644 lines
18 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef DEBUG
#define DEBUG 0
#endif
#ifndef LOG_USB
#define LOG_USB 0
#endif
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_VALENTYUSB_EPTRI)
#include "device/dcd.h"
#include "dcd_eptri.h"
#include "csr.h"
#include "irq.h"
void fomu_error(uint32_t line);
#if LOG_USB
struct usb_log {
uint8_t ep_num;
uint8_t size;
uint8_t data[66];
};
__attribute__((used))
struct usb_log usb_log[128];
__attribute__((used))
uint8_t usb_log_offset;
struct xfer_log {
uint8_t ep_num;
uint16_t size;
};
__attribute__((used))
struct xfer_log xfer_log[64];
__attribute__((used))
uint8_t xfer_log_offset;
__attribute__((used))
struct xfer_log queue_log[64];
__attribute__((used))
uint8_t queue_log_offset;
#endif
//--------------------------------------------------------------------+
// SIE Command
//--------------------------------------------------------------------+
#define EP_SIZE 64
uint16_t volatile rx_buffer_offset[16];
uint8_t* volatile rx_buffer[16];
uint16_t volatile rx_buffer_max[16];
volatile uint8_t tx_ep;
volatile bool tx_active;
volatile uint16_t tx_buffer_offset[16];
uint8_t* volatile tx_buffer[16];
volatile uint16_t tx_buffer_max[16];
volatile uint8_t reset_count;
#if DEBUG
__attribute__((used)) uint8_t volatile * last_tx_buffer;
__attribute__((used)) volatile uint8_t last_tx_ep;
uint8_t setup_packet_bfr[10];
#endif
//--------------------------------------------------------------------+
// PIPE HELPER
//--------------------------------------------------------------------+
static bool advance_tx_ep(void) {
// Move on to the next transmit buffer in a round-robin manner
uint8_t prev_tx_ep = tx_ep;
for (tx_ep = (tx_ep + 1) & 0xf; tx_ep != prev_tx_ep; tx_ep = ((tx_ep + 1) & 0xf)) {
if (tx_buffer[tx_ep])
return true;
}
if (!tx_buffer[tx_ep])
return false;
return true;
}
#if LOG_USB
void xfer_log_append(uint8_t ep_num, uint16_t sz) {
xfer_log[xfer_log_offset].ep_num = ep_num;
xfer_log[xfer_log_offset].size = sz;
xfer_log_offset++;
if (xfer_log_offset >= sizeof(xfer_log)/sizeof(*xfer_log))
xfer_log_offset = 0;
}
void queue_log_append(uint8_t ep_num, uint16_t sz) {
queue_log[queue_log_offset].ep_num = ep_num;
queue_log[queue_log_offset].size = sz;
queue_log_offset++;
if (queue_log_offset >= sizeof(queue_log)/sizeof(*queue_log))
queue_log_offset = 0;
}
#endif
static void tx_more_data(void) {
// Send more data
uint8_t added_bytes;
for (added_bytes = 0; (added_bytes < EP_SIZE) && (tx_buffer_offset[tx_ep] < tx_buffer_max[tx_ep]); added_bytes++) {
#if LOG_USB
usb_log[usb_log_offset].data[added_bytes] = tx_buffer[tx_ep][tx_buffer_offset[tx_ep]];
#endif
usb_in_data_write(tx_buffer[tx_ep][tx_buffer_offset[tx_ep]++]);
}
#if LOG_USB
usb_log[usb_log_offset].ep_num = tu_edpt_addr(tx_ep, TUSB_DIR_IN);
usb_log[usb_log_offset].size = added_bytes;
usb_log_offset++;
if (usb_log_offset >= sizeof(usb_log)/sizeof(*usb_log))
usb_log_offset = 0;
#endif
// Updating the epno queues the data
usb_in_ctrl_write(tx_ep & 0xf);
}
static void process_tx(void) {
#if DEBUG
// If the system isn't idle, then something is very wrong.
uint8_t in_status = usb_in_status_read();
if (!(in_status & (1 << CSR_USB_IN_STATUS_IDLE_OFFSET)))
fomu_error(__LINE__);
#endif
// If the buffer is now empty, search for the next buffer to fill.
