mirror of
https://github.com/hathach/tinyusb.git
synced 2025-01-24 05:42:57 +08:00
983abfd6d8
nrf5x: Fix EP OUT race conditions
1125 lines
33 KiB
C
1125 lines
33 KiB
C
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* This file is part of the TinyUSB stack.
|
|
*/
|
|
|
|
#include "tusb_option.h"
|
|
|
|
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_NRF5X
|
|
|
|
#include "nrf.h"
|
|
#include "nrf_clock.h"
|
|
#include "nrf_power.h"
|
|
#include "nrfx_usbd_errata.h"
|
|
#include "device/dcd.h"
|
|
|
|
// TODO remove later
|
|
#include "device/usbd.h"
|
|
#include "device/usbd_pvt.h" // to use defer function helper
|
|
|
|
#if CFG_TUSB_OS == OPT_OS_MYNEWT
|
|
#include "mcu/mcu.h"
|
|
#endif
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/* MACRO TYPEDEF CONSTANT ENUM
|
|
*------------------------------------------------------------------*/
|
|
enum
|
|
{
|
|
// Max allowed by USB specs
|
|
MAX_PACKET_SIZE = 64,
|
|
|
|
// Mask of all END event (IN & OUT) for all endpoints. ENDEPIN0-7, ENDEPOUT0-7, ENDISOIN, ENDISOOUT
|
|
EDPT_END_ALL_MASK = (0xff << USBD_INTEN_ENDEPIN0_Pos) | (0xff << USBD_INTEN_ENDEPOUT0_Pos) |
|
|
USBD_INTENCLR_ENDISOIN_Msk | USBD_INTEN_ENDISOOUT_Msk
|
|
};
|
|
|
|
enum
|
|
{
|
|
EP_ISO_NUM = 8, // Endpoint number is fixed (8) for ISOOUT and ISOIN
|
|
EP_CBI_COUNT = 8 // Control Bulk Interrupt endpoints count
|
|
};
|
|
|
|
// Transfer Descriptor
|
|
typedef struct
|
|
{
|
|
uint8_t* buffer;
|
|
uint16_t total_len;
|
|
volatile uint16_t actual_len;
|
|
uint16_t mps; // max packet size
|
|
|
|
// nRF will auto accept OUT packet after DMA is done
|
|
// indicate packet is already ACK
|
|
volatile bool data_received;
|
|
|
|
// Set to true when data was transferred from RAM to ISO IN output buffer.
|
|
// New data can be put in ISO IN output buffer after SOF.
|
|
bool iso_in_transfer_ready;
|
|
|
|
} xfer_td_t;
|
|
|
|
// Data for managing dcd
|
|
static struct
|
|
{
|
|
// All 8 endpoints including control IN & OUT (offset 1)
|
|
// +1 for ISO endpoints
|
|
xfer_td_t xfer[EP_CBI_COUNT + 1][2];
|
|
|
|
// nRF can only carry one DMA at a time, this is used to guard the access to EasyDMA
|
|
volatile bool dma_running;
|
|
}_dcd;
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/* Control / Bulk / Interrupt (CBI) Transfer
|
|
*------------------------------------------------------------------*/
|
|
|
|
// NVIC_GetEnableIRQ is only available in CMSIS v5
|
|
#ifndef NVIC_GetEnableIRQ
|
|
static inline uint32_t NVIC_GetEnableIRQ(IRQn_Type IRQn)
|
|
{
|
|
if ((int32_t)(IRQn) >= 0)
|
|
{
|
|
return((uint32_t)(((NVIC->ISER[(((uint32_t)(int32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)(int32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
|
|
}
|
|
else
|
|
{
|
|
return(0U);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// check if we are in ISR
|
|
TU_ATTR_ALWAYS_INLINE static inline bool is_in_isr(void)
|
|
{
|
|
return (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) ? true : false;
|
|
}
|
|
|
|
// helper to start DMA
|
|
static void start_dma(volatile uint32_t* reg_startep)
|
|
{
|
|
_dcd.dma_running = true;
|
|
|
|
(*reg_startep) = 1;
|
|
__ISB(); __DSB();
|
|
|
|
// TASKS_EP0STATUS, TASKS_EP0RCVOUT seem to need EasyDMA to be available
|
|
// However these don't trigger any DMA transfer and got ENDED event subsequently
|
|
// Therefore dma_pending is corrected right away
|
|
if ( (reg_startep == &NRF_USBD->TASKS_EP0STATUS) || (reg_startep == &NRF_USBD->TASKS_EP0RCVOUT) )
|
|
{
|
|
_dcd.dma_running = false;
|
|
}
|
|
}
|
|
|
|
// only 1 EasyDMA can be active at any time
|
|
// TODO use Cortex M4 LDREX and STREX command (atomic) to have better mutex access to EasyDMA
|
|
// since current implementation does not 100% guarded against race condition
|
|
static void edpt_dma_start(volatile uint32_t* reg_startep)
|
|
{
|
|
// Called in critical section i.e within USB ISR, or USB/Global interrupt disabled
|
|
if ( is_in_isr() || __get_PRIMASK() || !NVIC_GetEnableIRQ(USBD_IRQn) )
|
|
{
|
|
if (_dcd.dma_running)
|
|
{
|
|
//use usbd task to defer later
|
|
usbd_defer_func((osal_task_func_t) edpt_dma_start, (void*) (uintptr_t) reg_startep, true);
|
|
}else
|
|
{
|
|
start_dma(reg_startep);
|
|
}
|
|
}else
|
|
{
|
|
// Called in non-critical thread-mode, should be 99% of the time.
