2021-11-02 14:51:15 +07:00

1288 lines
41 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 William D. Jones
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Jan Duempelmann
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#include "device/dcd_attr.h"
#if TUSB_OPT_DEVICE_ENABLED && \
( defined(DCD_ATTR_DWC2_STM32) || \
TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3, OPT_MCU_GD32VF103) || \
TU_CHECK_MCU(OPT_MCU_EFM32GG, OPT_MCU_BCM2711) )
#include "device/dcd.h"
#include "dwc2_type.h"
#if defined(DCD_ATTR_DWC2_STM32)
#include "dwc2_stm32.h"
#elif TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3)
#include "dwc2_esp32.h"
#elif TU_CHECK_MCU(OPT_MCU_GD32VF103)
#include "dwc2_gd32.h"
#elif TU_CHECK_MCU(OPT_MCU_BCM2711)
#include "dwc2_bcm.h"
#elif TU_CHECK_MCU(OPT_MCU_EFM32GG)
#include "dwc2_efm32.h"
#else
#error "Unsupported MCUs"
#endif
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
#define DWC2_REG(_port) ((dwc2_regs_t*) DWC2_REG_BASE)
// Debug level for DWC2
#define DWC2_DEBUG 1
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
typedef struct {
uint8_t * buffer;
tu_fifo_t * ff;
uint16_t total_len;
uint16_t max_size;
uint8_t interval;
} xfer_ctl_t;
xfer_ctl_t xfer_status[DWC2_EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) (&xfer_status[_ep][_dir])
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from dwc2->grxfsiz
static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs)
static bool _out_ep_closed; // Flag to check if RX FIFO size needs an update (reduce its size)
// Calculate the RX FIFO size according to recommendations from reference manual
static inline uint16_t calc_rx_ff_size(uint16_t ep_size)
{
return 15 + 2*(ep_size/4) + 2*DWC2_EP_MAX;
}
static void update_grxfsiz(uint8_t rhport)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// Determine largest EP size for RX FIFO
uint16_t max_epsize = 0;
for (uint8_t epnum = 0; epnum < DWC2_EP_MAX; epnum++)
{
max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size);
}
// Update size of RX FIFO
dwc2->grxfsiz = calc_rx_ff_size(max_epsize);
}
// Setup the control endpoint 0.
static void bus_reset(uint8_t rhport)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
tu_memclr(xfer_status, sizeof(xfer_status));
_out_ep_closed = false;
// clear device address
dwc2->dcfg &= ~DCFG_DAD_Msk;
// 1. NAK for all OUT endpoints
for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
{
dwc2->epout[n].doepctl |= DOEPCTL_SNAK;
}
// 2. Set up interrupt mask
dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos);
dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// The FIFO is split up in a lower part where the RX FIFO is located and an upper part where the TX FIFOs start.
// We do this to allow the RX FIFO to grow dynamically which is possible since the free space is located
// between the RX and TX FIFOs. This is required by ISO OUT EPs which need a bigger FIFO than the standard
// configuration done below.
//
// Dynamically FIFO sizes are of interest only for ISO EPs since all others are usually not opened and closed.
// All EPs other than ISO are opened as soon as the driver starts up i.e. when the host sends a
// configure interface command. Hence, all IN EPs other the ISO will be located at the top. IN ISO EPs are usually
// opened when the host sends an additional command: setInterface. At this point in time
// the ISO EP will be located next to the free space and can change its size. In case more IN EPs change its size
// an additional memory
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
// - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
//
// - All EP OUT shared a unique OUT FIFO which uses
// - 13 for setup packets + control words (up to 3 setup packets).
// - 1 for global NAK (not required/used here).
// - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1"
// - 2 for each used OUT endpoint
//
// Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
// - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x DWC2_EP_MAX = 47 + 2 x DWC2_EP_MAX
// - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x DWC2_EP_MAX = 271 + 2 x DWC2_EP_MAX
//
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
// of the overall picture yet. We will use the worst scenario: largest possible + DWC2_EP_MAX
//
// For Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
// overwrite this.
dwc2->grxfsiz = calc_rx_ff_size(TUD_OPT_HIGH_SPEED ? 512 : 64);
_allocated_fifo_words_tx = 16;
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
dwc2->dieptxf0 = (16 << DIEPTXF0_TX0FD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
// Fixed control EP0 size to 64 bytes
dwc2->epin[0].diepctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN ].max_size = 64;
dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
}
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if ( epnum == 0 )
{
xfer_ctl_t *const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if ( dir == TUSB_DIR_IN )
{
dwc2_epin_t* epin = dwc2->epin;
// A full IN transfer (multiple packets, possibly) triggers XFRC.
epin[epnum].dieptsiz = (num_packets << DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << DIEPTSIZ_XFRSIZ_Pos) & DIEPTSIZ_XFRSIZ_Msk);
epin[epnum].diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
// For ISO endpoint set correct odd/even bit for next frame.
if ( (epin[epnum].diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1 )
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
epin[epnum].diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
}
// Enable fifo empty interrupt only if there are something to put in the fifo.
if ( total_bytes != 0 )
{
dwc2->diepempmsk |= (1 << epnum);
}
}
else
{
dwc2_epout_t* epout = dwc2->epout;
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
epout[epnum].doeptsiz &= ~(DOEPTSIZ_PKTCNT_Msk | DOEPTSIZ_XFRSIZ);
epout[epnum].doeptsiz |= (num_packets << DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << DOEPTSIZ_XFRSIZ_Pos) & DOEPTSIZ_XFRSIZ_Msk);
epout[epnum].doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
if ( (epout[epnum].doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 &&
XFER_CTL_BASE(epnum, dir)->interval == 1 )
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
epout[epnum].doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
}
}
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
void print_dwc2_info(dwc2_regs_t * dwc2)
{
dwc2_ghwcfg2_t const * hw_cfg2 = &dwc2->ghwcfg2_bm;
dwc2_ghwcfg3_t const * hw_cfg3 = &dwc2->ghwcfg3_bm;
dwc2_ghwcfg4_t const * hw_cfg4 = &dwc2->ghwcfg4_bm;
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg);
TU_LOG_HEX(DWC2_DEBUG, dwc2->guid);
TU_LOG_HEX(DWC2_DEBUG, dwc2->gsnpsid);
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg1);
// HW configure 2
TU_LOG(DWC2_DEBUG, "\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg2);
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->op_mode );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->arch );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->point2point );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->hs_phy_type );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->fs_phy_type );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_dev_ep );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->num_host_ch );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->period_channel_support );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->enable_dynamic_fifo );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->mul_cpu_int );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->nperiod_tx_q_depth );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->host_period_tx_q_depth );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->dev_token_q_depth );
TU_LOG_INT(DWC2_DEBUG, hw_cfg2->otg_enable_ic_usb );
// HW configure 3
TU_LOG(DWC2_DEBUG, "\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg3);
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->xfer_size_width );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->packet_size_width );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->i2c_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->vendor_ctrl_itf );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->optional_feature_removed );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->synch_reset );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_adp_support );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->otg_enable_hsic );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->battery_charger_support );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->lpm_mode );
TU_LOG_INT(DWC2_DEBUG, hw_cfg3->total_fifo_size );
// HW configure 4
TU_LOG(DWC2_DEBUG, "\r\n");
TU_LOG_HEX(DWC2_DEBUG, dwc2->ghwcfg4);
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_period_in_ep );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->power_optimized );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ahb_freq_min );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->hibernation );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->service_interval_mode );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->ipg_isoc_en );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->acg_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->utmi_phy_data_width );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dev_ctrl_ep_num );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->iddg_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->vbus_valid_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->a_valid_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->b_valid_filter_enabled );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dedicated_fifos );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->num_dev_in_eps );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_desc_enable );
TU_LOG_INT(DWC2_DEBUG, hw_cfg4->dma_dynamic );
}
#endif
static void reset_core(dwc2_regs_t * dwc2)
{
// reset core
dwc2->grstctl |= GRSTCTL_CSRST;
// wait for reset bit is cleared
// TODO version 4.20a should wait for RESET DONE mask
while (dwc2->grstctl & GRSTCTL_CSRST) { }
// wait for AHB master IDLE
while ( !(dwc2->grstctl & GRSTCTL_AHBIDL) ) { }
// wait for device mode ?
