tinyusb/hw/bsp/same54xplainedpro/same54xplainedpro.c
2021-03-21 09:48:49 +01:00

307 lines
9.7 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Jean Gressmann <jean@0x42.de>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include <sam.h>
#include "bsp/board.h"
#include <hal/include/hal_gpio.h>
//--------------------------------------------------------------------+
// Forward USB interrupt events to TinyUSB IRQ Handler
//--------------------------------------------------------------------+
void USB_0_Handler(void)
{
tud_int_handler(0);
}
void USB_1_Handler(void)
{
tud_int_handler(0);
}
void USB_2_Handler(void)
{
tud_int_handler(0);
}
void USB_3_Handler(void)
{
tud_int_handler(0);
}
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define LED_PIN PIN_PC18
#define BUTTON_PIN PIN_PB31
#define BOARD_SERCOM SERCOM2
/** Initializes the clocks from the external 12 MHz crystal
*
* The goal of this setup is to preserve the second PLL
* for the application code while still having a reasonable
* 48 MHz clock for USB / UART.
*
* GCLK0: CONF_CPU_FREQUENCY (default 120 MHz) from PLL0
* GCLK1: unused
* GCLK2: 12 MHz from XOSC1
* DFLL48M: closed loop from GLCK2
* GCLK3: 48 MHz
*/
static inline void init_clock_xtal(void)
{
/* configure for a 12MHz crystal connected to XIN1/XOUT1 */
OSCCTRL->XOSCCTRL[1].reg =
OSCCTRL_XOSCCTRL_STARTUP(6) | // 1.953 ms
OSCCTRL_XOSCCTRL_RUNSTDBY |
OSCCTRL_XOSCCTRL_ENALC |
OSCCTRL_XOSCCTRL_IMULT(4) | OSCCTRL_XOSCCTRL_IPTAT(3) | // 8MHz to 16MHz
OSCCTRL_XOSCCTRL_XTALEN |
OSCCTRL_XOSCCTRL_ENABLE;
while(0 == OSCCTRL->STATUS.bit.XOSCRDY1);
OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(2) | OSCCTRL_DPLLCTRLB_REFCLK_XOSC1; /* 12MHz / 6 = 2Mhz, input = XOSC1 */
OSCCTRL->Dpll[0].DPLLRATIO.reg = OSCCTRL_DPLLRATIO_LDRFRAC(0x0) | OSCCTRL_DPLLRATIO_LDR((CONF_CPU_FREQUENCY / 1000000 / 2) - 1); /* multiply to get CONF_CPU_FREQUENCY (default = 120MHz) */
OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_RUNSTDBY | OSCCTRL_DPLLCTRLA_ENABLE;
while(0 == OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY); /* wait for the PLL0 to be ready */
/* configure clock-generator 0 to use DPLL0 as source -> GCLK0 is used for the core */
GCLK->GENCTRL[0].reg =
GCLK_GENCTRL_DIV(0) |
GCLK_GENCTRL_RUNSTDBY |
GCLK_GENCTRL_GENEN |
GCLK_GENCTRL_SRC_DPLL0 |
GCLK_GENCTRL_IDC;
while(1 == GCLK->SYNCBUSY.bit.GENCTRL0); /* wait for the synchronization between clock domains to be complete */
// configure GCLK2 for 12MHz from XOSC1
GCLK->GENCTRL[2].reg =
GCLK_GENCTRL_DIV(0) |
GCLK_GENCTRL_RUNSTDBY |
GCLK_GENCTRL_GENEN |
GCLK_GENCTRL_SRC_XOSC1 |
GCLK_GENCTRL_IDC;
while(1 == GCLK->SYNCBUSY.bit.GENCTRL2); /* wait for the synchronization between clock domains to be complete */
/* setup DFLL48M to use GLCK2 */
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_DFLL48].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