|
|
// Should be safe to blocking wait until previous DMA transfer complete
|
|
uint8_t const rhport = 0;
|
|
bool started = false;
|
|
while(!started)
|
|
{
|
|
// LDREX/STREX may be needed in form of std atomic (required C11) or
|
|
// use osal mutex to guard against multiple core MCUs such as nRF53
|
|
dcd_int_disable(rhport);
|
|
|
|
if ( !_dcd.dma_running )
|
|
{
|
|
start_dma(reg_startep);
|
|
started = true;
|
|
}
|
|
|
|
dcd_int_enable(rhport);
|
|
|
|
// osal_yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
// DMA is complete
|
|
static void edpt_dma_end(void)
|
|
{
|
|
TU_ASSERT(_dcd.dma_running, );
|
|
_dcd.dma_running = false;
|
|
}
|
|
|
|
// helper getting td
|
|
static inline xfer_td_t* get_td(uint8_t epnum, uint8_t dir)
|
|
{
|
|
return &_dcd.xfer[epnum][dir];
|
|
}
|
|
|
|
// Start DMA to move data from Endpoint -> RAM
|
|
static void xact_out_dma(uint8_t epnum)
|
|
{
|
|
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
|
|
uint32_t xact_len;
|
|
|
|
if (epnum == EP_ISO_NUM)
|
|
{
|
|
xact_len = NRF_USBD->SIZE.ISOOUT;
|
|
// If ZERO bit is set, ignore ISOOUT length
|
|
if (xact_len & USBD_SIZE_ISOOUT_ZERO_Msk)
|
|
{
|
|
xact_len = 0;
|
|
}
|
|
else
|
|
{
|
|
// Trigger DMA move data from Endpoint -> SRAM
|
|
NRF_USBD->ISOOUT.PTR = (uint32_t) xfer->buffer;
|
|
NRF_USBD->ISOOUT.MAXCNT = xact_len;
|
|
|
|
edpt_dma_start(&NRF_USBD->TASKS_STARTISOOUT);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// limit xact len to remaining length
|
|
xact_len = tu_min16((uint16_t) NRF_USBD->SIZE.EPOUT[epnum], xfer->total_len - xfer->actual_len);
|
|
|
|
// Trigger DMA move data from Endpoint -> SRAM
|
|
NRF_USBD->EPOUT[epnum].PTR = (uint32_t) xfer->buffer;
|
|
NRF_USBD->EPOUT[epnum].MAXCNT = xact_len;
|
|
|
|
edpt_dma_start(&NRF_USBD->TASKS_STARTEPOUT[epnum]);
|
|
}
|
|
}
|
|
|
|
// Prepare for a CBI transaction IN, call at the start
|
|
// it start DMA to transfer data from RAM -> Endpoint
|
|
static void xact_in_dma(uint8_t epnum)
|
|
{
|
|
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN);
|
|
|
|
// Each transaction is up to Max Packet Size
|
|
uint16_t const xact_len = tu_min16(xfer->total_len - xfer->actual_len, xfer->mps);
|
|
|
|
NRF_USBD->EPIN[epnum].PTR = (uint32_t) xfer->buffer;
|
|
NRF_USBD->EPIN[epnum].MAXCNT = xact_len;
|
|
|
|
edpt_dma_start(&NRF_USBD->TASKS_STARTEPIN[epnum]);
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Controller API
|
|
//--------------------------------------------------------------------+
|
|
void dcd_init (uint8_t rhport)
|
|
{
|
|
TU_LOG1("dcd init\r\n");
|
|
(void) rhport;
|
|
}
|
|
|
|
void dcd_int_enable(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
NVIC_EnableIRQ(USBD_IRQn);
|
|
}
|
|
|
|
void dcd_int_disable(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
NVIC_DisableIRQ(USBD_IRQn);
|
|
}
|
|
|
|
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
|
|
{
|
|
(void) rhport;
|
|
(void) dev_addr;
|
|
// Set Address is automatically update by hw controller, nothing to do
|
|
|
|
// Enable usbevent for suspend and resume detection
|
|
// Since the bus signal D+/D- are stable now.
|
|
|
|
// Clear current pending first
|
|
NRF_USBD->EVENTCAUSE |= NRF_USBD->EVENTCAUSE;
|
|
NRF_USBD->EVENTS_USBEVENT = 0;
|
|
|
|
NRF_USBD->INTENSET = USBD_INTEN_USBEVENT_Msk;
|
|
}
|
|
|
|
void dcd_remote_wakeup(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
|
|
// Bring controller out of low power mode
|
|
// will start wakeup when USBWUALLOWED is set
|
|
NRF_USBD->LOWPOWER = 0;
|
|
}
|
|
|
|
// disconnect by disabling internal pull-up resistor on D+/D-
|
|
void dcd_disconnect(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
NRF_USBD->USBPULLUP = 0;
|
|
|
|
// Disable Pull-up does not trigger Power USB Removed, in fact it have no
|
|
// impact on the USB Power status at all -> need to submit unplugged event to the stack.