}
static bool phy_hs_supported(dwc2_regs_t * dwc2)
{
// note: esp32 incorrect report its hs_phy_type as utmi
return TUD_OPT_HIGH_SPEED && dwc2->ghwcfg2_bm.hs_phy_type != HS_PHY_TYPE_NONE;
}
static void phy_fs_init(dwc2_regs_t * dwc2)
{
TU_LOG(DWC2_DEBUG, "Fullspeed PHY init\r\n");
// Select FS PHY
dwc2->gusbcfg |= GUSBCFG_PHYSEL;
// MCU specific PHY init before reset
dwc2_phy_init(dwc2, HS_PHY_TYPE_NONE);
// Reset core after selecting PHY
reset_core(dwc2);
// USB turnaround time is critical for certification where long cables and 5-Hubs are used.
// So if you need the AHB to run at less than 30 MHz, and if USB turnaround time is not critical,
// these bits can be programmed to a larger value. Default is 5
dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_TRDT_Msk) | (5u << GUSBCFG_TRDT_Pos);
// MCU specific PHY update post reset
dwc2_phy_update(dwc2, HS_PHY_TYPE_NONE);
// set max speed
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_FS << DCFG_DSPD_Pos);
}
static void phy_hs_init(dwc2_regs_t * dwc2)
{
uint32_t gusbcfg = dwc2->gusbcfg;
// De-select FS PHY
gusbcfg &= ~GUSBCFG_PHYSEL;
if (dwc2->ghwcfg2_bm.hs_phy_type == HS_PHY_TYPE_ULPI)
{
TU_LOG(DWC2_DEBUG, "Highspeed ULPI PHY init\r\n");
// Select ULPI
gusbcfg |= GUSBCFG_ULPI_UTMI_SEL;
// ULPI 8-bit interface, single data rate
gusbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
// default internal VBUS Indicator and Drive
gusbcfg &= ~(GUSBCFG_ULPIEVBUSD | GUSBCFG_ULPIEVBUSI);
// Disable FS/LS ULPI
gusbcfg &= ~(GUSBCFG_ULPIFSLS | GUSBCFG_ULPICSM);
}else
{
TU_LOG(DWC2_DEBUG, "Highspeed UTMI+ PHY init\r\n");
// Select UTMI+ with 8-bit interface
gusbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
// Set 16-bit interface if supported
if (dwc2->ghwcfg4_bm.utmi_phy_data_width) gusbcfg |= GUSBCFG_PHYIF16;
}
// Apply config
dwc2->gusbcfg = gusbcfg;
// mcu specific phy init
dwc2_phy_init(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);
// Reset core after selecting PHY
reset_core(dwc2);
// Set turn-around, must after core reset otherwise it will be clear
// - 9 if using 8-bit PHY interface
// - 5 if using 16-bit PHY interface
gusbcfg &= ~GUSBCFG_TRDT_Msk;
gusbcfg |= (dwc2->ghwcfg4_bm.utmi_phy_data_width ? 5u : 9u) << GUSBCFG_TRDT_Pos;
dwc2->gusbcfg = gusbcfg;
// MCU specific PHY update post reset
dwc2_phy_update(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);
// Set max speed
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DSPD_Msk) | (DCFG_DSPD_HS << DCFG_DSPD_Pos);
}
static bool check_dwc2(dwc2_regs_t * dwc2)
{
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
print_dwc2_info(dwc2);
#endif
// For some reasons: GD32VF103 snpsid and all hwcfg register are always zero (skip it)
#if !TU_CHECK_MCU(OPT_MCU_GD32VF103)
uint32_t const gsnpsid = dwc2->gsnpsid & GSNPSID_ID_MASK;
TU_ASSERT(gsnpsid == DWC2_OTG_ID || gsnpsid == DWC2_FS_IOT_ID || gsnpsid == DWC2_HS_IOT_ID);
#endif
return true;
}
void dcd_init (uint8_t rhport)
{
// Programming model begins in the last section of the chapter on the USB
// peripheral in each Reference Manual.
