mirror of
https://github.com/hathach/tinyusb.git
synced 2025-01-24 05:42:57 +08:00
884 lines
28 KiB
C
884 lines
28 KiB
C
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
|
* Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* This file is part of the TinyUSB stack.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "osal/osal.h"
|
|
#include "tusb_fifo.h"
|
|
|
|
// Supress IAR warning
|
|
// Warning[Pa082]: undefined behavior: the order of volatile accesses is undefined in this statement
|
|
#if defined(__ICCARM__)
|
|
#pragma diag_suppress = Pa082
|
|
#endif
|
|
|
|
// implement mutex lock and unlock
|
|
#if CFG_FIFO_MUTEX
|
|
|
|
static void tu_fifo_lock(tu_fifo_t *f)
|
|
{
|
|
if (f->mutex)
|
|
{
|
|
osal_mutex_lock(f->mutex, OSAL_TIMEOUT_WAIT_FOREVER);
|
|
}
|
|
}
|
|
|
|
static void tu_fifo_unlock(tu_fifo_t *f)
|
|
{
|
|
if (f->mutex)
|
|
{
|
|
osal_mutex_unlock(f->mutex);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
#define tu_fifo_lock(_ff)
|
|
#define tu_fifo_unlock(_ff)
|
|
|
|
#endif
|
|
|
|
bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
|
|
{
|
|
if (depth > 0x8000) return false; // Maximum depth is 2^15 items
|
|
|
|
tu_fifo_lock(f);
|
|
|
|
f->buffer = (uint8_t*) buffer;
|
|
f->depth = depth;
|
|
f->item_size = item_size;
|
|
f->overwritable = overwritable;
|
|
|
|
f->max_pointer_idx = 2*depth - 1; // Limit index space to 2*depth - this allows for a fast "modulo" calculation but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable only if overflow happens once (important for unsupervised DMA applications)
|
|
f->non_used_index_space = 0xFFFF - f->max_pointer_idx;
|
|
|
|
f->rd_mode = f->wr_mode = TU_FIFO_COPY_INC; // Default copy mode is incrementing addresses
|
|
|
|
f->rd_idx = f->wr_idx = 0;
|
|
|
|
tu_fifo_unlock(f);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Static functions are intended to work on local variables
|
|
|
|
static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
|
|
{
|
|
while ( idx >= depth) idx -= depth;
|
|
return idx;
|
|
}
|
|
|
|
// Intended to be used to read from hardware USB FIFO in e.g. STM32 where all data is read from a constant address
|
|
// Code adapted from dcd_synopsis.c
|
|
static void _tu_fifo_read_from_const_src_ptr(void * dst, const void * src, uint16_t len)
|
|
{
|
|
uint8_t * dst_u8 = (uint8_t *)dst;
|
|
volatile uint32_t * rx_fifo = (volatile uint32_t *) src;
|
|
|
|
// Reading full available 32 bit words from FIFO
|
|
uint16_t full_words = len >> 2;
|
|
for(uint16_t i = 0; i < full_words; i++) {
|
|
uint32_t tmp = *rx_fifo;
|
|
dst_u8[0] = tmp & 0x000000FF;
|
|
dst_u8[1] = (tmp & 0x0000FF00) >> 8;
|
|
dst_u8[2] = (tmp & 0x00FF0000) >> 16;
|
|
dst_u8[3] = (tmp & 0xFF000000) >> 24;
|
|
dst_u8 += 4;
|
|
}
|
|
|
|
// Read the remaining 1-3 bytes from FIFO
|
|
uint8_t bytes_rem = len & 0x03;
|
|
if(bytes_rem != 0) {
|
|
uint32_t tmp = *rx_fifo;
|
|
dst_u8[0] = tmp & 0x000000FF;
|
|
if(bytes_rem > 1) {
|
|
dst_u8[1] = (tmp & 0x0000FF00) >> 8;
|
|
}
|
|
if(bytes_rem > 2) {
|
|
dst_u8[2] = (tmp & 0x00FF0000) >> 16;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Intended to be used to write to hardware USB FIFO in e.g. STM32 where all data is written to a constant address
|
|
// Code adapted from dcd_synopsis.c
|
|
static void _tu_fifo_write_to_const_dst_ptr(void * dst, const void * src, uint16_t len)
|
|
{
|
|
volatile uint32_t * tx_fifo = (volatile uint32_t *) dst;
|
|
uint8_t * src_u8 = (uint8_t *)src;
|
|
|
|
// Pushing full available 32 bit words to FIFO
|
|
uint16_t full_words = len >> 2;
|
|
for(uint16_t i = 0; i < full_words; i++){