|
|
dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, false);
|
|
}
|
|
|
|
// connect by enabling internal pull-up resistor on D+/D-
|
|
void dcd_connect(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
NRF_USBD->USBPULLUP = 1;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Endpoint API
|
|
//--------------------------------------------------------------------+
|
|
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
|
|
{
|
|
(void) rhport;
|
|
|
|
uint8_t const ep_addr = desc_edpt->bEndpointAddress;
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
_dcd.xfer[epnum][dir].mps = tu_edpt_packet_size(desc_edpt);
|
|
|
|
if (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS)
|
|
{
|
|
if (dir == TUSB_DIR_OUT)
|
|
{
|
|
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
|
|
NRF_USBD->EPOUTEN |= TU_BIT(epnum);
|
|
|
|
// Write any value to SIZE register will allow nRF to ACK/accept data
|
|
NRF_USBD->SIZE.EPOUT[epnum] = 0;
|
|
}else
|
|
{
|
|
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
|
|
NRF_USBD->EPINEN |= TU_BIT(epnum);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
TU_ASSERT(epnum == EP_ISO_NUM);
|
|
if (dir == TUSB_DIR_OUT)
|
|
{
|
|
// SPLIT ISO buffer when ISO IN endpoint is already opened.
|
|
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_IN].mps) NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
|
|
|
|
// Clear old events
|
|
NRF_USBD->EVENTS_ENDISOOUT = 0;
|
|
|
|
// Clear SOF event in case interrupt was not enabled yet.
|
|
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
|
|
|
|
// Enable SOF and ISOOUT interrupts, and ISOOUT endpoint.
|
|
NRF_USBD->INTENSET = USBD_INTENSET_ENDISOOUT_Msk | USBD_INTENSET_SOF_Msk;
|
|
NRF_USBD->EPOUTEN |= USBD_EPOUTEN_ISOOUT_Msk;
|
|
}
|
|
else
|
|
{
|
|
NRF_USBD->EVENTS_ENDISOIN = 0;
|
|
|
|
// SPLIT ISO buffer when ISO OUT endpoint is already opened.
|
|
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_OUT].mps) NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
|
|
|
|
// Clear SOF event in case interrupt was not enabled yet.
|
|
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
|
|
|
|
// Enable SOF and ISOIN interrupts, and ISOIN endpoint.
|
|
NRF_USBD->INTENSET = USBD_INTENSET_ENDISOIN_Msk | USBD_INTENSET_SOF_Msk;
|
|
NRF_USBD->EPINEN |= USBD_EPINEN_ISOIN_Msk;
|
|
}
|
|
}
|
|
|
|
// clear stall and reset DataToggle
|
|
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr;
|
|
NRF_USBD->DTOGGLE = (USBD_DTOGGLE_VALUE_Data0 << USBD_DTOGGLE_VALUE_Pos) | ep_addr;
|
|
|
|
__ISB(); __DSB();
|
|
|
|
return true;
|
|
}
|
|
|
|
void dcd_edpt_close_all (uint8_t rhport)
|
|
{
|
|
// disable interrupt to prevent race condition
|
|
dcd_int_disable(rhport);
|
|
|
|
// disable all non-control (bulk + interrupt) endpoints
|
|
for ( uint8_t ep = 1; ep < EP_CBI_COUNT; ep++ )
|
|
{
|
|
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + ep) | TU_BIT(USBD_INTEN_ENDEPIN0_Pos + ep);
|
|
|
|
NRF_USBD->TASKS_STARTEPIN[ep] = 0;
|
|
NRF_USBD->TASKS_STARTEPOUT[ep] = 0;
|
|
|
|
tu_memclr(_dcd.xfer[ep], 2*sizeof(xfer_td_t));
|
|
}
|
|
|
|
// disable both ISO
|
|
NRF_USBD->INTENCLR = USBD_INTENCLR_SOF_Msk | USBD_INTENCLR_ENDISOOUT_Msk | USBD_INTENCLR_ENDISOIN_Msk;
|
|
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_OneDir;
|
|
|
|
NRF_USBD->TASKS_STARTISOIN = 0;
|
|
NRF_USBD->TASKS_STARTISOOUT = 0;
|
|
|
|
tu_memclr(_dcd.xfer[EP_ISO_NUM], 2*sizeof(xfer_td_t));
|
|
|
|
// de-activate all non-control
|
|
NRF_USBD->EPOUTEN = 1UL;
|
|
NRF_USBD->EPINEN = 1UL;
|
|
|
|
dcd_int_enable(rhport);
|
|
}
|
|
|
|
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
|
|
{
|
|
(void) rhport;
|
|
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
if (epnum != EP_ISO_NUM)
|
|
{
|
|
// CBI
|
|
if (dir == TUSB_DIR_OUT)
|
|
{
|
|
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
|
|
NRF_USBD->EPOUTEN &= ~TU_BIT(epnum);
|
|
}
|
|
else
|
|
{
|
|
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
|
|
NRF_USBD->EPINEN &= ~TU_BIT(epnum);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_dcd.xfer[EP_ISO_NUM][dir].mps = 0;
|
|
// ISO
|
|
if (dir == TUSB_DIR_OUT)
|
|
{
|
|
NRF_USBD->INTENCLR = USBD_INTENCLR_ENDISOOUT_Msk;
|
|
NRF_USBD->EPOUTEN &= ~USBD_EPOUTEN_ISOOUT_Msk;
|
|
NRF_USBD->EVENTS_ENDISOOUT = 0;
|
|
}
|
|
else
|
|
{
|
|
NRF_USBD->INTENCLR = USBD_INTENCLR_ENDISOIN_Msk;
|
|
NRF_USBD->EPINEN &= ~USBD_EPINEN_ISOIN_Msk;
|
|
}
|
|
// One of the ISO endpoints closed, no need to split buffers any more.