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// Check Synopsys ID register, failed if controller clock/power is not enabled
TU_VERIFY(check_dwc2(dwc2), );
dcd_disconnect(rhport);
// max number of endpoints & total_fifo_size are:
// hw_cfg2->num_dev_ep, hw_cfg2->total_fifo_size
if( phy_hs_supported(dwc2) )
{
// Highspeed
phy_hs_init(dwc2);
}else
{
// core does not support highspeed or hs-phy is not present
phy_fs_init(dwc2);
}
// Restart PHY clock
dwc2->pcgctl &= ~(PCGCTL_STOPPCLK | PCGCTL_GATEHCLK | PCGCTL_PWRCLMP | PCGCTL_RSTPDWNMODULE);
/* Set HS/FS Timeout Calibration to 7 (max available value).
* The number of PHY clocks that the application programs in
* this field is added to the high/full speed interpacket timeout
* duration in the core to account for any additional delays
* introduced by the PHY. This can be required, because the delay
* introduced by the PHY in generating the linestate condition
* can vary from one PHY to another.
*/
dwc2->gusbcfg |= (7ul << GUSBCFG_TOCAL_Pos);
// Force device mode
dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_FHMOD) | GUSBCFG_FDMOD;
// Clear A override, force B Valid
dwc2->gotgctl = (dwc2->gotgctl & ~GOTGCTL_AVALOEN) | GOTGCTL_BVALOEN | GOTGCTL_BVALOVAL;
// If USB host misbehaves during status portion of control xfer
// (non zero-length packet), send STALL back and discard.
dwc2->dcfg |= DCFG_NZLSOHSK;
// Clear all interrupts
dwc2->gintsts |= dwc2->gintsts;
dwc2->gotgint |= dwc2->gotgint;
// Required as part of core initialization.
// TODO: How should mode mismatch be handled? It will cause
// the core to stop working/require reset.
dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_MMISM | GINTMSK_RXFLVLM |
GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;
// Enable global interrupt
dwc2->gahbcfg |= GAHBCFG_GINT;
// make sure we are in device mode
// TU_ASSERT(!(dwc2->gintsts & GINTSTS_CMOD), );
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gotgctl);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gusbcfg);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->dcfg);
// TU_LOG_HEX(DWC2_DEBUG, dwc2->gahbcfg);
dcd_connect(rhport);
}
void dcd_int_enable (uint8_t rhport)
{
dwc2_dcd_int_enable(rhport);
}
void dcd_int_disable (uint8_t rhport)
{
dwc2_dcd_int_disable(rhport);
}
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);
// Response with status after changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// set remote wakeup
dwc2->dctl |= DCTL_RWUSIG;
// enable SOF to detect bus resume
dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM;
// Per specs: remote wakeup signal bit must be clear within 1-15ms
dwc2_remote_wakeup_delay();
dwc2->dctl &= ~DCTL_RWUSIG;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2->dctl &= ~DCTL_SDIS;
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
dwc2->dctl |= DCTL_SDIS;
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(epnum < DWC2_EP_MAX);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = tu_edpt_packet_size(desc_edpt);
xfer->interval = desc_edpt->bInterval;
uint16_t const fifo_size = tu_div_ceil(xfer->max_size, 4);
if(dir == TUSB_DIR_OUT)
{
// Calculate required size of RX FIFO
uint16_t const sz = calc_rx_ff_size(4*fifo_size);
// If size_rx needs to be extended check if possible and if so enlarge it
if (dwc2->grxfsiz < sz)
{
TU_ASSERT(sz + _allocated_fifo_words_tx <= DWC2_EP_FIFO_SIZE/4);
// Enlarge RX FIFO
dwc2->grxfsiz = sz;
}
dwc2->epout[epnum].doepctl |= (1 << DOEPCTL_USBAEP_Pos) |
(desc_edpt->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DOEPCTL_MPSIZ_Pos);
dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
}
else
{
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
// Check if free space is available
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= DWC2_EP_FIFO_SIZE/4);
_allocated_fifo_words_tx += fifo_size;
TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %u", fifo_size*4, DWC2_EP_FIFO_SIZE-_allocated_fifo_words_tx*4);
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | (DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx);
dwc2->epin[epnum].diepctl |= (1 << DIEPCTL_USBAEP_Pos) |
(epnum << DIEPCTL_TXFNUM_Pos) |
(desc_edpt->bmAttributes.xfer << DIEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DIEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DIEPCTL_MPSIZ_Pos);
dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
}
return true;
}
// Close all non-control endpoints, cancel all pending transfers if any.