|
|
*tx_fifo = ((uint32_t)(src_u8[3]) << 24) | ((uint32_t)(src_u8[2]) << 16) | ((uint32_t)(src_u8[1]) << 8) | (uint32_t)src_u8[0];
|
|
src_u8 += 4;
|
|
}
|
|
|
|
// Write the remaining 1-3 bytes into FIFO
|
|
uint8_t bytes_rem = len & 0x03;
|
|
if(bytes_rem){
|
|
uint32_t tmp_word = 0;
|
|
tmp_word |= src_u8[0];
|
|
if(bytes_rem > 1){
|
|
tmp_word |= (uint32_t)(src_u8[1]) << 8;
|
|
}
|
|
if(bytes_rem > 2){
|
|
tmp_word |= (uint32_t)(src_u8[2]) << 16;
|
|
}
|
|
*tx_fifo = tmp_word;
|
|
}
|
|
}
|
|
|
|
// send one item to FIFO WITHOUT updating write pointer
|
|
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t wRel)
|
|
{
|
|
memcpy(f->buffer + (wRel * f->item_size), data, f->item_size);
|
|
}
|
|
|
|
static inline void _ff_push_copy_fct(tu_fifo_t* f, void * dst, const void * src, uint16_t len)
|
|
{
|
|
switch (f->rd_mode)
|
|
{
|
|
case TU_FIFO_COPY_INC:
|
|
memcpy(dst, src, len);
|
|
break;
|
|
|
|
case TU_FIFO_COPY_CST:
|
|
_tu_fifo_read_from_const_src_ptr(dst, src, len);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void _ff_pull_copy_fct(tu_fifo_t* f, void * dst, const void * src, uint16_t len)
|
|
{
|
|
switch (f->wr_mode)
|
|
{
|
|
case TU_FIFO_COPY_INC:
|
|
memcpy(dst, src, len);
|
|
break;
|
|
|
|
case TU_FIFO_COPY_CST:
|
|
_tu_fifo_write_to_const_dst_ptr(dst, src, len);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// send n items to FIFO WITHOUT updating write pointer
|
|
static void _ff_push_n(tu_fifo_t* f, void const * data, uint16_t n, uint16_t wRel)
|
|
{
|
|
if(wRel + n <= f->depth) // Linear mode only
|
|
{
|
|
_ff_push_copy_fct(f, f->buffer + (wRel * f->item_size), data, n*f->item_size);
|
|
}
|
|
else // Wrap around
|
|
{
|
|
uint16_t nLin = f->depth - wRel;
|
|
|
|
// Write data to linear part of buffer
|
|
_ff_push_copy_fct(f, f->buffer + (wRel * f->item_size), data, nLin*f->item_size);
|
|
|
|
// Write data wrapped around
|
|
_ff_push_copy_fct(f, f->buffer, ((uint8_t const*) data) + nLin*f->item_size, (n - nLin) * f->item_size);
|
|
}
|
|
}
|
|
|
|
// get one item from FIFO WITHOUT updating read pointer
|
|
static inline void _ff_pull(tu_fifo_t* f, void * p_buffer, uint16_t rRel)
|
|
{
|
|
memcpy(p_buffer, f->buffer + (rRel * f->item_size), f->item_size);
|
|
}
|
|
|
|
// get n items from FIFO WITHOUT updating read pointer
|
|
static void _ff_pull_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t rRel)
|
|
{
|
|
if(rRel + n <= f->depth) // Linear mode only
|
|
{
|
|
_ff_pull_copy_fct(f, p_buffer, f->buffer + (rRel * f->item_size), n*f->item_size);
|
|
}
|
|
else // Wrap around
|
|
{
|
|
uint16_t nLin = f->depth - rRel;
|
|
|
|
// Read data from linear part of buffer
|
|
_ff_pull_copy_fct(f, p_buffer, f->buffer + (rRel * f->item_size), nLin*f->item_size);
|
|
|
|
// Read data wrapped part
|
|
_ff_pull_copy_fct(f, (uint8_t*)p_buffer + nLin*f->item_size, f->buffer, (n - nLin) * f->item_size);
|
|
}
|
|
}
|
|
|
|
// Advance an absolute pointer
|
|
static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
|
{
|
|
// We limit the index space of p such that a correct wrap around happens
|
|
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
|
if ((p > p + offset) || (p + offset > f->max_pointer_idx))
|
|
{
|
|
p = (p + offset) + f->non_used_index_space;
|
|
}
|
|
else
|
|
{
|
|
p += offset;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// Backward an absolute pointer
|
|
static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
|
{
|
|
// We limit the index space of p such that a correct wrap around happens
|
|
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
|
|