|
|
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_OneDir;
|
|
// When both ISO endpoint are close there is no need for SOF any more.
|
|
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_IN].mps + _dcd.xfer[EP_ISO_NUM][TUSB_DIR_OUT].mps == 0) NRF_USBD->INTENCLR = USBD_INTENCLR_SOF_Msk;
|
|
}
|
|
__ISB(); __DSB();
|
|
}
|
|
|
|
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
|
|
{
|
|
(void) rhport;
|
|
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
xfer_td_t* xfer = get_td(epnum, dir);
|
|
|
|
dcd_int_disable(rhport);
|
|
xfer->buffer = buffer;
|
|
xfer->total_len = total_bytes;
|
|
xfer->actual_len = 0;
|
|
dcd_int_enable(rhport);
|
|
|
|
// Control endpoint with zero-length packet and opposite direction to 1st request byte --> status stage
|
|
bool const control_status = (epnum == 0 && total_bytes == 0 && dir != tu_edpt_dir(NRF_USBD->BMREQUESTTYPE));
|
|
|
|
if ( control_status )
|
|
{
|
|
// Status Phase also requires EasyDMA has to be available as well !!!!
|
|
edpt_dma_start(&NRF_USBD->TASKS_EP0STATUS);
|
|
|
|
// The nRF doesn't interrupt on status transmit so we queue up a success response.
|
|
dcd_event_xfer_complete(0, ep_addr, 0, XFER_RESULT_SUCCESS, is_in_isr());
|
|
}
|
|
else if ( dir == TUSB_DIR_OUT )
|
|
{
|
|
if ( epnum == 0 )
|
|
{
|
|
// Accept next Control Out packet. TASKS_EP0RCVOUT also require EasyDMA
|
|
edpt_dma_start(&NRF_USBD->TASKS_EP0RCVOUT);
|
|
}else
|
|
{
|
|
if ( xfer->data_received && xfer->total_len > xfer->actual_len)
|
|
{
|
|
// Data is already received previously
|
|
// start DMA to copy to SRAM
|
|
xfer->data_received = false;
|
|
xact_out_dma(epnum);
|
|
}
|
|
else
|
|
{
|
|
// nRF auto accept next Bulk/Interrupt OUT packet
|
|
// nothing to do
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Start DMA to copy data from RAM -> Endpoint
|
|
xact_in_dma(epnum);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
|
|
{
|
|
(void) rhport;
|
|
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
xfer_td_t* xfer = get_td(epnum, dir);
|
|
|
|
if ( epnum == 0 )
|
|
{
|
|
NRF_USBD->TASKS_EP0STALL = 1;
|
|
}else if (epnum != EP_ISO_NUM)
|
|
{
|
|
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep_addr;
|
|
|
|
// Note: nRF can auto ACK packet OUT before get stalled.
|
|
// There maybe data in endpoint fifo already, we need to pull it out
|
|
if ( (dir == TUSB_DIR_OUT) && xfer->data_received )
|
|
{
|
|
xfer->data_received = false;
|
|
xact_out_dma(epnum);
|
|
}
|
|
}
|
|
|
|
__ISB(); __DSB();
|
|
}
|
|
|
|
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
|
|
{
|
|
(void) rhport;
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
if ( epnum != 0 && epnum != EP_ISO_NUM )
|
|
{
|
|
// reset data toggle to DATA0
|
|
// First write this register with VALUE=Nop to select the endpoint, then either read it to get the status from
|
|
// VALUE, or write it again with VALUE=Data0 or Data1
|
|
NRF_USBD->DTOGGLE = ep_addr;
|
|
NRF_USBD->DTOGGLE = (USBD_DTOGGLE_VALUE_Data0 << USBD_DTOGGLE_VALUE_Pos) | ep_addr;
|
|
|
|
// clear stall
|
|
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr;
|
|
|
|
// Write any value to SIZE register will allow nRF to ACK/accept data
|
|
if (dir == TUSB_DIR_OUT) NRF_USBD->SIZE.EPOUT[epnum] = 0;
|
|
|
|
__ISB(); __DSB();
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/* Interrupt Handler
|
|
*------------------------------------------------------------------*/
|
|
void bus_reset(void)
|
|
{
|
|
// 6.35.6 USB controller automatically disabled all endpoints (except control)
|
|
NRF_USBD->EPOUTEN = 1UL;
|
|
NRF_USBD->EPINEN = 1UL;
|
|
|
|
for(int i=0; i<8; i++)
|
|
{
|
|
NRF_USBD->TASKS_STARTEPIN[i] = 0;
|
|
NRF_USBD->TASKS_STARTEPOUT[i] = 0;
|
|
}
|
|
|
|
NRF_USBD->TASKS_STARTISOIN = 0;
|
|
NRF_USBD->TASKS_STARTISOOUT = 0;
|
|
|
|
