h>
#include <string.h>
#include "bsp/board.h"
#include "tusb.h"
#include "usb_descriptors.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF PROTOTYPES
//--------------------------------------------------------------------+
/* Blink pattern
* - 25 ms : streaming data
* - 250 ms : device not mounted
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum
{
BLINK_STREAMING = 25,
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
enum
{
VOLUME_CTRL_0_DB = 0,
VOLUME_CTRL_10_DB = 2560,
VOLUME_CTRL_20_DB = 5120,
VOLUME_CTRL_30_DB = 7680,
VOLUME_CTRL_40_DB = 10240,
VOLUME_CTRL_50_DB = 12800,
VOLUME_CTRL_60_DB = 15360,
VOLUME_CTRL_70_DB = 17920,
VOLUME_CTRL_80_DB = 20480,
VOLUME_CTRL_90_DB = 23040,
VOLUME_CTRL_100_DB = 25600,
VOLUME_CTRL_SILENCE = 0x8000,
};
static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
int8_t mute[CFG_TUD_AUDIO_N_CHANNELS_TX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_N_CHANNELS_TX + 1]; // +1 for master channel 0
// Buffer for microphone data
int16_t mic_buf[1000];
// Buffer for speaker data
int16_t spk_buf[1000];
// Speaker data size received in the last frame
int spk_data_size;
void led_blinking_task(void);
void audio_task(void);
/*------------- MAIN -------------*/
int main(void)
{
board_init();
tusb_init();
TU_LOG1("Headset running\r\n");
while (1)
{
tud_task(); // TinyUSB device task
audio_task();
led_blinking_task();
}
return 0;
}
//--------------------------------------------------------------------+
// Device callbacks
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
(void)remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
blink_interval_ms = BLINK_MOUNTED;
}
typedef struct TU_ATTR_PACKED
{
union
{
struct TU_ATTR_PACKED
{
uint8_t recipient : 5; ///< Recipient type tusb_request_recipient_t.
uint8_t type : 2; ///< Request type tusb_request_type_t.
uint8_t direction : 1; ///< Direction type. tusb_dir_t
} bmRequestType_bit;
uint8_t bmRequestType;
};
audio_cs_req_t bRequest;
uint8_t bChannelNumber;
uint8_t bControlSelector;
union
{
uint8_t bInterface;
uint8_t bEndpoint;
};
uint8_t bEntityID;
uint16_t wLength;
} audio_control_request_t;
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
// Example supports only single frequency, same value will be used for current value and range
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bRequest == AUDIO_CS_REQ_CUR)
{
TU_LOG2("Clock get current freq %u\r\n", AUDIO_SAMPLE_RATE);
audio_control_cur_4_t curf = { tu_htole32(AUDIO_SAMPLE_RATE) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &curf, sizeof(curf));
}
else if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_range_4_n_t(1) rangef =
{
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { tu_htole32(AUDIO_SAMPLE_RATE), tu_htole32(AUDIO_SAMPLE_RATE), 0}
};
TU_LOG2("Clock get freq range (%d, %d, %d)\r\n", (int)rangef.subrange[0].bMin, (int)rangef.subrange[0].bMax, (int)rangef.subrange[0].bRes);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &rangef, sizeof(rangef));
}
}
else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t cur_valid = { .bCur = 1 };
TU_LOG2("Clock get is valid %u\r\n", cur_valid.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_valid, sizeof(cur_valid));
}
TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
}
// Helper for feature unit get requests
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request)
{
TU_ASSERT(request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t mute1 = { .bCur = mute[request->bChannelNumber] };
TU_LOG2("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &mute1, sizeof(mute1));
}
else if (UAC2_ENTITY_SPK_FEATURE_UNIT && request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_range_2_n_t(1) range_vol = {
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { .bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256) }
};
TU_LOG2("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &range_vol, sizeof(range_vol));
}
else if (request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_2_t cur_vol = { .bCur = tu_htole16(volume[request->bChannelNumber]) };
TU_LOG2("Get channel %u volume %u dB\r\n", request->bChannelNumber, cur_vol.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_vol, sizeof(cur_vol));
}
}
TU_LOG1("Feature unit get request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
}
// Helper for feature unit set requests
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE)
{
TU_VERIFY(request->wLength == sizeof(audio_control_cur_1_t));
mute[request->bChannelNumber] = ((audio_control_cur_1_t *)buf)->bCur;
TU_LOG2("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
return true;
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
TU_VERIFY(request->wLength == sizeof(audio_control_cur_2_t));
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *)buf)->bCur;
TU_LOG2("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
return true;
}
else
{
TU_LOG1("Feature unit set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
}
}
//--------------------------------------------------------------------+
// Application Callback API Implementations
//--------------------------------------------------------------------+
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request)
{
audio_control_request_t *request = (audio_control_request_t *)p_request;
if (request->bEntityID == UAC2_ENTITY_CLOCK)
return tud_audio_clock_get_request(rhport, request);
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_get_request(rhport, request);
else
{
TU_LOG1("Get request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
}
return false;
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_set_request(rhport, request, buf);
TU_LOG1("Set request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt == 0)
blink_interval_ms = BLINK_MOUNTED;
return true;
}
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
TU_LOG2("Set interface %d alt %d\r\n", itf, alt);
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt != 0)
blink_interval_ms = BLINK_STREAMING;
return true;
}
bool tud_audio_rx_done_cb(uint8_t rhport, uint8_t *buffer, uint16_t buf_size)
{
(void)rhport;
spk_data_size = buf_size;
memcpy(spk_buf, buffer, buf_size);
return true;
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void)rhport;
(void)itf;
(void)ep_in;
(void)cur_alt_setting;
// This callback could be used to fill microphone data separately
return true;
}
//--------------------------------------------------------------------+
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// When new data arrived, copy data from speaker buffer, to microphone buffer
// and send it over
if (spk_data_size)
{
int16_t *src = spk_buf;
int16_t *limit = spk_buf + spk_data_size / 2;
int16_t *dst = mic_buf;
while (src < limit)
{
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (int16_t)((left + right) / 2);
}
tud_audio_write((uint8_t *)mic_buf, spk_data_size / 2);
spk_data_size = 0;
}
}
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if (board_millis() - start_ms < blink_interval_ms) return;
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state;
}