if ((p < p - offset) || (p - offset > f->max_pointer_idx))
|
|
{
|
|
p = (p - offset) - f->non_used_index_space;
|
|
}
|
|
else
|
|
{
|
|
p -= offset;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// get relative from absolute pointer
|
|
static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
|
|
{
|
|
return _ff_mod(advance_pointer(f, p, offset), f->depth);
|
|
}
|
|
|
|
// Works on local copies of w and r - return only the difference and as such can be used to determine an overflow
|
|
static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
uint16_t cnt = wAbs-rAbs;
|
|
|
|
// In case we have non-power of two depth we need a further modification
|
|
if (rAbs > wAbs) cnt -= f->non_used_index_space;
|
|
|
|
return cnt;
|
|
}
|
|
|
|
// Works on local copies of w and r
|
|
static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
return wAbs == rAbs;
|
|
}
|
|
|
|
// Works on local copies of w and r
|
|
static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
|
|
}
|
|
|
|
// Works on local copies of w and r
|
|
// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
|
// Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
|
|
// write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
|
|
// write pointer wraps and you pointer states are messed up. This can only happen if you
|
|
// use DMAs, write functions do not allow such an error.
|
|
static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
|
|
}
|
|
|
|
// Works on local copies of w
|
|
// For more details see _tu_fifo_overflow()!
|
|
static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
|
|
{
|
|
f->rd_idx = backward_pointer(f, wAbs, f->depth);
|
|
}
|
|
|
|
// Works on local copies of w and r
|
|
// Must be protected by mutexes since in case of an overflow read pointer gets modified
|
|
static bool _tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
|
|
|
// Check overflow and correct if required
|
|
if (cnt > f->depth)
|
|
{
|
|
_tu_fifo_correct_read_pointer(f, wAbs);
|
|
cnt = f->depth;
|
|
}
|
|
|
|
// Skip beginning of buffer
|
|
if (cnt == 0 || offset >= cnt) return false;
|
|
|
|
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
|
|
|
|
// Peek data
|
|
_ff_pull(f, p_buffer, rRel);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Works on local copies of w and r
|
|
// Must be protected by mutexes since in case of an overflow read pointer gets modified
|
|
static uint16_t _tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
|
|
|
|
// Check overflow and correct if required
|
|
if (cnt > f->depth)
|
|
{
|
|
_tu_fifo_correct_read_pointer(f, wAbs);
|
|
rAbs = f->rd_idx;
|
|
cnt = f->depth;
|
|
}
|
|
|
|
// Skip beginning of buffer
|
|
if (cnt == 0 || offset >= cnt) return 0;
|
|
|
|
// Check if we can read something at and after offset - if too less is available we read what remains
|
|
cnt -= offset;
|
|
if (cnt < n) {
|
|
if (cnt == 0) return 0;
|
|
n = cnt;
|
|
}
|
|
|
|
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
|
|
|
|
// Peek data
|
|
_ff_pull_n(f, p_buffer, n, rRel);
|
|
|
|
return n;
|
|
}
|
|
|
|
// Works on local copies of w and r
|
|
static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
|
|
{
|
|
return f->depth - _tu_fifo_count(f, wAbs, rAbs);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Get number of items in FIFO.
|
|
|
|
As this function only reads the read and write pointers once, this function is
|
|
reentrant and thus thread and ISR save without any mutexes. In case an
|
|
overflow occurred, this function return f.depth at maximum. Overflows are
|
|
checked and corrected for in the read functions!