// Clear USB Event Interrupt
|
|
NRF_USBD->EVENTS_USBEVENT = 0;
|
|
NRF_USBD->EVENTCAUSE |= NRF_USBD->EVENTCAUSE;
|
|
|
|
// Reset interrupt
|
|
NRF_USBD->INTENCLR = NRF_USBD->INTEN;
|
|
NRF_USBD->INTENSET = USBD_INTEN_USBRESET_Msk | USBD_INTEN_USBEVENT_Msk | USBD_INTEN_EPDATA_Msk |
|
|
USBD_INTEN_EP0SETUP_Msk | USBD_INTEN_EP0DATADONE_Msk | USBD_INTEN_ENDEPIN0_Msk | USBD_INTEN_ENDEPOUT0_Msk;
|
|
|
|
tu_varclr(&_dcd);
|
|
_dcd.xfer[0][TUSB_DIR_IN].mps = MAX_PACKET_SIZE;
|
|
_dcd.xfer[0][TUSB_DIR_OUT].mps = MAX_PACKET_SIZE;
|
|
}
|
|
|
|
void dcd_int_handler(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
|
|
uint32_t const inten = NRF_USBD->INTEN;
|
|
uint32_t int_status = 0;
|
|
|
|
volatile uint32_t* regevt = &NRF_USBD->EVENTS_USBRESET;
|
|
|
|
for(uint8_t i=0; i<USBD_INTEN_EPDATA_Pos+1; i++)
|
|
{
|
|
if ( tu_bit_test(inten, i) && regevt[i] )
|
|
{
|
|
int_status |= TU_BIT(i);
|
|
|
|
// event clear
|
|
regevt[i] = 0;
|
|
__ISB(); __DSB();
|
|
}
|
|
}
|
|
|
|
if ( int_status & USBD_INTEN_USBRESET_Msk )
|
|
{
|
|
bus_reset();
|
|
dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
|
|
}
|
|
|
|
// ISOIN: Data was moved to endpoint buffer, client will be notified in SOF
|
|
if ( int_status & USBD_INTEN_ENDISOIN_Msk )
|
|
{
|
|
xfer_td_t* xfer = get_td(EP_ISO_NUM, TUSB_DIR_IN);
|
|
|
|
xfer->actual_len = NRF_USBD->ISOIN.AMOUNT;
|
|
// Data transferred from RAM to endpoint output buffer.
|
|
// Next transfer can be scheduled after SOF.
|
|
xfer->iso_in_transfer_ready = true;
|
|
}
|
|
|
|
if ( int_status & USBD_INTEN_SOF_Msk )
|
|
{
|
|
bool iso_enabled = false;
|
|
|
|
// ISOOUT: Transfer data gathered in previous frame from buffer to RAM
|
|
if (NRF_USBD->EPOUTEN & USBD_EPOUTEN_ISOOUT_Msk)
|
|
{
|
|
iso_enabled = true;
|
|
xact_out_dma(EP_ISO_NUM);
|
|
}
|
|
|
|
// ISOIN: Notify client that data was transferred
|
|
if (NRF_USBD->EPINEN & USBD_EPINEN_ISOIN_Msk)
|
|
{
|
|
iso_enabled = true;
|
|
|
|
xfer_td_t* xfer = get_td(EP_ISO_NUM, TUSB_DIR_IN);
|
|
if ( xfer->iso_in_transfer_ready )
|
|
{
|
|
xfer->iso_in_transfer_ready = false;
|
|
dcd_event_xfer_complete(0, EP_ISO_NUM | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
|
|
}
|
|
}
|
|
|
|
if ( !iso_enabled )
|
|
{
|
|
// ISO endpoint is not used, SOF is only enabled one-time for remote wakeup
|
|
// so we disable it now
|
|
NRF_USBD->INTENCLR = USBD_INTENSET_SOF_Msk;
|
|
}
|
|
|
|
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
|
|
}
|
|
|
|
if ( int_status & USBD_INTEN_USBEVENT_Msk )
|
|
{
|
|
TU_LOG(2, "EVENTCAUSE = 0x%04lX\r\n", NRF_USBD->EVENTCAUSE);
|
|
|
|
enum { EVT_CAUSE_MASK = USBD_EVENTCAUSE_SUSPEND_Msk | USBD_EVENTCAUSE_RESUME_Msk | USBD_EVENTCAUSE_USBWUALLOWED_Msk };
|
|
uint32_t const evt_cause = NRF_USBD->EVENTCAUSE & EVT_CAUSE_MASK;
|
|
NRF_USBD->EVENTCAUSE = evt_cause; // clear interrupt
|
|
|
|
if ( evt_cause & USBD_EVENTCAUSE_SUSPEND_Msk )
|
|
{
|
|
// Put controller into low power mode
|
|
// Leave HFXO disable to application, since it may be used by other peripherals
|
|
NRF_USBD->LOWPOWER = 1;
|
|
|
|
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
|
|
}
|
|
|
|
if ( evt_cause & USBD_EVENTCAUSE_USBWUALLOWED_Msk )
|
|
{
|
|
// USB is out of low power mode, and wakeup is allowed
|
|
// Initiate RESUME signal
|
|
NRF_USBD->DPDMVALUE = USBD_DPDMVALUE_STATE_Resume;
|
|
NRF_USBD->TASKS_DPDMDRIVE = 1;
|
|
|
|
// There is no Resume interrupt for remote wakeup, enable SOF for to report bus ready state
|
|
// Clear SOF event in case interrupt was not enabled yet.
|
|
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
|
|
NRF_USBD->INTENSET = USBD_INTENSET_SOF_Msk;
|
|
}
|
|
|
|
if ( evt_cause & USBD_EVENTCAUSE_RESUME_Msk )
|
|
{
|
|
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
|
|
}
|
|
}
|
|
|
|
// Setup tokens are specific to the Control endpoint.