void dcd_edpt_close_all (uint8_t rhport)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
// Disable non-control interrupt
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
for(uint8_t n = 1; n < DWC2_EP_MAX; n++)
{
// disable OUT endpoint
dwc2->epout[n].doepctl = 0;
xfer_status[n][TUSB_DIR_OUT].max_size = 0;
// disable IN endpoint
dwc2->epin[n].diepctl = 0;
xfer_status[n][TUSB_DIR_IN].max_size = 0;
}
// reset allocated fifo IN
_allocated_fifo_words_tx = 16;
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
xfer->ff = NULL;
xfer->total_len = total_bytes;
// EP0 can only handle one packet
if(epnum == 0)
{
ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
}
else
{
uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if ( (short_packet_size > 0) || (total_bytes == 0) ) num_packets++;
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
}
return true;
}
// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
// USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
TU_ASSERT(ff->item_size == 1);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = NULL;
xfer->ff = ff;
xfer->total_len = total_bytes;
uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if ( short_packet_size > 0 || (total_bytes == 0) ) num_packets++;
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
return true;
}
static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
{
(void) rhport;
dwc2_regs_t *dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if ( dir == TUSB_DIR_IN )
{
dwc2_epin_t* epin = dwc2->epin;
// Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA) )
{
epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
}
else
{
// Stop transmitting packets and NAK IN xfers.
epin[epnum].diepctl |= DIEPCTL_SNAK;
while ( (epin[epnum].diepint & DIEPINT_INEPNE) == 0 ) {}
// Disable the endpoint.
epin[epnum].diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0);
while ( (epin[epnum].diepint & DIEPINT_EPDISD_Msk) == 0 ) {}
epin[epnum].diepint = DIEPINT_EPDISD;
}
// Flush the FIFO, and wait until we have confirmed it cleared.
dwc2->grstctl |= (epnum << GRSTCTL_TXFNUM_Pos);
dwc2->grstctl |= GRSTCTL_TXFFLSH;
while ( (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0 ) {}
}
else
{
dwc2_epout_t* epout = dwc2->epout;
// Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA) )
{
epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0;
}
else
{
// Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dwc2->dctl |= DCTL_SGONAK;
while ( (dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0 ) {}
// Ditto here- disable the endpoint.
epout[epnum].doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
while ( (epout[epnum].doepint & DOEPINT_EPDISD_Msk) == 0 ) {}
epout[epnum].doepint = DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dwc2->dctl |= DCTL_CGONAK;
}
}
}
/**
* Close an endpoint.
*/
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_disable(rhport, ep_addr, false);
// Update max_size
xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation
if (dir == TUSB_DIR_IN)
{
uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos;
// For now only the last opened endpoint can be closed without fuss.