if (!tx_buffer[tx_ep]) {
if (advance_tx_ep())
tx_more_data();
else
tx_active = false;
return;
}
if (tx_buffer_offset[tx_ep] >= tx_buffer_max[tx_ep]) {
#if DEBUG
last_tx_buffer = tx_buffer[tx_ep];
last_tx_ep = tx_ep;
#endif
tx_buffer[tx_ep] = NULL;
uint16_t xferred_bytes = tx_buffer_max[tx_ep];
uint8_t xferred_ep = tx_ep;
if (!advance_tx_ep())
tx_active = false;
#if LOG_USB
xfer_log_append(tu_edpt_addr(xferred_ep, TUSB_DIR_IN), xferred_bytes);
#endif
dcd_event_xfer_complete(0, tu_edpt_addr(xferred_ep, TUSB_DIR_IN), xferred_bytes, XFER_RESULT_SUCCESS, true);
if (!tx_active)
return;
}
tx_more_data();
return;
}
static void process_rx(void) {
uint8_t out_status = usb_out_status_read();
#if DEBUG
// If the OUT handler is still waiting to send, don't do anything.
if (!(out_status & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET)))
fomu_error(__LINE__);
// return;
#endif
uint8_t rx_ep = (out_status >> CSR_USB_OUT_STATUS_EPNO_OFFSET) & 0xf;
// If the destination buffer doesn't exist, don't drain the hardware
// fifo. Note that this can cause deadlocks if the host is waiting
// on some other endpoint's data!
#if DEBUG
if (rx_buffer[rx_ep] == NULL) {
fomu_error(__LINE__);
return;
}
#endif
// Drain the FIFO into the destination buffer
uint32_t total_read = 0;
uint32_t current_offset = rx_buffer_offset[rx_ep];
#if DEBUG
uint8_t test_buffer[256];
memset(test_buffer, 0, sizeof(test_buffer));
if (current_offset > rx_buffer_max[rx_ep])
fomu_error(__LINE__);
#endif
#if LOG_USB
usb_log[usb_log_offset].ep_num = tu_edpt_addr(rx_ep, TUSB_DIR_OUT);
usb_log[usb_log_offset].size = 0;
#endif
while (usb_out_status_read() & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET)) {
uint8_t c = usb_out_data_read();
#if DEBUG
test_buffer[total_read] = c;
#endif
total_read++;
if (current_offset < rx_buffer_max[rx_ep]) {
#if LOG_USB
usb_log[usb_log_offset].data[usb_log[usb_log_offset].size++] = c;
#endif
if (rx_buffer[rx_ep] != (volatile uint8_t *)0xffffffff)
rx_buffer[rx_ep][current_offset++] = c;
}
}
#if LOG_USB
usb_log_offset++;
if (usb_log_offset >= sizeof(usb_log)/sizeof(*usb_log))
usb_log_offset = 0;
#endif
#if DEBUG
if (total_read > 66)
fomu_error(__LINE__);
if (total_read < 2)
total_read = 2;
// fomu_error(__LINE__);
#endif
// Strip off the CRC16
rx_buffer_offset[rx_ep] += (total_read - 2);
if (rx_buffer_offset[rx_ep] > rx_buffer_max[rx_ep])
rx_buffer_offset[rx_ep] = rx_buffer_max[rx_ep];
// If there's no more data, complete the transfer to tinyusb
if ((rx_buffer_max[rx_ep] == rx_buffer_offset[rx_ep])
// ZLP with less than the total amount of data
|| ((total_read == 2) && ((rx_buffer_offset[rx_ep] & 63) == 0))
// Short read, but not a full packet
|| (((rx_buffer_offset[rx_ep] & 63) != 0) && (total_read < 66))) {
#if DEBUG
if (rx_buffer[rx_ep] == NULL)
fomu_error(__LINE__);
#endif
// Free up this buffer.
rx_buffer[rx_ep] = NULL;
uint16_t len = rx_buffer_offset[rx_ep];
#if DEBUG
// Validate that all enabled endpoints have buffers,
// and no disabled endpoints have buffers.
uint16_t ep_en_mask = usb_out_enable_status_read();
int i;
for (i = 0; i < 16; i++) {
if ((!!(ep_en_mask & (1 << i))) ^ (!!(rx_buffer[i]))) {
uint8_t new_status = usb_out_status_read();
// Another IRQ came in while we were processing, so ignore this endpoint.
if ((new_status & 0x20) && ((new_status & 0xf) == i))
continue;
fomu_error(__LINE__);
}
}
#endif
#if LOG_USB
xfer_log_append(tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len);
#endif
dcd_event_xfer_complete(0, tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len, XFER_RESULT_SUCCESS, true);
}
else {
// If there's more data, re-enable data reception on this endpoint
usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | rx_ep);
}
// Now that the buffer is drained, clear the pending IRQ.