|
|
if ( int_status & USBD_INTEN_EP0SETUP_Msk )
|
|
{
|
|
uint8_t const setup[8] =
|
|
{
|
|
NRF_USBD->BMREQUESTTYPE , NRF_USBD->BREQUEST, NRF_USBD->WVALUEL , NRF_USBD->WVALUEH,
|
|
NRF_USBD->WINDEXL , NRF_USBD->WINDEXH , NRF_USBD->WLENGTHL, NRF_USBD->WLENGTHH
|
|
};
|
|
|
|
// nrf5x hw auto handle set address, there is no need to inform usb stack
|
|
tusb_control_request_t const * request = (tusb_control_request_t const *) setup;
|
|
|
|
if ( !(TUSB_REQ_RCPT_DEVICE == request->bmRequestType_bit.recipient &&
|
|
TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type &&
|
|
TUSB_REQ_SET_ADDRESS == request->bRequest) )
|
|
{
|
|
dcd_event_setup_received(0, setup, true);
|
|
}
|
|
}
|
|
|
|
if ( int_status & EDPT_END_ALL_MASK )
|
|
{
|
|
// DMA complete move data from SRAM <-> Endpoint
|
|
// Must before endpoint transfer handling
|
|
edpt_dma_end();
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
/* Control/Bulk/Interrupt (CBI) Transfer
|
|
*
|
|
* Data flow is:
|
|
* (bus) (dma)
|
|
* Host <-------> Endpoint <-------> RAM
|
|
*
|
|
* For CBI OUT:
|
|
* - Host -> Endpoint
|
|
* EPDATA (or EP0DATADONE) interrupted, check EPDATASTATUS.EPOUT[i]
|
|
* to start DMA. For Bulk/Interrupt, this step can occur automatically (without sw),
|
|
* which means data may or may not be ready (out_received flag).
|
|
* - Endpoint -> RAM
|
|
* ENDEPOUT[i] interrupted, transaction complete, sw prepare next transaction
|
|
*
|
|
* For CBI IN:
|
|
* - RAM -> Endpoint
|
|
* ENDEPIN[i] interrupted indicate DMA is complete. HW will start
|
|
* to move data to host
|
|
* - Endpoint -> Host
|
|
* EPDATA (or EP0DATADONE) interrupted, check EPDATASTATUS.EPIN[i].
|
|
* Transaction is complete, sw prepare next transaction
|
|
*
|
|
* Note: in both Control In and Out of Data stage from Host <-> Endpoint
|
|
* EP0DATADONE will be set as interrupt source
|
|
*/
|
|
//--------------------------------------------------------------------+
|
|
|
|
/* CBI OUT: Endpoint -> SRAM (aka transaction complete)
|
|
* Note: Since nRF controller auto ACK next packet without SW awareness
|
|
* We must handle this stage before Host -> Endpoint just in case 2 event happens at once
|
|
*
|
|
* ISO OUT: Transaction must fit in single packet, it can be shorter then total
|
|
* len if Host decides to sent fewer bytes, it this case transaction is also
|
|
* complete and next transfer is not initiated here like for CBI.
|
|
*/
|
|
for(uint8_t epnum=0; epnum<EP_CBI_COUNT+1; epnum++)
|
|
{
|
|
if ( tu_bit_test(int_status, USBD_INTEN_ENDEPOUT0_Pos+epnum))
|
|
{
|
|
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
|
|
uint8_t const xact_len = NRF_USBD->EPOUT[epnum].AMOUNT;
|
|
|
|
xfer->buffer += xact_len;
|
|
xfer->actual_len += xact_len;
|
|
|
|
// Transfer complete if transaction len < Max Packet Size or total len is transferred
|
|
if ( (epnum != EP_ISO_NUM) && (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) )
|
|
{
|
|
if ( epnum == 0 )
|
|
{
|
|
// Accept next Control Out packet. TASKS_EP0RCVOUT also require EasyDMA
|
|
edpt_dma_start(&NRF_USBD->TASKS_EP0RCVOUT);
|
|
}else
|
|
{
|
|
// nRF auto accept next Bulk/Interrupt OUT packet
|
|
// nothing to do
|
|
}
|
|
}else
|
|
{
|
|
xfer->total_len = xfer->actual_len;
|
|
|
|
// CBI OUT complete
|
|
dcd_event_xfer_complete(0, epnum, xfer->actual_len, XFER_RESULT_SUCCESS, true);
|
|
}
|
|
}
|
|
|
|
// Ended event for CBI IN : nothing to do
|
|
}
|
|
|
|
// Endpoint <-> Host ( In & OUT )
|
|
if ( int_status & (USBD_INTEN_EPDATA_Msk | USBD_INTEN_EP0DATADONE_Msk) )
|
|
{
|
|
uint32_t data_status = NRF_USBD->EPDATASTATUS;
|
|
NRF_USBD->EPDATASTATUS = data_status;
|
|
__ISB(); __DSB();
|
|
|
|
// EP0DATADONE is set with either Control Out on IN Data
|
|
// Since EPDATASTATUS cannot be used to determine whether it is control OUT or IN.