OSCCTRL->DFLLCTRLA.reg = 0;
while(1 == OSCCTRL->DFLLSYNC.bit.ENABLE);
OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_MODE | OSCCTRL_DFLLCTRLB_WAITLOCK;
OSCCTRL->DFLLMUL.bit.MUL = 4; // 4 * 12MHz -> 48MHz
OSCCTRL->DFLLCTRLA.reg =
OSCCTRL_DFLLCTRLA_ENABLE |
OSCCTRL_DFLLCTRLA_RUNSTDBY;
while(1 == OSCCTRL->DFLLSYNC.bit.ENABLE);
// setup 48 MHz GCLK3 from DFLL48M
GCLK->GENCTRL[3].reg =
GCLK_GENCTRL_DIV(0) |
GCLK_GENCTRL_RUNSTDBY |
GCLK_GENCTRL_GENEN |
GCLK_GENCTRL_SRC_DFLL |
GCLK_GENCTRL_IDC;
while(1 == GCLK->SYNCBUSY.bit.GENCTRL3);
}
/* Initialize SERCOM2 for 115200 bps 8N1 using a 48 MHz clock */
static inline void uart_init(void)
{
gpio_set_pin_function(PIN_PB24, PINMUX_PB24D_SERCOM2_PAD1);
gpio_set_pin_function(PIN_PB25, PINMUX_PB25D_SERCOM2_PAD0);
MCLK->APBBMASK.bit.SERCOM2_ = 1;
GCLK->PCHCTRL[SERCOM2_GCLK_ID_CORE].reg = GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN;
BOARD_SERCOM->USART.CTRLA.bit.SWRST = 1; /* reset and disable SERCOM -> enable configuration */
while (BOARD_SERCOM->USART.SYNCBUSY.bit.SWRST);
BOARD_SERCOM->USART.CTRLA.reg =
SERCOM_USART_CTRLA_SAMPR(0) | /* 0 = 16x / arithmetic baud rate, 1 = 16x / fractional baud rate */
SERCOM_USART_CTRLA_SAMPA(0) | /* 16x over sampling */
SERCOM_USART_CTRLA_FORM(0) | /* 0x0 USART frame, 0x1 USART frame with parity, ... */
SERCOM_USART_CTRLA_DORD | /* LSB first */
SERCOM_USART_CTRLA_MODE(1) | /* 0x0 USART with external clock, 0x1 USART with internal clock */
SERCOM_USART_CTRLA_RXPO(1) | /* SERCOM PAD[1] is used for data reception */
SERCOM_USART_CTRLA_TXPO(0); /* SERCOM PAD[0] is used for data transmission */
BOARD_SERCOM->USART.CTRLB.reg = /* RXEM = 0 -> receiver disabled, LINCMD = 0 -> normal USART transmission, SFDE = 0 -> start-of-frame detection disabled, SBMODE = 0 -> one stop bit, CHSIZE = 0 -> 8 bits */
SERCOM_USART_CTRLB_TXEN | /* transmitter enabled */
SERCOM_USART_CTRLB_RXEN; /* receiver enabled */
// BOARD_SERCOM->USART.BAUD.reg = SERCOM_USART_BAUD_FRAC_FP(0) | SERCOM_USART_BAUD_FRAC_BAUD(26); /* 48000000/(16*115200) = 26.041666667 */
BOARD_SERCOM->USART.BAUD.reg = SERCOM_USART_BAUD_BAUD(63019); /* 65536*(116*115200/48000000) */
BOARD_SERCOM->USART.CTRLA.bit.ENABLE = 1; /* activate SERCOM */
while (BOARD_SERCOM->USART.SYNCBUSY.bit.ENABLE); /* wait for SERCOM to be ready */
}
static inline void uart_send_buffer(uint8_t const *text, size_t len)
{
for (size_t i = 0; i < len; ++i) {
BOARD_SERCOM->USART.DATA.reg = text[i];
while((BOARD_SERCOM->USART.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) == 0);
}
}
static inline void uart_send_str(const char* text)
{
while (*text) {
BOARD_SERCOM->USART.DATA.reg = *text++;
while((BOARD_SERCOM->USART.INTFLAG.reg & SERCOM_USART_INTFLAG_TXC) == 0);
}
}
void board_init(void)
{
// Uncomment this line and change the GCLK for UART/USB to run off the XTAL.