TU_ASSERT(fifo_start == DWC2_EP_FIFO_SIZE/4 - _allocated_fifo_words_tx,);
_allocated_fifo_words_tx -= fifo_size;
}
else
{
_out_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
}
}
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
dcd_edpt_disable(rhport, ep_addr, true);
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// Clear stall and reset data toggle
if ( dir == TUSB_DIR_IN )
{
dwc2->epin[epnum].diepctl &= ~DIEPCTL_STALL;
dwc2->epin[epnum].diepctl |= DIEPCTL_SD0PID_SEVNFRM;
}
else
{
dwc2->epout[epnum].doepctl &= ~DOEPCTL_STALL;
dwc2->epout[epnum].doepctl |= DOEPCTL_SD0PID_SEVNFRM;
}
}
/*------------------------------------------------------------------*/
// Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
volatile const uint32_t * rx_fifo = dwc2->fifo[0];
// Reading full available 32 bit words from fifo
uint16_t full_words = len >> 2;
while(full_words--)
{
tu_unaligned_write32(dst, *rx_fifo);
dst += 4;
}
// Read the remaining 1-3 bytes from fifo
uint8_t const bytes_rem = len & 0x03;
if ( bytes_rem != 0 )
{
uint32_t const tmp = *rx_fifo;
dst[0] = tu_u32_byte0(tmp);
if ( bytes_rem > 1 ) dst[1] = tu_u32_byte1(tmp);
if ( bytes_rem > 2 ) dst[2] = tu_u32_byte2(tmp);
}
}
// Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t const * src, uint16_t len)
{
(void) rhport;
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
volatile uint32_t * tx_fifo = dwc2->fifo[fifo_num];
// Pushing full available 32 bit words to fifo
uint16_t full_words = len >> 2;
while(full_words--)
{
*tx_fifo = tu_unaligned_read32(src);
src += 4;
}
// Write the remaining 1-3 bytes into fifo
uint8_t const bytes_rem = len & 0x03;
if ( bytes_rem )
{
uint32_t tmp_word = src[0];
if ( bytes_rem > 1 ) tmp_word |= (src[1] << 8);
if ( bytes_rem > 2 ) tmp_word |= (src[2] << 16);
*tx_fifo = tmp_word;
}
}
static void handle_rxflvl_irq(uint8_t rhport)
{
dwc2_regs_t * dwc2 = DWC2_REG(rhport);
volatile uint32_t const * rx_fifo = dwc2->fifo[0];
// Pop control word off FIFO
uint32_t const ctl_word = dwc2->grxstsp;
uint8_t const pktsts = (ctl_word & GRXSTSP_PKTSTS_Msk ) >> GRXSTSP_PKTSTS_Pos;
uint8_t const epnum = (ctl_word & GRXSTSP_EPNUM_Msk ) >> GRXSTSP_EPNUM_Pos;
uint16_t const bcnt = (ctl_word & GRXSTSP_BCNT_Msk ) >> GRXSTSP_BCNT_Pos;
dwc2_epout_t* epout = &dwc2->epout[epnum];
//#if CFG_TUSB_DEBUG >= DWC2_DEBUG
// const char * pktsts_str[] =
// {
// "ASSERT", "Global NAK (ISR)", "Out Data Received", "Out Transfer Complete (ISR)",
// "Setup Complete (ISR)", "ASSERT", "Setup Data Received"
// };
// TU_LOG_LOCATION();
// TU_LOG(DWC2_DEBUG, " EP %02X, Byte Count %u, %s\r\n", epnum, bcnt, pktsts_str[pktsts]);
// TU_LOG(DWC2_DEBUG, " daint = %08lX, doepint = %04X\r\n", (unsigned long) dwc2->daint, (unsigned int) epout->doepint);
//#endif
switch ( pktsts )
{
// Global OUT NAK: do nothign
case GRXSTS_PKTSTS_GLOBALOUTNAK: break;
case GRXSTS_PKTSTS_SETUPRX:
// Setup packet received
// We can receive up to three setup packets in succession, but
// only the last one is valid.