|
|
// We will use BMREQUESTTYPE in setup packet to determine the direction
|
|
bool const is_control_in = (int_status & USBD_INTEN_EP0DATADONE_Msk) && (NRF_USBD->BMREQUESTTYPE & TUSB_DIR_IN_MASK);
|
|
bool const is_control_out = (int_status & USBD_INTEN_EP0DATADONE_Msk) && !(NRF_USBD->BMREQUESTTYPE & TUSB_DIR_IN_MASK);
|
|
|
|
// CBI In: Endpoint -> Host (transaction complete)
|
|
for(uint8_t epnum=0; epnum<EP_CBI_COUNT; epnum++)
|
|
{
|
|
if ( tu_bit_test(data_status, epnum) || (epnum == 0 && is_control_in) )
|
|
{
|
|
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN);
|
|
uint8_t const xact_len = NRF_USBD->EPIN[epnum].AMOUNT;
|
|
|
|
xfer->buffer += xact_len;
|
|
xfer->actual_len += xact_len;
|
|
|
|
if ( xfer->actual_len < xfer->total_len )
|
|
{
|
|
// Start DMA to copy next data packet
|
|
xact_in_dma(epnum);
|
|
} else
|
|
{
|
|
// CBI IN complete
|
|
dcd_event_xfer_complete(0, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// CBI OUT: Host -> Endpoint
|
|
for(uint8_t epnum=0; epnum<EP_CBI_COUNT; epnum++)
|
|
{
|
|
if ( tu_bit_test(data_status, 16+epnum) || (epnum == 0 && is_control_out) )
|
|
{
|
|
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
|
|
|
|
if (xfer->actual_len < xfer->total_len)
|
|
{
|
|
xact_out_dma(epnum);
|
|
}else
|
|
{
|
|
// Data overflow !!! Nah, nRF will auto accept next Bulk/Interrupt OUT packet
|
|
// Mark this endpoint with data received
|
|
xfer->data_received = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// HFCLK helper
|
|
//--------------------------------------------------------------------+
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
|
|
// For enable/disable hfclk with SoftDevice
|
|
#include "nrf_mbr.h"
|
|
#include "nrf_sdm.h"
|
|
#include "nrf_soc.h"
|
|
|
|
#ifndef SD_MAGIC_NUMBER
|
|
#define SD_MAGIC_NUMBER 0x51B1E5DB
|
|
#endif
|
|
|
|
static inline bool is_sd_existed(void)
|
|
{
|
|
return *((uint32_t*)(SOFTDEVICE_INFO_STRUCT_ADDRESS+4)) == SD_MAGIC_NUMBER;
|
|
}
|
|
|
|
// check if SD is existed and enabled
|
|
static inline bool is_sd_enabled(void)
|
|
{
|
|
if ( !is_sd_existed() ) return false;
|
|
|
|
uint8_t sd_en = false;
|
|
(void) sd_softdevice_is_enabled(&sd_en);
|
|
return sd_en;
|
|
}
|
|
#endif
|
|
|
|
static bool hfclk_running(void)
|
|
{
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if ( is_sd_enabled() )
|
|
{
|
|
uint32_t is_running = 0;
|
|
(void) sd_clock_hfclk_is_running(&is_running);
|
|
return (is_running ? true : false);
|
|
}
|
|
#endif
|
|
|
|
return nrf_clock_hf_is_running(NRF_CLOCK, NRF_CLOCK_HFCLK_HIGH_ACCURACY);
|
|
}
|
|
|
|
static void hfclk_enable(void)
|
|
{
|
|
#if CFG_TUSB_OS == OPT_OS_MYNEWT
|
|
usb_clock_request();
|
|
return;
|
|
#else
|
|
|
|
// already running, nothing to do
|
|
if ( hfclk_running() ) return;
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if ( is_sd_enabled() )
|
|
{
|
|
(void)sd_clock_hfclk_request();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
nrf_clock_event_clear(NRF_CLOCK, NRF_CLOCK_EVENT_HFCLKSTARTED);
|
|
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTART);
|
|
#endif
|
|
}
|
|
|
|
static void hfclk_disable(void)
|
|
{
|
|
#if CFG_TUSB_OS == OPT_OS_MYNEWT
|
|
usb_clock_release();
|
|
return;
|
|
#else
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if ( is_sd_enabled() )
|
|
{
|
|
(void)sd_clock_hfclk_release();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTOP);
|
|
#endif
|
|
}
|
|
|
|
// Power & Clock Peripheral on nRF5x to manage USB
|
|
//
|
|
// USB Bus power is managed by Power module, there are 3 VBUS power events:
|
|
// Detected, Ready, Removed. Upon these power events, This function will
|
|
// enable ( or disable ) usb & hfclk peripheral, set the usb pin pull up
|
|
// accordingly to the controller Startup/Standby Sequence in USBD 51.4 specs.