// init_clock_xtal();
SystemCoreClock = CONF_CPU_FREQUENCY;
#if CFG_TUSB_OS == OPT_OS_NONE
SysTick_Config(CONF_CPU_FREQUENCY / 1000);
#endif
uart_init();
#if CFG_TUSB_DEBUG >= 2
uart_send_str(BOARD_NAME " UART initialized\n");
tu_printf(BOARD_NAME " reset cause %#02x\n", RSTC->RCAUSE.reg);
#endif
// LED0 init
gpio_set_pin_function(LED_PIN, GPIO_PIN_FUNCTION_OFF);
gpio_set_pin_direction(LED_PIN, GPIO_DIRECTION_OUT);
board_led_write(0);
#if CFG_TUSB_DEBUG >= 2
uart_send_str(BOARD_NAME " LED pin configured\n");
#endif
// BTN0 init
gpio_set_pin_function(BUTTON_PIN, GPIO_PIN_FUNCTION_OFF);
gpio_set_pin_direction(BUTTON_PIN, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(BUTTON_PIN, GPIO_PULL_UP);
#if CFG_TUSB_DEBUG >= 2
uart_send_str(BOARD_NAME " Button pin configured\n");
#endif
#if CFG_TUSB_OS == OPT_OS_FREERTOS
// If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher )
NVIC_SetPriority(USB_0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY);
NVIC_SetPriority(USB_1_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY);
NVIC_SetPriority(USB_2_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY);
NVIC_SetPriority(USB_3_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY);
#endif
#if TUSB_OPT_DEVICE_ENABLED
#if CFG_TUSB_DEBUG >= 2
uart_send_str(BOARD_NAME " USB device enabled\n");
#endif
/* USB clock init
* The USB module requires a GCLK_USB of 48 MHz ~ 0.25% clock
* for low speed and full speed operation.
*/
hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
hri_mclk_set_AHBMASK_USB_bit(MCLK);
hri_mclk_set_APBBMASK_USB_bit(MCLK);
// USB pin init
gpio_set_pin_direction(PIN_PA24, GPIO_DIRECTION_OUT);
gpio_set_pin_level(PIN_PA24, false);
gpio_set_pin_pull_mode(PIN_PA24, GPIO_PULL_OFF);
gpio_set_pin_direction(PIN_PA25, GPIO_DIRECTION_OUT);
gpio_set_pin_level(PIN_PA25, false);
gpio_set_pin_pull_mode(PIN_PA25, GPIO_PULL_OFF);
gpio_set_pin_function(PIN_PA24, PINMUX_PA24H_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25H_USB_DP);
#if CFG_TUSB_DEBUG >= 2
uart_send_str(BOARD_NAME " USB device configured\n");
#endif
#endif
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state)
{
gpio_set_pin_level(LED_PIN, !state);
}
uint32_t board_button_read(void)
{
return (PORT->Group[1].IN.reg & 0x80000000) != 0x80000000;
}
int board_uart_read(uint8_t* buf, int len)
{
(void) buf; (void) len;
return 0;
}
int board_uart_write(void const * buf, int len)
{
if (len < 0) {
uart_send_str(buf);
} else {
uart_send_buffer(buf, len);
}
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler(void)
{
system_ticks++;
}
uint32_t board_millis(void)
{
return system_ticks;
}
#endif
// Required by __libc_init_array in startup code if we are compiling using
// -nostdlib/-nostartfiles.
void _init(void)
{
}