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
|
|
@returns Number of items in FIFO
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_count(tu_fifo_t* f)
|
|
{
|
|
return tu_min16(_tu_fifo_count(f, f->wr_idx, f->rd_idx), f->depth);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Check if FIFO is empty.
|
|
|
|
As this function only reads the read and write pointers once, this function is
|
|
reentrant and thus thread and ISR save without any mutexes.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
|
|
@returns Number of items in FIFO
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_empty(tu_fifo_t* f)
|
|
{
|
|
return _tu_fifo_empty(f->wr_idx, f->rd_idx);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Check if FIFO is full.
|
|
|
|
As this function only reads the read and write pointers once, this function is
|
|
reentrant and thus thread and ISR save without any mutexes.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
|
|
@returns Number of items in FIFO
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_full(tu_fifo_t* f)
|
|
{
|
|
return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Get remaining space in FIFO.
|
|
|
|
As this function only reads the read and write pointers once, this function is
|
|
reentrant and thus thread and ISR save without any mutexes.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
|
|
@returns Number of items in FIFO
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_remaining(tu_fifo_t* f)
|
|
{
|
|
return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Check if overflow happened.
|
|
|
|
BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
|
|
Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
|
|
write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
|
|
write pointer wraps and your pointer states are messed up. This can only happen if you
|
|
use DMAs, write functions do not allow such an error. Avoid such nasty things!
|
|
|
|
All reading functions (read, peek) check for overflows and correct read pointer on their own such
|
|
that latest items are read.
|
|
If required (e.g. for DMA use) you can also correct the read pointer by
|
|
tu_fifo_correct_read_pointer().
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
|
|
@returns True if overflow happened
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_overflowed(tu_fifo_t* f)
|
|
{
|
|
return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx);
|
|
}
|
|
|
|
// Only use in case tu_fifo_overflow() returned true!
|
|
void tu_fifo_correct_read_pointer(tu_fifo_t* f)
|
|
{
|
|
tu_fifo_lock(f);
|
|
_tu_fifo_correct_read_pointer(f, f->wr_idx);
|
|
tu_fifo_unlock(f);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Read one element out of the buffer.
|
|
|
|
This function will return the element located at the array index of the
|
|
read pointer, and then increment the read pointer index.
|
|
This function checks for an overflow and corrects read pointer if required.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] buffer
|
|
Pointer to the place holder for data read from the buffer
|
|
|
|
@returns TRUE if the queue is not empty
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_read(tu_fifo_t* f, void * buffer)
|
|
{
|
|
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
|
|
|
// Peek the data
|
|
bool ret = _tu_fifo_peek_at(f, 0, buffer, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
|
|
|
|
// Advance pointer
|
|
f->rd_idx = advance_pointer(f, f->rd_idx, ret);
|
|
|
|
tu_fifo_unlock(f);
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief This function will read n elements from the array index specified by
|
|
the read pointer and increment the read index.
|
|
This function checks for an overflow and corrects read pointer if required.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] buffer
|
|
The pointer to data location
|
|
@param[in] n
|
|
Number of element that buffer can afford
|
|
|
|
@returns number of items read from the FIFO
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t n)
|
|
{
|
|
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
|
|
|
// Peek the data
|
|
n = _tu_fifo_peek_at_n(f, 0, buffer, n, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
|
|
|
|
// Advance read pointer
|
|
f->rd_idx = advance_pointer(f, f->rd_idx, n);
|
|
|
|
tu_fifo_unlock(f);
|
|
return n;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief This function will read n elements from the array index specified by
|
|
the read pointer and increment the read index. It copies the elements
|
|
into another FIFO and as such takes care of wraps etc.
|
|
This function checks for an overflow and corrects read pointer if required.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] f_target
|
|
Pointer to target FIFO i.e. to copy into
|
|
@param[in] offset
|
|
Position to read from in the FIFO buffer with respect to read pointer
|
|
@param[in] n
|
|
Number of items to peek
|
|
|
|
@returns number of items read from the FIFO
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_read_n_into_other_fifo(tu_fifo_t* f, tu_fifo_t* f_target, uint16_t offset, uint16_t n)
|
|
{
|
|
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
|
|
|
// Conduct copy
|
|
n = tu_fifo_peek_n_into_other_fifo(f, f_target, offset, n);
|
|
|
|
// Advance read pointer
|
|
f->rd_idx = advance_pointer(f, f->rd_idx, n);
|
|
|
|
tu_fifo_unlock(f);
|
|
|
|
return n;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Read one item without removing it from the FIFO.