|
|
//
|
|
// Therefore this function must be called to handle USB power event by
|
|
// - nrfx_power_usbevt_init() : if Softdevice is not used or enabled
|
|
// - SoftDevice SOC event : if SD is used and enabled
|
|
void tusb_hal_nrf_power_event (uint32_t event)
|
|
{
|
|
// Value is chosen to be as same as NRFX_POWER_USB_EVT_* in nrfx_power.h
|
|
enum {
|
|
USB_EVT_DETECTED = 0,
|
|
USB_EVT_REMOVED = 1,
|
|
USB_EVT_READY = 2
|
|
};
|
|
|
|
#if CFG_TUSB_DEBUG >= 2
|
|
const char* const power_evt_str[] = { "Detected", "Removed", "Ready" };
|
|
TU_LOG(2, "Power USB event: %s\r\n", power_evt_str[event]);
|
|
#endif
|
|
|
|
switch ( event )
|
|
{
|
|
case USB_EVT_DETECTED:
|
|
if ( !NRF_USBD->ENABLE )
|
|
{
|
|
// Prepare for receiving READY event: disable interrupt since we will blocking wait
|
|
NRF_USBD->INTENCLR = USBD_INTEN_USBEVENT_Msk;
|
|
NRF_USBD->EVENTCAUSE = USBD_EVENTCAUSE_READY_Msk;
|
|
__ISB(); __DSB(); // for sync
|
|
|
|
#ifdef NRF52_SERIES // NRF53 does not need this errata
|
|
// ERRATA 171, 187, 166
|
|
if ( nrfx_usbd_errata_187() )
|
|
{
|
|
// CRITICAL_REGION_ENTER();
|
|
if ( *((volatile uint32_t *) (0x4006EC00)) == 0x00000000 )
|
|
{
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
*((volatile uint32_t *) (0x4006ED14)) = 0x00000003;
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
}
|
|
else
|
|
{
|
|
*((volatile uint32_t *) (0x4006ED14)) = 0x00000003;
|
|
}
|
|
// CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
if ( nrfx_usbd_errata_171() )
|
|
{
|
|
// CRITICAL_REGION_ENTER();
|
|
if ( *((volatile uint32_t *) (0x4006EC00)) == 0x00000000 )
|
|
{
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
*((volatile uint32_t *) (0x4006EC14)) = 0x000000C0;
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
}
|
|
else
|
|
{
|
|
*((volatile uint32_t *) (0x4006EC14)) = 0x000000C0;
|
|
}
|
|
// CRITICAL_REGION_EXIT();
|
|
}
|
|
#endif
|
|
|
|
// Enable the peripheral (will cause Ready event)
|
|
NRF_USBD->ENABLE = 1;
|
|
__ISB(); __DSB(); // for sync
|
|
|
|
// Enable HFCLK
|
|
hfclk_enable();
|
|
}
|
|
break;
|
|
|
|
case USB_EVT_READY:
|
|
// Skip if pull-up is enabled and HCLK is already running.
|
|
// Application probably call this more than necessary.
|
|
if ( NRF_USBD->USBPULLUP && hfclk_running() ) break;
|
|
|
|
// Waiting for USBD peripheral enabled
|
|
while ( !(USBD_EVENTCAUSE_READY_Msk & NRF_USBD->EVENTCAUSE) ) { }
|
|
|
|
NRF_USBD->EVENTCAUSE = USBD_EVENTCAUSE_READY_Msk;
|
|
__ISB(); __DSB(); // for sync
|
|
|
|
#ifdef NRF52_SERIES
|
|
if ( nrfx_usbd_errata_171() )
|
|
{
|
|
// CRITICAL_REGION_ENTER();
|
|
if ( *((volatile uint32_t *) (0x4006EC00)) == 0x00000000 )
|
|
{
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
*((volatile uint32_t *) (0x4006EC14)) = 0x00000000;
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
}
|
|
else
|
|
{
|
|
*((volatile uint32_t *) (0x4006EC14)) = 0x00000000;
|
|
}
|
|
|
|
// CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
if ( nrfx_usbd_errata_187() )
|
|
{
|
|
// CRITICAL_REGION_ENTER();
|
|
if ( *((volatile uint32_t *) (0x4006EC00)) == 0x00000000 )
|
|
{
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
*((volatile uint32_t *) (0x4006ED14)) = 0x00000000;
|
|
*((volatile uint32_t *) (0x4006EC00)) = 0x00009375;
|
|
}
|
|
else
|
|
{
|
|
*((volatile uint32_t *) (0x4006ED14)) = 0x00000000;
|
|
}
|
|
// CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
if ( nrfx_usbd_errata_166() )
|
|
{
|
|
*((volatile uint32_t *) (NRF_USBD_BASE + 0x800)) = 0x7E3;
|
|
*((volatile uint32_t *) (NRF_USBD_BASE + 0x804)) = 0x40;
|
|
|
|
__ISB(); __DSB();
|
|
}
|
|
#endif
|
|
|
|
// ISO buffer Lower half for IN, upper half for OUT
|
|
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
|
|
|
|
// Enable bus-reset interrupt
|
|
NRF_USBD->INTENSET = USBD_INTEN_USBRESET_Msk;
|
|
|
|
// Enable interrupt, priorities should be set by application
|
|
NVIC_ClearPendingIRQ(USBD_IRQn);
|
|
// Don't enable USBD interrupt yet, if dcd_init() did not finish yet
|
|
// Interrupt will be enabled by tud_init(), when USB stack is ready
|
|
// to handle interrupts.
|
|
if (tud_inited())
|
|
{
|
|
NVIC_EnableIRQ(USBD_IRQn);
|
|
}
|
|
|
|
// Wait for HFCLK
|
|
while ( !hfclk_running() ) { }
|
|
|
|
// Enable pull up
|
|
NRF_USBD->USBPULLUP = 1;
|
|
__ISB(); __DSB(); // for sync
|
|
break;
|
|
|
|
case USB_EVT_REMOVED:
|
|
if ( NRF_USBD->ENABLE )
|
|
{
|
|
// Abort all transfers
|
|
|
|
// Disable pull up
|
|
NRF_USBD->USBPULLUP = 0;
|
|
__ISB(); __DSB(); // for sync
|
|
|
|
// Disable Interrupt
|
|
NVIC_DisableIRQ(USBD_IRQn);
|
|
|
|
// disable all interrupt
|
|
NRF_USBD->INTENCLR = NRF_USBD->INTEN;
|
|
|
|
NRF_USBD->ENABLE = 0;
|
|
__ISB(); __DSB(); // for sync
|
|
|
|
hfclk_disable();
|
|
|
|
dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, is_in_isr());
|
|
}
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
#endif
|