tinyusb/hw/bsp/max32666/max32666.ld
Brent Kowal 13f5f20c98 Pre-commit fixes.
Resolve codespell and EOF errors found in the pre-commit CI task.
2024-07-11 12:13:30 -04:00

136 lines
4.0 KiB
Plaintext

/* SPID and SPIX Sections here are maximum possible sizes */
/* If used, they should be adjusted for the external Flash/RAM size */
MEMORY {
SPIX (rx) : ORIGIN = 0x08000000, LENGTH = 0x08000000
FLASH (rx) : ORIGIN = 0x10000000, LENGTH = 0x00100000
SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x0008C000
SPID (rw) : ORIGIN = 0x80000000, LENGTH = 512M
}
/* Sections Definitions */
SECTIONS {
.text :
{
_text = .;
KEEP(*(.isr_vector))
*(.text*) /* program code */
*(.rodata*) /* read-only data: "const" */
KEEP(*(.init))
KEEP(*(.fini))
/* .ctors */
*crtbegin.o(.ctors)
*crtbegin?.o(.ctors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
*(SORT(.ctors.*))
*(.ctors)
/* .dtors */
*crtbegin.o(.dtors)
*crtbegin?.o(.dtors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
*(SORT(.dtors.*))
*(.dtors)
/* C++ Exception handling */
KEEP(*(.eh_frame*))
_etext = .;
} > FLASH
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} > FLASH
/* This section will keep the SPIX data until loaded into the external device */
/* Upon initialization of SPIX (user code needs to do this) */
.xip_section :
{
KEEP(*(.xip_section*))
} > SPIX AT>FLASH
__load_start_xip = LOADADDR(.xip_section);
__load_length_xip = SIZEOF(.xip_section);
/* it's used for C++ exception handling */
/* we need to keep this to avoid overlapping */
.ARM.exidx :
{
__exidx_start = .;
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
__exidx_end = .;
} > FLASH
.data :
{
_data = ALIGN(., 4);
*(vtable)
*(.data*) /*read-write initialized data: initialized global variable*/
*(.spix_config*) /* SPIX configuration functions need to be run from SRAM */
*(.flashprog*) /* Flash program */
/* These array sections are used by __libc_init_array to call static C++ constructors */
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
KEEP(*(SORT(.fini_array.*)))
KEEP(*(.fini_array))
PROVIDE_HIDDEN (__fini_array_end = .);
_edata = ALIGN(., 4);
} > SRAM AT>FLASH
__load_data = LOADADDR(.data);
.bss :
{
. = ALIGN(4);
_bss = .;
*(.bss*) /*read-write zero initialized data: uninitialized global variable*/
*(COMMON)
_ebss = ALIGN(., 4);
} > SRAM
/* Setup the stack for Core 1, it will only be used if the user code
* includes a definition of Stack_Size_Core1, which defines the space
* reserved above the main core's stack for core 1's stack */
__StackTop_Core1 = ORIGIN(SRAM) + LENGTH(SRAM);
__StackLimit_Core1 = DEFINED(Stack_Size_Core1) ? __StackTop_Core1 - Stack_Size_Core1 : __StackTop_Core1;
/* Set stack top to end of RAM, and stack limit move down by Stack_Size.
* If core 1 is used, set the stack to the bottom of Core 1's stack region */
__StackTop = DEFINED(Stack_Size_Core1) ? __StackLimit_Core1 : ORIGIN(SRAM) + LENGTH(SRAM);
__StackLimit = __StackTop - Stack_Size;
.heap (COPY):
{
. = ALIGN(4);
PROVIDE ( end = . );
PROVIDE ( _end = . );
*(.heap*)
__HeapLimit = ABSOLUTE(__StackLimit);
} > SRAM
PROVIDE(__stack = __StackTop);
/* Check if data + heap + stack(s) exceeds RAM limit */
ASSERT(__StackLimit >= _ebss, "region RAM overflowed with stack")
}