usb_out_ev_pending_write(usb_out_ev_pending_read());
}
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
static void dcd_reset(void)
{
reset_count++;
usb_setup_ev_enable_write(0);
usb_in_ev_enable_write(0);
usb_out_ev_enable_write(0);
usb_address_write(0);
// Reset all three FIFO handlers
usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_RESET_OFFSET);
usb_in_ctrl_write(1 << CSR_USB_IN_CTRL_RESET_OFFSET);
usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_RESET_OFFSET);
memset((void *)rx_buffer, 0, sizeof(rx_buffer));
memset((void *)rx_buffer_max, 0, sizeof(rx_buffer_max));
memset((void *)rx_buffer_offset, 0, sizeof(rx_buffer_offset));
memset((void *)tx_buffer, 0, sizeof(tx_buffer));
memset((void *)tx_buffer_max, 0, sizeof(tx_buffer_max));
memset((void *)tx_buffer_offset, 0, sizeof(tx_buffer_offset));
tx_ep = 0;
tx_active = false;
// Enable all event handlers and clear their contents
usb_setup_ev_pending_write(0xff);
usb_in_ev_pending_write(0xff);
usb_out_ev_pending_write(0xff);
usb_in_ev_enable_write(1);
usb_out_ev_enable_write(1);
usb_setup_ev_enable_write(3);
dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
}
// Initializes the USB peripheral for device mode and enables it.
void dcd_init(uint8_t rhport)
{
(void) rhport;
usb_pullup_out_write(0);
// Enable all event handlers and clear their contents
usb_setup_ev_pending_write(usb_setup_ev_pending_read());
usb_in_ev_pending_write(usb_in_ev_pending_read());
usb_out_ev_pending_write(usb_out_ev_pending_read());
usb_in_ev_enable_write(1);
usb_out_ev_enable_write(1);
usb_setup_ev_enable_write(3);
// Turn on the external pullup
usb_pullup_out_write(1);
}
// Enables or disables the USB device interrupt(s). May be used to
// prevent concurrency issues when mutating data structures shared
// between main code and the interrupt handler.
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
irq_setmask(irq_getmask() | (1 << USB_INTERRUPT));
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT));
}
// Called when the device is given a new bus address.
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Respond with ACK status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// Wait for the response packet to get sent
while (tx_active)
;
// Activate the new address
usb_address_write(dev_addr);
}
// Called to remote wake up host when suspended (e.g hid keyboard)
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
usb_pullup_out_write(1);
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
usb_pullup_out_write(0);
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
uint8_t ep_num = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t ep_dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS)
return false; // Not supported
if (ep_dir == TUSB_DIR_OUT) {
rx_buffer_offset[ep_num] = 0;
rx_buffer_max[ep_num] = 0;
rx_buffer[ep_num] = NULL;
}
else if (ep_dir == TUSB_DIR_IN) {
tx_buffer_offset[ep_num] = 0;
tx_buffer_max[ep_num] = 0;
tx_buffer[ep_num] = NULL;
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) {
uint8_t enable = 0;
if (rx_buffer[ep_addr])
enable = 1;
usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_STALL_OFFSET) | (enable << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | tu_edpt_number(ep_addr));
}
else
usb_in_ctrl_write((1 << CSR_USB_IN_CTRL_STALL_OFFSET) | tu_edpt_number(ep_addr));
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) {
uint8_t enable = 0;
if (rx_buffer[ep_addr])
enable = 1;
usb_out_ctrl_write((0 << CSR_USB_OUT_CTRL_STALL_OFFSET) | (enable << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | tu_edpt_number(ep_addr));
}
// IN endpoints will get unstalled when more data is written.
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
uint8_t ep_num = tu_edpt_number(ep_addr);
uint8_t ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < 16);
// Give a nonzero buffer when we transmit 0 bytes, so that the
// system doesn't think the endpoint is idle.
if ((buffer == NULL) && (total_bytes == 0)) {
buffer = (uint8_t *)0xffffffff;
}
TU_ASSERT(buffer != NULL);
if (ep_dir == TUSB_DIR_IN) {
// Wait for the tx pipe to free up
uint8_t previous_reset_count = reset_count;
// Continue until the buffer is empty, the system is idle, and the fifo is empty.
while (tx_buffer[ep_num] != NULL)
;
dcd_int_disable(0);
#if LOG_USB
queue_log_append(ep_addr, total_bytes);
#endif
// If a reset happens while we're waiting, abort the transfer
if (previous_reset_count != reset_count)
return true;
TU_ASSERT(tx_buffer[ep_num] == NULL);
tx_buffer_offset[ep_num] = 0;
tx_buffer_max[ep_num] = total_bytes;
tx_buffer[ep_num] = buffer;
// If the current buffer is NULL, then that means the tx logic is idle.