|
|
This function checks for an overflow and corrects read pointer if required.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] offset
|
|
Position to read from in the FIFO buffer with respect to read pointer
|
|
@param[in] p_buffer
|
|
Pointer to the place holder for data read from the buffer
|
|
|
|
@returns TRUE if the queue is not empty
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer)
|
|
{
|
|
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
|
bool ret = _tu_fifo_peek_at(f, offset, p_buffer, f->wr_idx, f->rd_idx);
|
|
tu_fifo_unlock(f);
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Read n items without removing it from the FIFO
|
|
This function checks for an overflow and corrects read pointer if required.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] offset
|
|
Position to read from in the FIFO buffer with respect to read pointer
|
|
@param[in] p_buffer
|
|
Pointer to the place holder for data read from the buffer
|
|
@param[in] n
|
|
Number of items to peek
|
|
|
|
@returns Number of bytes written to p_buffer
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n)
|
|
{
|
|
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
|
|
bool ret = _tu_fifo_peek_at_n(f, offset, p_buffer, n, f->wr_idx, f->rd_idx);
|
|
tu_fifo_unlock(f);
|
|
return ret;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Read n items without removing it from the FIFO and copy them into another FIFO.
|
|
This function checks for an overflow and corrects read pointer if required.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] f_target
|
|
Pointer to target FIFO i.e. to copy into
|
|
@param[in] offset
|
|
Position to read from in the FIFO buffer with respect to read pointer
|
|
@param[in] n
|
|
Number of items to peek
|
|
|
|
@returns Number of bytes written to p_buffer
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_peek_n_into_other_fifo (tu_fifo_t* f, tu_fifo_t* f_target, uint16_t offset, uint16_t n)
|
|
{
|
|
// Copy is only possible if both FIFOs have common element size
|
|
TU_VERIFY(f->item_size == f_target->item_size);
|
|
|
|
// Work on local copies on case any pointer changes in between (only necessary if something is written into FIFO f in the meantime)
|
|
uint16_t f_wr_idx = f->wr_idx;
|
|
uint16_t f_rd_idx = f->rd_idx;
|
|
|
|
uint16_t cnt = _tu_fifo_count(f, f_wr_idx, f_rd_idx);
|
|
|
|
// Check overflow and correct if required
|
|
if (cnt > f->depth)
|
|
{
|
|
_tu_fifo_correct_read_pointer(f, f->wr_idx);
|
|
f_rd_idx = f->rd_idx;
|
|
cnt = f->depth;
|
|
}
|
|
|
|
// Skip beginning of buffer
|
|
if (cnt == 0 || offset >= cnt) return 0;
|
|
|
|
// Check if we can read something at and after offset - if too less is available we read what remains
|
|
cnt -= offset;
|
|
if (cnt < n) {
|
|
if (cnt == 0) return 0;
|
|
n = cnt;
|
|
}
|
|
|
|
tu_fifo_lock(f_target); // Lock both read and write pointers - in case of an overwritable FIFO both may be modified
|
|
|
|
uint16_t wr_rel_tgt = get_relative_pointer(f_target, f_target->wr_idx, 0);
|
|
|
|
if (!f_target->overwritable)
|
|
{
|
|
// Not overwritable limit up to full
|
|
n = tu_min16(n, tu_fifo_remaining(f_target));
|
|
}
|
|
|
|
// Advance write pointer - not required for later
|
|
f_target->wr_idx = advance_pointer(f_target, f_target->wr_idx, n);
|
|
|
|
if (n >= f_target->depth)
|
|
{
|
|
offset += n - f_target->depth;
|
|
|
|
// We start writing at the read pointer's position since we fill the complete
|
|
// buffer and we do not want to modify the read pointer within a write function!
|
|
// This would end up in a race condition with read functions!
|
|
wr_rel_tgt = get_relative_pointer(f_target, f_target->rd_idx, 0);
|
|
|
|
n = f_target->depth;
|
|
|
|
// Update write pointer
|
|
f_target->wr_idx = advance_pointer(f_target, f_target->rd_idx, n);
|
|
}
|
|
|
|
// Copy linear size
|
|
uint16_t sz = f_target->depth - wr_rel_tgt;
|
|
_tu_fifo_peek_at_n(f, offset, &f_target->buffer[wr_rel_tgt], sz, f_wr_idx, f_rd_idx);
|
|
|
|
if (n > sz)
|
|
{
|
|
// Copy remaining, now wrapped part, into target buffer
|
|
_tu_fifo_peek_at_n(f, offset + sz, f_target->buffer, n-sz, f_wr_idx, f_rd_idx);
|
|
}
|
|
|
|
tu_fifo_unlock(f_target);
|
|
|
|
return n;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Write one element into the buffer.