_setup_packet[0] = (*rx_fifo);
_setup_packet[1] = (*rx_fifo);
break;
case GRXSTS_PKTSTS_SETUPDONE:
// Setup packet done (Interrupt)
epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
break;
case GRXSTS_PKTSTS_OUTRX:
{
// Out packet received
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Read packet off RxFIFO
if ( xfer->ff )
{
// Ring buffer
tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, bcnt);
}
else
{
// Linear buffer
read_fifo_packet(rhport, xfer->buffer, bcnt);
// Increment pointer to xfer data
xfer->buffer += bcnt;
}
// Truncate transfer length in case of short packet
if ( bcnt < xfer->max_size )
{
xfer->total_len -= (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos;
if ( epnum == 0 )
{
xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0;
}
}
}
break;
// Out packet done (Interrupt)
case GRXSTS_PKTSTS_OUTDONE:
// Occurred on STM32L47 with dwc2 version 3.10a but not found on other version like 2.80a or 3.30a
// May (or not) be 3.10a specific feature/bug or depending on MCU configuration
// XFRC complete is additionally generated when
// - setup packet is received
// - complete the data stage of control write is complete
if ((epnum == 0) && (bcnt == 0) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a))
{
uint32_t doepint = epout->doepint;
if (doepint & (DOEPINT_STPKTRX | DOEPINT_OTEPSPR))
{
// skip this "no-data" transfer complete event
// Note: STPKTRX will be clear later by setup received handler
uint32_t clear_flags = DOEPINT_XFRC;
if (doepint & DOEPINT_OTEPSPR) clear_flags |= DOEPINT_OTEPSPR;
epout->doepint = clear_flags;
// TU_LOG(DWC2_DEBUG, " FIX extra transfer complete on setup/data compete\r\n");
}
}
break;
default: // Invalid
TU_BREAKPOINT();
break;
}
}
static void handle_epout_irq (uint8_t rhport)
{
dwc2_regs_t *dwc2 = DWC2_REG(rhport);
// DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
{
if ( dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + n) )
{
dwc2_epout_t* epout = &dwc2->epout[n];
uint32_t const doepint = epout->doepint;
// SETUP packet Setup Phase done.
if ( doepint & DOEPINT_STUP )
{
uint32_t clear_flag = DOEPINT_STUP;
// STPKTRX is only available for version from 3_00a
if ((doepint & DOEPINT_STPKTRX) && (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a))
{
clear_flag |= DOEPINT_STPKTRX;
}
epout->doepint = clear_flag;
dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true);
}
// OUT XFER complete
if ( epout->doepint & DOEPINT_XFRC )
{
epout->doepint = DOEPINT_XFRC;
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
// EP0 can only handle one packet
if ( (n == 0) && ep0_pending[TUSB_DIR_OUT] )
{
// Schedule another packet to be received.
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
}
else
{
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
}
}
}
static void handle_epin_irq (uint8_t rhport)
{
dwc2_regs_t *dwc2 = DWC2_REG(rhport);
dwc2_epin_t* epin = dwc2->epin;
// DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < DWC2_EP_MAX; n++ )
{
if ( dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n) )
{
// IN XFER complete (entire xfer).
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
if ( epin[n].diepint & DIEPINT_XFRC )
{
epin[n].diepint = DIEPINT_XFRC;
// EP0 can only handle one packet
if ( (n == 0) && ep0_pending[TUSB_DIR_IN] )
{
// Schedule another packet to be transmitted.
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
}
else
{
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
// XFER FIFO empty
if ( (epin[n].diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n)) )
{
// diepint's TXFE bit is read-only, software cannot clear it.