// Update the tx_ep to point to our endpoint number and queue the data.
// Otherwise, let it be and it'll get picked up after the next transfer
// finishes.
if (!tx_active) {
tx_ep = ep_num;
tx_active = true;
tx_more_data();
}
dcd_int_enable(0);
}
else if (ep_dir == TUSB_DIR_OUT) {
while (rx_buffer[ep_num] != NULL)
;
TU_ASSERT(rx_buffer[ep_num] == NULL);
dcd_int_disable(0);
#if LOG_USB
queue_log_append(ep_addr, total_bytes);
#endif
rx_buffer[ep_num] = buffer;
rx_buffer_offset[ep_num] = 0;
rx_buffer_max[ep_num] = total_bytes;
// Enable receiving on this particular endpoint
usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | ep_num);
#if DEBUG
uint16_t ep_en_mask = usb_out_enable_status_read();
int i;
for (i = 0; i < 16; i++) {
if ((!!(ep_en_mask & (1 << i))) ^ (!!(rx_buffer[i]))) {
if (rx_buffer[i] && usb_out_ev_pending_read() && (usb_out_status_read() & 0xf) == i)
continue;
fomu_error(__LINE__);
}
}
#endif
dcd_int_enable(0);
}
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
static void handle_out(void)
{
// An "OUT" transaction just completed so we have new data.
// (But only if we can accept the data)
#if DEBUG
if (!usb_out_ev_pending_read())
fomu_error(__LINE__);
if (!usb_out_ev_enable_read())
fomu_error(__LINE__);
#endif
process_rx();
}
static void handle_in(void)
{
#if DEBUG
if (!usb_in_ev_pending_read())
fomu_error(__LINE__);
if (!usb_in_ev_enable_read())
fomu_error(__LINE__);
#endif
usb_in_ev_pending_write(usb_in_ev_pending_read());
process_tx();
}
static void handle_reset(void)
{
#if DEBUG
uint8_t setup_pending = usb_setup_ev_pending_read() & usb_setup_ev_enable_read();
if (!(setup_pending & 2))
fomu_error(__LINE__);
#endif
usb_setup_ev_pending_write(2);
// This event means a bus reset occurred. Reset everything, and
// abandon any further processing.
dcd_reset();
}
static void handle_setup(void)
{
#if !DEBUG
uint8_t setup_packet_bfr[10];
#endif
#if DEBUG
uint8_t setup_pending = usb_setup_ev_pending_read() & usb_setup_ev_enable_read();
if (!(setup_pending & 1))
fomu_error(__LINE__);
#endif
// We got a SETUP packet. Copy it to the setup buffer and clear
// the "pending" bit.
// Setup packets are always 8 bytes, plus two bytes of crc16.
uint32_t setup_length = 0;
#if DEBUG
if (!(usb_setup_status_read() & (1 << CSR_USB_SETUP_STATUS_HAVE_OFFSET)))
fomu_error(__LINE__);
#endif
while (usb_setup_status_read() & (1 << CSR_USB_SETUP_STATUS_HAVE_OFFSET)) {
uint8_t c = usb_setup_data_read();
if (setup_length < sizeof(setup_packet_bfr))
setup_packet_bfr[setup_length] = c;
setup_length++;
}
// If we have 10 bytes, that's a full SETUP packet plus CRC16.
// Otherwise, it was an RX error.
if (setup_length == 10) {
dcd_event_setup_received(0, setup_packet_bfr, true);
}
#if DEBUG
else {
fomu_error(__LINE__);
}
#endif
usb_setup_ev_pending_write(1);
}
void dcd_int_handler(uint8_t rhport)
{
(void)rhport;
uint8_t next_ev;
while ((next_ev = usb_next_ev_read())) {
switch (next_ev) {
case 1 << CSR_USB_NEXT_EV_IN_OFFSET:
handle_in();
break;
case 1 << CSR_USB_NEXT_EV_OUT_OFFSET:
handle_out();
break;
case 1 << CSR_USB_NEXT_EV_SETUP_OFFSET:
handle_setup();
break;
case 1 << CSR_USB_NEXT_EV_RESET_OFFSET:
handle_reset();
break;
}
}
}
#endif