|
|
|
|
This function will write one element into the array index specified by
|
|
the write pointer and increment the write index.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] data
|
|
The byte to add to the FIFO
|
|
|
|
@returns TRUE if the data was written to the FIFO (overwrittable
|
|
FIFO will always return TRUE)
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_write(tu_fifo_t* f, const void * data)
|
|
{
|
|
tu_fifo_lock(f);
|
|
|
|
uint16_t w = f->wr_idx;
|
|
|
|
if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
|
|
|
|
uint16_t wRel = get_relative_pointer(f, w, 0);
|
|
|
|
// Write data
|
|
_ff_push(f, data, wRel);
|
|
|
|
// Advance pointer
|
|
f->wr_idx = advance_pointer(f, w, 1);
|
|
|
|
tu_fifo_unlock(f);
|
|
|
|
return true;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief This function will write n elements into the array index specified by
|
|
the write pointer and increment the write index.
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] data
|
|
The pointer to data to add to the FIFO
|
|
@param[in] count
|
|
Number of element
|
|
@return Number of written elements
|
|
*/
|
|
/******************************************************************************/
|
|
uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t n)
|
|
{
|
|
if ( n == 0 ) return 0;
|
|
|
|
tu_fifo_lock(f);
|
|
|
|
uint16_t w = f->wr_idx, r = f->rd_idx;
|
|
uint8_t const* buf8 = (uint8_t const*) data;
|
|
|
|
if (!f->overwritable)
|
|
{
|
|
// Not overwritable limit up to full
|
|
n = tu_min16(n, _tu_fifo_remaining(f, w, r));
|
|
}
|
|
else if (n >= f->depth)
|
|
{
|
|
// Only copy last part
|
|
buf8 = buf8 + (n - f->depth) * f->item_size;
|
|
n = f->depth;
|
|
|
|
// We start writing at the read pointer's position since we fill the complete
|
|
// buffer and we do not want to modify the read pointer within a write function!
|
|
// This would end up in a race condition with read functions!
|
|
w = r;
|
|
}
|
|
|
|
uint16_t wRel = get_relative_pointer(f, w, 0);
|
|
|
|
// Write data
|
|
_ff_push_n(f, buf8, n, wRel);
|
|
|
|
// Advance pointer
|
|
f->wr_idx = advance_pointer(f, w, n);
|
|
|
|
tu_fifo_unlock(f);
|
|
|
|
return n;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Clear the fifo read and write pointers
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_clear(tu_fifo_t *f)
|
|
{
|
|
tu_fifo_lock(f);
|
|
f->rd_idx = f->wr_idx = 0;
|
|
tu_fifo_unlock(f);
|
|
|
|
return true;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Change the fifo mode to overwritable or not overwritable
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] overwritable
|
|
Overwritable mode the fifo is set to
|
|
*/
|
|
/******************************************************************************/
|
|
bool tu_fifo_set_overwritable(tu_fifo_t *f, bool overwritable)
|
|
{
|
|
tu_fifo_lock(f);
|
|
|
|
f->overwritable = overwritable;
|
|
|
|
tu_fifo_unlock(f);
|
|
|
|
return true;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Advance write pointer - intended to be used in combination with DMA.
|
|
It is possible to fill the FIFO by use of a DMA in circular mode. Within
|
|
DMA ISRs you may update the write pointer to be able to read from the FIFO.
|
|
As long as the DMA is the only process writing into the FIFO this is safe
|
|
to use.
|
|
|
|
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] n
|
|
Number of items the write pointer moves forward
|
|
*/
|
|
/******************************************************************************/
|
|
void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n)
|
|
{
|
|
f->wr_idx = advance_pointer(f, f->wr_idx, n);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/*!
|
|
@brief Advance read pointer - intended to be used in combination with DMA.
|
|
It is possible to read from the FIFO by use of a DMA in linear mode. Within
|
|
DMA ISRs you may update the read pointer to be able to again write into the
|
|
FIFO. As long as the DMA is the only process reading from the FIFO this is
|
|
safe to use.
|
|
|
|
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
|
|
|
|
@param[in] f
|
|
Pointer to the FIFO buffer to manipulate
|
|
@param[in] n
|
|
Number of items the read pointer moves forward
|
|
*/
|
|
/******************************************************************************/
|
|
void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n)
|
|
{
|
|
f->rd_idx = advance_pointer(f, f->rd_idx, n);
|
|
}
|