// It will only be cleared by hardware when written bytes is more than
// - 64 bytes or
// - Half of TX FIFO size (configured by DIEPTXF)
uint16_t remaining_packets = (epin[n].dieptsiz & DIEPTSIZ_PKTCNT_Msk) >> DIEPTSIZ_PKTCNT_Pos;
// Process every single packet (only whole packets can be written to fifo)
for ( uint16_t i = 0; i < remaining_packets; i++ )
{
uint16_t const remaining_bytes = (epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos;
// Packet can not be larger than ep max size
uint16_t const packet_size = tu_min16(remaining_bytes, xfer->max_size);
// It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
// EP has to be checked if the buffer can take another WHOLE packet
if ( packet_size > ((epin[n].dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2) ) break;
// Push packet to Tx-FIFO
if ( xfer->ff )
{
volatile uint32_t *tx_fifo = dwc2->fifo[n];
tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, packet_size);
}
else
{
write_fifo_packet(rhport, n, xfer->buffer, packet_size);
// Increment pointer to xfer data
xfer->buffer += packet_size;
}
}
// Turn off TXFE if all bytes are written.
if ( ((epin[n].dieptsiz & DIEPTSIZ_XFRSIZ_Msk) >> DIEPTSIZ_XFRSIZ_Pos) == 0 )
{
dwc2->diepempmsk &= ~(1 << n);
}
}
}
}
}
void dcd_int_handler(uint8_t rhport)
{
dwc2_regs_t *dwc2 = DWC2_REG(rhport);
uint32_t const int_status = dwc2->gintsts & dwc2->gintmsk;
if(int_status & GINTSTS_USBRST)
{
// USBRST is start of reset.
dwc2->gintsts = GINTSTS_USBRST;
bus_reset(rhport);
}
if(int_status & GINTSTS_ENUMDNE)
{
// ENUMDNE is the end of reset where speed of the link is detected
dwc2->gintsts = GINTSTS_ENUMDNE;
tusb_speed_t speed;
switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos)
{
case DSTS_ENUMSPD_HS:
speed = TUSB_SPEED_HIGH;
break;
case DSTS_ENUMSPD_LS:
speed = TUSB_SPEED_LOW;
break;
case DSTS_ENUMSPD_FS_HSPHY:
case DSTS_ENUMSPD_FS:
default:
speed = TUSB_SPEED_FULL;
break;
}
dcd_event_bus_reset(rhport, speed, true);
}
if(int_status & GINTSTS_USBSUSP)
{
dwc2->gintsts = GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
if(int_status & GINTSTS_WKUINT)
{
dwc2->gintsts = GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
// TODO check GINTSTS_DISCINT for disconnect detection
// if(int_status & GINTSTS_DISCINT)
if(int_status & GINTSTS_OTGINT)
{
// OTG INT bit is read-only
uint32_t const otg_int = dwc2->gotgint;
if (otg_int & GOTGINT_SEDET)
{
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
dwc2->gotgint = otg_int;
}
if(int_status & GINTSTS_SOF)
{
dwc2->gotgint = GINTSTS_SOF;
// Disable SOF interrupt since currently only used for remote wakeup detection
dwc2->gintmsk &= ~GINTMSK_SOFM;
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
// RxFIFO non-empty interrupt handling.
if(int_status & GINTSTS_RXFLVL)
{
// RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO
dwc2->gintmsk &= ~GINTMSK_RXFLVLM;
// Loop until all available packets were handled
do
{
handle_rxflvl_irq(rhport);
} while(dwc2->gotgint & GINTSTS_RXFLVL);
// Manage RX FIFO size
if (_out_ep_closed)
{
update_grxfsiz(rhport);
// Disable flag
_out_ep_closed = false;
}
dwc2->gintmsk |= GINTMSK_RXFLVLM;
}
// OUT endpoint interrupt handling.
if(int_status & GINTSTS_OEPINT)
{
// OEPINT is read-only, clear using DOEPINTn
handle_epout_irq(rhport);
}
// IN endpoint interrupt handling.
if(int_status & GINTSTS_IEPINT)
{
// IEPINT bit read-only, clear using DIEPINTn
handle_epin_irq(rhport);
}
// // Check for Incomplete isochronous IN transfer
// if(int_status & GINTSTS_IISOIXFR) {
// printf(" IISOIXFR!\r\n");
//// TU_LOG(DWC2_DEBUG, " IISOIXFR!\r\n");
// }
}
#endif